SED2 variable speed drives
Operating instructions
Table of contents

1. Introduction ... 7
 1.1 Purpose of this document ... 7
 1.2 Validity... 7
 1.3 Target audience .. 7
 1.4 Document structure... 7
 1.5 Referenced documents ... 7
 1.6 Document conventions.. 8
 1.7 Environmental compatibility and disposal ... 9

2. Safety instructions... 11
 2.1 General.. 11
 2.2 Commissioning.. 11
 2.3 Operation... 12
 2.4 Repairs.. 12

3. Mechanical installation .. 13
 3.1 Installing the SED2 after extended storage... 13
 3.2 Ambient conditions.. 13
 3.3 Mounting.. 14
 3.3.1 Dimensions of SED2 drives with IP20/NEMA 0 rating 14
 3.3.1.1 Dimensions of SED2 frame sizes A to C... 14
 3.3.1.2 Dimensions of SED2 footprint filters for frame sizes A to C........... 15
 3.3.1.3 Dimensions of SED2 frame sizes D to F....................................... 15
 3.3.2 Dimensions of SED2 drives with IP54/NEMA 12 rating 16
 3.3.2.1 Dimensions of SED2 frame sizes B and C.................................. 16
 3.3.2.2 Dimensions of SED2 frame sizes D to F.................................... 16
 3.3.3 Mounting SED2 drives with IP20/NEMA 0 rating 17
 3.3.4 Mounting SED2 drives with IP54/NEMA 12 rating........................... 18

4. Electrical installation.. 19
 4.1 General.. 19
 4.1.1 Maximum length of motor cables ... 19
 4.1.2 Operation with ungrounded systems... 19
 4.1.2.1 Precautions for ungrounded systems (IT protective systems) 19
 4.1.3 Operation with a residual current device (RCD)................................. 22
 4.2 EMC-compatible installation... 23
 4.2.1 EMC-compatible wiring ... 23
 4.3 Mains and motor connections .. 25
 4.3.1 Access to connection terminals: Frame size A................................... 26
 4.3.2 Access to connection terminals: Frame sizes B and C........................ 27
 4.3.3 Access to connection terminals: Frame sizes D to F IP20............... 28
 4.3.4 Power and motor terminals: Frame sizes A to F............................... 30
4.3.5 Power connection for drives with a built-in EMC filter 31
4.3.6 Tightening torque for connection terminals .. 34
4.3.7 Cross-sections for power and motor cables ... 34
4.3.8 Block diagram showing typical installation ... 36
4.3.9 Direction of rotation .. 36
4.3.10 Star or delta connection.. 37
4.3.11 Connecting several motors ... 37
4.3.12 External motor overload protection... 37
4.4 Control terminals .. 38
4.5 SED2 block diagram... 39
5 Commissioning ... 41
 5.1.1 DIP switch settings ... 42
 5.1.1.1 Setting the DIP switches on the I/O module ... 42
 5.1.1.2 DIP switch settings on the control board .. 42
 5.2 Checklist prior to start... 43
 5.3 Operator panels for the SED2 .. 43
 5.3.1 Description of the basic operator panel (BOP) ... 43
 5.3.2 Description of the advanced operator panel (AOP)................................. 44
 5.3.3 Exchanging the operator panels... 44
 5.3.4 Buttons and their functions on the operator panel (BOP and AOP) 45
 5.4 Commissioning modes ... 46
 5.4.1 Overview of commissioning with the BOP or AOP 46
 5.4.2 Quick commissioning.. 46
 5.4.3 Motor data for parameterization ... 48
 5.4.4 Commissioning with the BOP or AOP .. 48
 5.4.4.1 Country-specific default settings for operation with the BOP 48
 5.4.4.2 Setting parameters with the BOP or AOP .. 49
 5.4.5 Resetting SED2 parameters to the factory settings.................................... 50
 5.4.6 Basic operation with the BOP .. 50
 5.4.7 10 Hz test ... 50
 5.4.8 General operation ... 51
6 Programming .. 53
 6.1 Introduction to the SED2 system parameters ... 53
 6.1.1 General notes ... 53
 6.2 Access to parameters... 53
 6.2.1 Parameter access levels (P0003)... 53
 6.2.2 Parameter filter (P004) ... 53
 6.2.3 Diagram for a parameter overview ... 54
 6.3 Basic functions of the SED2 ... 55
 6.3.1 Digital inputs .. 55
 6.3.2 Analog inputs.. 57
1 Introduction

1.1 Purpose of this document

These operating instructions contain all the information necessary to correctly mount, install, commission, and parameterize (programming) SED2 variable speed drives (VSD) as well as for effective and troublefree operation.

1.2 Validity

The operating instructions apply to all SED2 variable speed drives, frame sizes A to F. They are supplied with the product, and are part of the full range of SED2 VSD literature.

1.3 Target audience

This document is primarily intended for installers, electrical installers, service technicians, and operators or end users of HVAC plants (Heating, Ventilating, and Air Conditioning).

1.4 Document structure

The document is divided into the following sections:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2</td>
<td>Safety instructions</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Mechanical installation</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Electrical installation and wiring of the motor and VSD</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Commissioning</td>
</tr>
<tr>
<td></td>
<td>Description of basic and advanced operator panels</td>
</tr>
<tr>
<td></td>
<td>Quick commissioning</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Programming (parameterization)</td>
</tr>
<tr>
<td></td>
<td>Description of functions</td>
</tr>
<tr>
<td></td>
<td>System parameter list</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Troubleshooting, warning and error code lists</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Technical data</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Appendix:</td>
</tr>
<tr>
<td></td>
<td>Applicable standards and declarations of conformity</td>
</tr>
<tr>
<td></td>
<td>List of abbreviations, index</td>
</tr>
</tbody>
</table>

1.5 Referenced documents

CM1G5192X

Getting Started Guide:
The *Getting started guide* is a brief multilingual guide to provide users fast access to all the basic information necessary to install, set up, and operate the VSD.
Target audience: Installers, installing engineers, and commissioning engineers.

CM1J5192en

Engineering manual:
This manual contains in-depth information on all technical matters relating to the SED2 VSD.
Target audience: Project design engineers, planners, users of the product, technical staff, and service.
Data sheet
The data sheet contains a brief description of functions, notes on use, type codes, accessories, ordering information, technical data, and a range overview.

Target audience: Project design engineers, planners, purchasing and sales staff, and service.

1.6 Document conventions

Danger
Information pointing at immediate danger is printed under the heading “Danger” with the symbol shown in the left margin. Failure to observe this information may result in severe physical injury or death or severe property damage.

Warning
Information under the heading “Warning” is shown with the symbol in the left margin. Failure to observe this category of information may result in physical injury and/or property damage.

Caution
Information under the heading “Caution” is shown with the symbol in the left margin. Failure to observe this type of information may result in property damage and/or loss of data.

Important
Other important information (headed “Important” or “Note”) is shown on a gray background. Failure to observe this information will not result in any damage.

Note
This relates to additional information important for the safety of personnel and equipment, or provides details of additional options or technical requirements.

Tips
Helpful information to simplify the use of the product for the user.

Authorized personnel
"Authorized personnel" are persons familiar with installing, mounting, commissioning, and operating the equipment, and aware of the associated hazards. Authorized personnel must satisfy the following requirements:

- They must be trained and authorized to switch on, switch off, disconnect, and ground electric circuits, and to attach warning labels in accordance with the established safety instructions.
- They must have training in the proper care and use of protective devices in accordance with all prevailing safety regulations.
- They must be trained in and capable of administering first aid.
1.7 Environmental compatibility and disposal

General notes

This product was developed and manufactured using materials and processes which take full account of environmental issues and which comply with our environmental standards.

Please note the following for disposal at the end of the product life, or in the event of its replacement:

- For disposal, this product is defined as waste from electrical and electronic equipment ("electronic waste"); do not dispose of it as household waste. This applies particularly to the PCB assembly.

- Always use the most environmentally compatible method of disposal, in line with the state-of-the-art technology in environmental protection, recycling, and waste management.

 Observe all local and applicable laws.

- Always aim for maximum re-use of the basic materials at minimum environmental stress. Observe any notes on materials and disposal that may be attached to individual components.

- Use local depots and waste management companies, or refer to your supplier or manufacturer to return used products or to obtain further information on environmental compatibility and waste disposal.

Special electronic components

The law may mandate special handling of components such as electrolytic capacitors and LCD panels, or it may be environmentally desirable.

Packaging

The variable speed drive is delivered in re-usable packaging. Please retain the packaging for later use or in case you need to return the product to the manufacturer.
2 Safety instructions

The following warnings and notes on danger are provided for your safety and as a means of preventing damage to the product or to any components of the connected machinery. This section contains general warnings, preventive measures, and danger warnings, which apply to all work on the SED2 variable speed drives. Specific warnings applicable to particular tasks are summarized at the beginning of each chapter and repeated throughout the chapter as necessary at the relevant points.

Please read this information carefully, as it is provided for your personal safety, and to help extend the life of the SED2 variable speed drive and any equipment connected to it.

Format of warnings

Refer to section 1.6 Document conventions for information on the format of warning notes and associated symbols.

2.1 General

Warning

- This equipment uses hazardous voltages and drives potentially dangerous rotating mechanical parts. Non-compliance with warnings or failure to follow the instructions in this manual may put lives at risk, or result in severe physical injury, or serious damage to property/equipment.

- Only authorized personnel may work on this equipment. They must first acquaint themselves with all the safety instructions, and installation and operating instructions in this manual. Successful and safe operation of this device depends on its proper handling, installation, commissioning, and operation.

- Prevent children and other unauthorized persons from accessing the equipment.

Risk of electric shock

The DC link capacitors remain charged with dangerous voltages for five minutes after power has been switched off.

Danger

Do not open the device for five minutes after switching off the supply voltage.

Purpose

Use the equipment only for purposes as specified by the manufacturer. Unauthorized modifications and use of spare parts or accessories not supplied or recommended by the manufacturer of this equipment may cause fires, electric shock, and physical injury.

Availability of the operating instructions

Keep these operating instructions within easy reach of the equipment and make them available to all users.

2.2 Commissioning

- Only authorized personnel trained in the setup, installation, commissioning, and operation of the product may work on the product and plant.

- Only hard-wired mains connections are permissible. Ground the VSD (IEC 536, Class 1, NEC and other relevant industry standards).

- If a residual current device (RCD) is to be used, it must be a type B device.

- Do not connect machines with a 3-phase power supply fitted with EMC filters to the mains via an earth leakage current circuit breaker (ELCB) (see DIN VDE 0160, section 6.5).
The following terminals may carry dangerous voltages even when the variable speed drive is not running:
- Power supply terminals L1, L2, L3.
- Motor terminals U, V, W.
- Link terminals DC-, DC+/B+, DC/R+, B-.

To prevent inductive and capacitive interference, connect the power, motor, and control cables to the variable speed drive as illustrated and described in section 4.2.1 “EMC-compatible wiring”.

2.3 Operation

- SED2 variable speed drives operate at high voltages.
- Emergency stop facilities in accordance with EN 60204 IEC 204 (VDE 0113) must remain operative in all operating modes of the control equipment. Resetting the emergency stop facility may not cause an uncontrolled or undefined restart.
- In cases where faults in the control equipment could cause significant equipment damage or severe physical injury (e.g., potentially dangerous short circuits), take additional external precautions or provide facilities to ensure or enforce safe operation even in the event of a short circuit (e.g., independent limit switches, mechanical interlocks, etc.).
- Certain parameter settings can cause an automatic restart of the variable speed drive following an fault or supply voltage failure, provided the fault has been eliminated/acknowledged or the supply voltage has been restored.
- The variable speed drive is capable of protecting the motor from overload. (Motor overload protection in accordance with UL 508C, section 42). See P0610 and P0335.
- Protection against motor overload can be instituted via an external PTC thermistors (temperature variable conductor) via a special input (Class 14/15, see also section 4.3.12, page 37).
- Do not use the variable speed drive as an “Emergency Stop” mechanism (see EN60204, 9.2.5.4).

2.4 Repairs

- Only the Siemens service, repair centers authorized by Siemens, or authorized personnel fully acquainted with all the warnings and operating procedures as specified in this manual may repair this equipment.
- Replace defective parts or components using parts from the relevant spare parts list.

Disconnect the power supply before opening the device.
3 Mechanical installation

3.1 Installing the SED2 after extended storage

Recharge the capacitors in the variable speed drive following an extended period of storage. **Remember to calculate the storage time from the date of manufacture, and not from the date of delivery.** The required procedure varies according to the storage period and is described below.

<table>
<thead>
<tr>
<th>Period of storage</th>
<th>Required action</th>
<th>Preparation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year or less</td>
<td>Recharging not required.</td>
<td>No preparation</td>
</tr>
<tr>
<td>1 to 2 years</td>
<td>Before issuing the “Run” command, connect the variable speed drive to the supply voltage for one hour.</td>
<td>1 hour</td>
</tr>
</tbody>
</table>
| 2 to 3 years | Use a variable AC power source.
1. Apply 25% of the input voltage for 30 minutes.
2. Increase the voltage to 50% for a further 30 minutes.
3. Increase the voltage to 75% for a further 30 minutes.
4. Increase the voltage to 100% for a further 30 minutes.
The variable speed drive is then ready for operation. | 2 hours |
| 3 or more years | Use a variable AC power source.
1. Apply 25% of the input voltage for 2 hours.
2. Increase the voltage to 50% for a further 2 hours.
3. Increase the voltage to 75% for a further 2 hours.
4. Increase the voltage to 100% for a further 2 hours.
The variable speed drive is then ready for operation. | 8 hours |

3.2 Ambient conditions

<table>
<thead>
<tr>
<th>Temperature</th>
<th>IP20</th>
<th>IP54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. operating temperature</td>
<td>–10 °C</td>
<td>–10 °C</td>
</tr>
<tr>
<td>Max. operating temperature</td>
<td>+40 °C*</td>
<td>+40 °C</td>
</tr>
</tbody>
</table>

* Be aware of the potential increase in temperature inside the control cabinet (derating necessary; refer to the engineering manual).

Humidity
Max. 95%, non-condensing.

Height above sea level
If you want to install the VSD at an altitude of more than 1000 m, derating is required. (Refer to the engineering manual).

Overheating
Install the VSD vertically for optimum cooling. Do not obstruct the vents on the VSD. Additional ventilation may be required if the drive is mounted horizontally. If mounted vertically, VSDs with a protection standard of IP20 may be installed side by side. A minimum clearance of 100 mm is necessary above and below the VSD. VSD of class IP54 require greater clearances. See section 3.3.4 “Mounting SED2 drives with IP54 / NEMA 12 rating”.

Electromagnetic radiation
Do not install the VSD in the vicinity of powerful sources for electromagnetic radiation.
Atmospheric pollution

Do not install the VSD in an environment containing atmospheric pollutants such as dust, corrosive gases, etc. Devices subject to protection standard IP20 need additional protection from dust, atmospheric pollutants, and water.

Shock

Do not install the VSD in a location where it might be exposed to repeated shock or vibration.

3.3 Mounting

Danger

- The device must be grounded.
- Extremely dangerous conditions can arise if you do not correctly ground the variable speed drive.
- To ensure safe operation of the equipment, authorized persons must install and commission it in full compliance with the notes and warnings set out in these operating instructions.
- Take particular note of general and regional installation and safety regulations regarding work on sites with dangerous voltages (e.g. EN 50178), and of the relevant regulations for the correct use of tools and personal protective equipment.

Dangerous voltages may occur at the following terminals even when the variable speed drive is not running:

- Power supply terminals L1, L2, L3.
- Motor connection terminals U, V, W, DC-, DC+/B+, DC/R+, B-.
- Link terminals DC-, DC+/B+, DC/R+, B-.

Danger

Do not open the device for five minutes after switching off the supply voltage.

3.3.1 Dimensions of SED2 drives with IP20/NEMA 0 rating

3.3.1.1 Dimensions of SED2 frame sizes A to C

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Dimensions</th>
<th>A</th>
<th>A1</th>
<th>B</th>
<th>C</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>173</td>
<td>200</td>
<td>73</td>
<td>149</td>
<td>192.5</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>202</td>
<td>213</td>
<td>149</td>
<td>172</td>
<td>222.5</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>245</td>
<td>261</td>
<td>185</td>
<td>195</td>
<td>250</td>
</tr>
</tbody>
</table>

![Frame size A](image1.png)

![Frame sizes B and C](image2.png)
3.3.1.2 Dimensions of SED2 footprint filters for frame sizes A to C

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Dimensions in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>200</td>
</tr>
<tr>
<td>B</td>
<td>213</td>
</tr>
<tr>
<td>C</td>
<td>245</td>
</tr>
</tbody>
</table>

Filter for frame size A
Filter for frame sizes B and C

3.3.1.3 Dimensions of SED2 frame sizes D to F

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Dimensions in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>520</td>
</tr>
<tr>
<td>E</td>
<td>650</td>
</tr>
<tr>
<td>F</td>
<td>850 (with filter 1150)</td>
</tr>
</tbody>
</table>
3.3.2 Dimensions of SED2 drives with IP54/NEMA 12 rating

3.3.2.1 Dimensions of SED2 frame sizes B and C

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Dimensions in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>385 270 268</td>
</tr>
<tr>
<td>B</td>
<td>606 350 284</td>
</tr>
</tbody>
</table>

3.3.2.2 Dimensions of SED2 frame sizes D to F

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Dimensions in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>685 360 353</td>
</tr>
<tr>
<td>B</td>
<td>885 360 453</td>
</tr>
<tr>
<td>C</td>
<td>1150 450 473</td>
</tr>
</tbody>
</table>
3.3.3 Mounting SED2 drives with IP20/NEMA 0 rating

Drilling plan for SED2

Note

A minimum clearance of 100 mm is required above and below each variable speed drive.

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Hole spacing</th>
<th>Mounting materials</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H in mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>160</td>
<td>2 x M4 bolts</td>
<td>2.5 Nm</td>
</tr>
<tr>
<td></td>
<td>187</td>
<td>2 x M4 nuts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 56</td>
<td>2 x M4 spring lock washers</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>174</td>
<td>4 x M4 bolts</td>
<td>2.5 Nm</td>
</tr>
<tr>
<td></td>
<td>* 200</td>
<td>4 x M4 nuts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>4 x M4 spring lock washers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 120</td>
<td>4 x M4 washers</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>204</td>
<td>4 x M5 bolts</td>
<td>3.0 Nm</td>
</tr>
<tr>
<td></td>
<td>* 232</td>
<td>4 x M5 nuts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>4 x M5 spring lock washers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 156</td>
<td>4 x M5 washers</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>486</td>
<td>4 x M8 bolts</td>
<td>13 Nm</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>4 x M8 nuts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 x M8 spring lock washers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 x M8 washers</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>616.4</td>
<td>4 x M8 bolts</td>
<td>13 Nm</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>4 x M8 nuts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 x M8 spring lock washers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 x M8 washers</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>810</td>
<td>4 x M8 bolts</td>
<td>25 Nm</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>4 x M8 nuts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with filter</td>
<td>4 x M8 spring lock washers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>4 x M8 washers</td>
<td></td>
</tr>
</tbody>
</table>

* with footprint filter
3.3.4 Mounting SED2 drives with IP54 / NEMA 12 rating

Drilling plan for SED2

IP54

<table>
<thead>
<tr>
<th>Frame size</th>
<th>H (mm)</th>
<th>W (mm)</th>
<th>Top</th>
<th>Bottom</th>
<th>Side</th>
<th>Mounting materials</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>342.8</td>
<td>230</td>
<td>150</td>
<td>150</td>
<td>100</td>
<td>4xM6 bolts, 4xM6 washers, 4xM6 spring lock washers</td>
<td>5 Nm</td>
</tr>
<tr>
<td>C</td>
<td>564</td>
<td>312.7</td>
<td>150</td>
<td>150</td>
<td>100</td>
<td>4xM6 bolts, 4xM6 washers, 4xM6 spring lock washers</td>
<td>5 Nm</td>
</tr>
<tr>
<td>D</td>
<td>647</td>
<td>310</td>
<td>200</td>
<td>200</td>
<td>150</td>
<td>4xM8 bolts, 4xM8 washers, 4xM8 spring lock washers</td>
<td>13 Nm</td>
</tr>
<tr>
<td>E</td>
<td>847</td>
<td>310</td>
<td>200</td>
<td>200</td>
<td>150</td>
<td>4xM8 bolts, 4xM8 washers, 4xM8 spring lock washers</td>
<td>13 Nm</td>
</tr>
<tr>
<td>F</td>
<td>1112</td>
<td>400</td>
<td>300</td>
<td>250</td>
<td>150</td>
<td>4xM8 bolts, 4xM8 washers, 4xM8 spring lock washers</td>
<td>20 Nm</td>
</tr>
</tbody>
</table>
4 Electrical installation

The VSD must be grounded.
♦ To ensure safe operation of the equipment, authorized persons must install and commission it in full compliance with the notes and warnings set out in these operating instructions.
♦ Take particular note of general and regional installation and safety regulations regarding work on sites with dangerous voltages (e.g. EN 50178), and of the relevant regulations for the correct use of tools and personal protective equipment.
♦ The cross-section of the ground bonding conductor must be at least equal to that of the mains connection cables.

Dangerous voltages may occur at the following terminals even when the variable speed drive is not running:
- Power supply terminals L1, L2, L3.
- Motor terminals U, V, W, DC+, DC-.
- Link terminals DC-, DC+/B+, DC/R+, B-.

After switching off the supply voltage, wait at least 5 minutes before starting any installation or service work.

4.1 General

4.1.1 Maximum length of motor cables
The performance data given in the specifications cannot be guaranteed if the motor cables exceed the following lengths:
- 50 m for shielded cables
- 100 m for unshielded cables
For devices featuring EMC filters, the maximum cable length is 25 m. For cables shorter than > 25 m, the EMC guideline for filtered devices does not apply.

If you connect several motors to one VSD, the individual motor lines must be added to the total line length.

4.1.2 Operation with ungrounded systems
SED2 variable speed drives with a protection standard of IP20 operate in ungrounded systems, and remain in operation when an input phase connects to ground. In the event of an output phase with a ground fault, the SED2 switches off and displays message F0001.

SED2 drives with a protection standard of IP54/NEMA 12 cannot be operated in ungrounded systems.

4.1.2.1 Precautions for ungrounded systems (IT protective systems)
In ungrounded systems, remove the Y capacitor, or break the connections to this capacitor and integrate an output choke. The following procedure shows how to remove or disconnect the capacitor.

Operation in ungrounded systems is possible only using the SED2, IP20, without filter.
Disconnecting the Y capacitor in SED2 drives, frame size A

1

2

LK 700
Disconnecting the Y capacitor in SED2 drives, frame sizes B and C

Disconnecting the Y capacitor in SED2 drives, frame sizes D and E
4.1.3 Operation with a residual current device (RCD)

Disconnecting the Y capacitor in SED2 drives, frame size F

If a residual current device (also referred to as a GLCl or RCCB) is connected, the VSD operates without unwanted interruptions under the following conditions:

- An RCD type B must be used.
- The RCD must have a threshold current of 300 mA.
- The neutral conductor in the system must be grounded.
- Each RCD supplies only one VSD and no other consumers.
- The output cables must not exceed 50 m in length (shielded) or 100 m (unshielded).
4.2 EMC-compatible installation

The SED2 VSDs operate in environments where they may be exposed to high levels of electromagnetic interference (EMI). Normally, good installation practices ensure safe and interference-free operation. However, should problems associated with EMI occur, follow the guidelines below:

- Ensure good electrical contact between the mounting plate and the metal housing of the VSD via the mounting screws.
- Use serrated lock washers and electrically conductive mounting plates.
- If a footprint EMC filter is used, fit it under the VSD and ground it via the metal backplate. When connecting the EMC filter to the inputs of the VSD, use shielded cables and make sure that they are correctly grounded using cable clamps.

4.2.1 EMC-compatible wiring

- Use shielded cables also inside control cabinets.
- Ensure that all equipment in the control cabinet is properly grounded. Thus, make sure that all equipment is connected by short, thick grounding conductors to a common grounding point (flat ribbon lines are best) or bus bar.
- Ensure that any control equipment (e.g. PLC or BACS) connected to a VSD is connected with a short, thick cable to the same ground or grounding point as the variable speed drive itself.
- Use only shielded motor and control cables. The shielding must be continuous.
- Connect motor and control cables to ground at both ends.
- Lay control, mains, and motor cables separately by routing them in separate cable ducts and maintaining a minimum clearance of at least 200 mm (see diagram below). If you must cross cables, run them at an angle of 90° if possible.
- Motor cables should be as short as possible and should not exceed 25 m.
- Connect the neutral conductor for the motors controlled by the variable speed drives directly to the ground connection (PE) of the associated VSD.
- Use flat ribbon cables, as they have a lower impedance at high frequencies.
- Avoid pigtails. Use only grounding clamps to bond the screen (see diagram below).

- Check that the contactors in the control cabinet are suppressed—either with RC circuits for AC contactors, or flywheel diodes for DC contactors—and fit the suppressors to the coils. Varistor surge voltage protectors are also effective. This is important if the contactors are controlled by the variable speed drive relay.

1 SPS: Programmable controllers

BACS: Building automation and control system; sometimes incorrectly referred to as BMS (building management system)
Cable routing for frame sizes A to C, with footprint filter

1. Incoming mains cable
2. Control cable
3. Motor cable
4. Footprint filter
5. Metal backplate
6. Use suitable cable clamps to ensure good conductive contact between the shield of the motor and control cables and the metal backplate
7. Connect the motor cable shield to + .

Min. 16 mm² (4 AWG), compensating cable

Min. 10 mm² (6 AWG), PE: min. 10 mm² (6 AWG)
4.3 Mains and motor connections

Warning and safety instructions

Caution
♦ Check that the VSD and motor are correctly sized for the supply voltage. Check that the VSD corresponds to at least the motor output.
♦ Check that the mains cables are correctly sized for the anticipated use.
♦ Check that appropriate circuit breakers or fuses exist between the mains and the variable speed drive.

Warning
Never use high voltage insulation test equipment on any cables connected to the variable speed drive.

Danger
♦ Always isolate the power cables before connecting them to the VSD.
♦ Check that the terminal cover was replaced properly after connecting the power and motor cables.
♦ Never switch on the VSD with the cover open.
♦ Always use insulated tools when working on the incoming power supply and the motor terminals.
4.3.1 Access to connection terminals: Frame size A

To access the mains and motor terminals, first remove the operator panel, cover, and I/O module as illustrated below.

Removing the operator panel (BOP or AOP)

Removing the terminal cover of the I/O module
Removing the I/O module

4.3.2 Access to connection terminals: Frame sizes B and C

Removing the cover of the mains and motor terminals
4.3.3 Access to connection terminals: Frame sizes D to F IP20

Removing the operator panel (BOP or AOP)

Opening the housing:
Frame sizes D and E

Refer to the relevant paragraph in Access to connection terminals: Frame size A.
Opening the housing:
Frame size F

1. [Action]
2. [Action]
3. [Action]
4. [Action]
5. [Action]
6. [Action]
4.3.4 Power and motor terminals: Frame sizes A to F

Terminal layout: Frame size A

Terminal layout: Frame sizes B and C

Terminal layout: Frame sizes D and E
4.3.5 Power connection for drives with a built-in EMC filter

The SED2 drives with frame sizes A, B, and C are delivered with built-in ready-wired EMC footprint filters. Route the power supply to the terminals of the pre-installed footprint filter.

The SED2 drives with frame sizes D, E, and F are delivered with built-in ready-wired EMC filters. Wire the power supply to the connections of the built-in filter. The diagrams below show how to access the mains connections of the built-in filter.
Access to the mains connection of the EMC filter for frame sizes D to F
4.3.6 Tightening torque for connection terminals

<table>
<thead>
<tr>
<th>Frame size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tightening torque Nm</td>
<td>1.1</td>
<td>1.5</td>
<td>2.25</td>
<td>10 (max.)</td>
<td>10 (max.)</td>
<td>50</td>
</tr>
</tbody>
</table>

4.3.7 Cross-sections for power and motor cables

<table>
<thead>
<tr>
<th>Output rating kW (hp)</th>
<th>Min. cross-section of supply cable mm² (AWG)</th>
<th>Max. cross-section of supply cable mm² (AWG)</th>
<th>Min. cross-section of motor cable mm² (AWG)</th>
<th>Max. cross-section of motor cable mm² (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37 (0.5)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
</tr>
<tr>
<td>0.55 (0.75)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
</tr>
<tr>
<td>0.75 (1)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
</tr>
<tr>
<td>1.1 (1.5)</td>
<td>1 (17)</td>
<td>6 (9)</td>
<td>1 (17)</td>
<td>6 (9)</td>
</tr>
<tr>
<td>1.5 (2)</td>
<td>1.5 (15)</td>
<td>6 (9)</td>
<td>1 (17)</td>
<td>6 (9)</td>
</tr>
<tr>
<td>2.2 (3)</td>
<td>2.5 (13)</td>
<td>6 (9)</td>
<td>1 (17)</td>
<td>6 (9)</td>
</tr>
<tr>
<td>3 (4)</td>
<td>4 (11)</td>
<td>10 (7)</td>
<td>1.5 (15)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>4 (5)</td>
<td>4 (11)</td>
<td>10 (7)</td>
<td>4 (11)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>5.5 (7.5)</td>
<td>4 (11)</td>
<td>10 (7)</td>
<td>4 (11)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>7.5 (10)</td>
<td>10 (7)</td>
<td>35 (2)</td>
<td>10 (7)</td>
<td>35 (2)</td>
</tr>
</tbody>
</table>
Input voltage range 200 V – 240 VAC, 3-phase

<table>
<thead>
<tr>
<th>Output rating kW (hp)</th>
<th>Min. cross-section of supply cable mm² (AWG)</th>
<th>Max. cross-section of supply cable mm² (AWG)</th>
<th>Min. cross-section of motor cable mm² (AWG)</th>
<th>Max. cross-section of motor cable mm² (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 (15)</td>
<td>16 (5)</td>
<td>35 (2)</td>
<td>16 (5)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>15 (20)</td>
<td>16 (5)</td>
<td>35 (2)</td>
<td>16 (5)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>18.5 (25)</td>
<td>25 (3)</td>
<td>35 (2)</td>
<td>25 (3)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>22 (30)</td>
<td>35 (2)</td>
<td>35 (2)</td>
<td>35 (2)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>30 (40)</td>
<td>50 (0)</td>
<td>150 (-5)</td>
<td>50 (0)</td>
<td>150 (-5)</td>
</tr>
<tr>
<td>37 (50)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
</tr>
<tr>
<td>45 (60)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
<td>95 (-3)</td>
<td>150 (-5)</td>
</tr>
</tbody>
</table>

Input voltage range 380 V – 480 VAC, 3-phase

<table>
<thead>
<tr>
<th>Output rating kW (hp)</th>
<th>Min. cross-section of supply cable mm² (AWG)</th>
<th>Max. cross-section of supply cable mm² (AWG)</th>
<th>Min. cross-section of motor cable mm² (AWG)</th>
<th>Max. cross-section of motor cable mm² (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.37 (0.5)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
</tr>
<tr>
<td>0.55 (0.75)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
</tr>
<tr>
<td>0.75 (1)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
</tr>
<tr>
<td>1.1 (1.5)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
</tr>
<tr>
<td>1.5 (2)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
<td>1 (17)</td>
<td>2.5 (13)</td>
</tr>
<tr>
<td>2.2 (3)</td>
<td>1 (17)</td>
<td>6 (9)</td>
<td>1 (17)</td>
<td>6 (9)</td>
</tr>
<tr>
<td>3 (4)</td>
<td>1 (17)</td>
<td>6 (9)</td>
<td>1 (17)</td>
<td>6 (9)</td>
</tr>
<tr>
<td>4 (5)</td>
<td>1 (17)</td>
<td>6 (9)</td>
<td>1 (17)</td>
<td>6 (9)</td>
</tr>
<tr>
<td>5.5 (7.5)</td>
<td>2.5 (13)</td>
<td>10 (7)</td>
<td>2.5 (13)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>7.5 (10)</td>
<td>4 (11)</td>
<td>10 (7)</td>
<td>4 (11)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>11 (15)</td>
<td>6 (9)</td>
<td>10 (7)</td>
<td>6 (9)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>15 (20)</td>
<td>10 (7)</td>
<td>35 (2)</td>
<td>10 (7)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>18.5 (25)</td>
<td>10 (7)</td>
<td>35 (2)</td>
<td>10 (7)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>22 (30)</td>
<td>16 (5)</td>
<td>35 (2)</td>
<td>16 (5)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>30 (40)</td>
<td>25 (3)</td>
<td>35 (2)</td>
<td>25 (3)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>37 (50)</td>
<td>25 (3)</td>
<td>35 (2)</td>
<td>35 (2)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>45 (60)</td>
<td>35 (2)</td>
<td>150 (-5)</td>
<td>35 (2)</td>
<td>150 (-5)</td>
</tr>
<tr>
<td>55 (75)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
</tr>
<tr>
<td>75 (100)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
<td>95 (-3)</td>
<td>150 (-5)</td>
</tr>
<tr>
<td>90 (125)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
<td>95 (-3)</td>
<td>150 (-5)</td>
</tr>
</tbody>
</table>

Input voltage range 500 V – 600 VAC, 3-phase

<table>
<thead>
<tr>
<th>Output rating kW (hp)</th>
<th>Min. cross-section of supply cable mm² (AWG)</th>
<th>Max. cross-section of supply cable mm² (AWG)</th>
<th>Min. cross-section of motor cable mm² (AWG)</th>
<th>Max. cross-section of motor cable mm² (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 (1)</td>
<td>1 (17)</td>
<td>10 (7)</td>
<td>1 (17)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>1.1 (1.5)</td>
<td>1 (17)</td>
<td>10 (7)</td>
<td>1 (17)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>1.5 (2)</td>
<td>1 (17)</td>
<td>10 (7)</td>
<td>1 (17)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>2.2 (3)</td>
<td>1 (17)</td>
<td>10 (7)</td>
<td>1 (17)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>3 (4)</td>
<td>1 (17)</td>
<td>10 (7)</td>
<td>1 (17)</td>
<td>10 (7)</td>
</tr>
</tbody>
</table>
Input voltage range 500 V – 600 VAC, 3-phase

<table>
<thead>
<tr>
<th>Output rating kW (hp)</th>
<th>Min. cross-section of supply cable mm² (AWG)</th>
<th>Max. cross-section of supply cable mm² (AWG)</th>
<th>Min. cross-section of motor cable mm² (AWG)</th>
<th>Max. cross-section of motor cable mm² (AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (5)</td>
<td>1 (17)</td>
<td>10 (7)</td>
<td>1 (17)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>5.5 (7.5)</td>
<td>1.5 (15)</td>
<td>10 (7)</td>
<td>1.5 (17)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>7.5 (10)</td>
<td>2.5 (13)</td>
<td>10 (7)</td>
<td>2.5 (13)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>11 (15)</td>
<td>4 (11)</td>
<td>10 (7)</td>
<td>4 (11)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>15 (20)</td>
<td>6 (9)</td>
<td>35 (2)</td>
<td>6 (9)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>18.5 (25)</td>
<td>6 (9)</td>
<td>35 (2)</td>
<td>6 (9)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>22 (30)</td>
<td>10 (7)</td>
<td>35 (2)</td>
<td>10 (7)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>30 (40)</td>
<td>16 (5)</td>
<td>35 (2)</td>
<td>16 (5)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>37 (50)</td>
<td>25 (3)</td>
<td>35 (2)</td>
<td>16 (5)</td>
<td>35 (2)</td>
</tr>
<tr>
<td>45 (60)</td>
<td>25 (3)</td>
<td>150 (-5)</td>
<td>25 (3)</td>
<td>150 (-5)</td>
</tr>
<tr>
<td>55 (75)</td>
<td>50 (0)</td>
<td>150 (-5)</td>
<td>35 (2)</td>
<td>150 (-5)</td>
</tr>
<tr>
<td>75 (100)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
<td>50 (0)</td>
<td>150 (-5)</td>
</tr>
<tr>
<td>90 (125)</td>
<td>70 (-2)</td>
<td>150 (-5)</td>
<td>50 (0)</td>
<td>150 (-5)</td>
</tr>
</tbody>
</table>

4.3.8 Block diagram showing typical installation

![Block diagram](image)

4.3.9 Direction of rotation

You can change the direction of rotation of the motor by cross-connecting two of the output conductors at the VSD or the motor.

![Direction of rotation](image)

Tip

The direction of rotation can also be reversed via parameter P1820. See system parameter list.
4.3.10 Star or delta connection

The required supply voltage and method of connection are indicated on the motor rating plate. In general, larger motors (400/690 V) are connected in a delta configuration and smaller motors (230/400 V) in a star configuration.

Motor terminal board

4.3.11 Connecting several motors

You can use the SED2 to control several motors in parallel. Make sure, however, that all motors have the same rating. When multiple motors are connected, the motors connected in parallel cannot be operated individually.

Important

When determining the required power, remember to take account of the total current from all the motors, i.e., the sum total of all ratings. Note the recommended length of the motor connection cable. The sum of all connection cables represents the total cable length.

4.3.12 External motor overload protection

During operation below nominal speed, the cooling effect of the fans fitted to the motor shaft is reduced. For this reason, most motors require de-rating if operated continuously at low frequencies. To ensure that motors are protected from overheating under these conditions, mount a PTC temperature sensor to the motor and connect it to the control terminals of the variable speed drive.

To activate the switch-off function, set parameter P0601 to 1.

Note
4.4 Control terminals

<table>
<thead>
<tr>
<th>General information</th>
<th>Use only shielded cables for control cables. Route control cables in separate cable trunks at least 20 cm away from motor and power cables.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location of the control terminals</td>
<td>The control terminals are located on the I/O module. The I/O module is identical for all models. It is located under the operator panel.</td>
</tr>
<tr>
<td>Access to the control terminals: Frame sizes A to C</td>
<td>To access the control terminals, remove first the relevant terminal covers. For frame size A, see section Access to connection terminals: Frame size A on page 26. For frame sizes B and C, see section Access to connection terminals: Frame sizes B and C on page 27.</td>
</tr>
<tr>
<td>Access to the control terminals: Frame sizes D to F, IP20</td>
<td>To access the control terminals, remove the operator panel, the I/O module, and the I/O module terminal cover plate. See section Access to connection terminals: Frame sizes D to F on page 28.</td>
</tr>
</tbody>
</table>
4.5 SED2 block diagram
5 Commissioning

Warnings

Only authorized personnel trained in the setup, installation, commissioning, and operation of the product may work on the product and plant.

- SED2 variable speed drives operate at high voltages.
- Operation of electrical equipment inevitably involves the use of dangerous voltages in some components.
- Emergency stop facilities in accordance with EN 60204 IEC 204 (VDE 0113) must remain operative in all operating modes of the control equipment. Resetting the emergency stop facility must not result in an uncontrolled or undefined restart.
- In cases where faults in the control equipment could cause significant equipment damage or severe physical injury (e.g. potentially dangerous short circuits), take additional external precautions or provide facilities to ensure or enforce safe operation even in the event of a short circuit (e.g. independent limit switches, mechanical interlocks, etc.).
- Certain parameter settings may cause the variable speed drive to restart automatically after a power failure.

Danger

Caution

For reliable motor overload protection, the motor parameters must be configured accurately.

The equipment incorporates internal motor overload protection in accordance with UL508C, section 42. Refer to P0610; \(I^2 t \) is the default for ON. Motor overload protection can also be provided via an external PTC temperature sensor (disabled by default, P0601).

The equipment is suitable for use in a circuit delivering max. 10,000 symmetrical amps (rms), and is designed for a maximum voltage of 230V/460V/575V when protected by a type H or K fuse.

Do not use the variable speed drive as an “emergency stop facility”.

(see EN60204, 9.2.5.4)
5.1.1 DIP switch settings

For all versions of the SED2, the DIP switches used to configure the analog inputs are located on the I/O module. The I/O module is located under the operator panel, to which it is connected either directly (frame sizes A to C, IP20) or via a cable (frame sizes D to E, and all IP54 models).

In all versions of the SED2, the DIP switches for setting the mains frequency and selecting US or European units of measurement are located on the control board under the I/O module.

5.1.1.1 Setting the DIP switches on the I/O module

- **DIP switch 1** Analog input 1:
 - OFF position: Voltage 0 to 10 V
 - ON position: Current 0 to 20 mA

- **DIP switch 2** Analog input 2:
 - OFF position: Voltage 0 to 10 V
 - ON position: Current 0 to 20 mA

Factory setting for both DIP switches: OFF = Voltage 0 to 10 V.

5.1.1.2 DIP switch settings on the control board

- **DIP switch 2**: OFF position: European default settings (50 Hz, kW etc.).
 ON position: North American default settings (60 Hz, hp, etc.).
 Factory setting: OFF = 50 Hz.

- **DIP switch 1** Not for customer use. This switch must be in the OFF position for correct functioning of the VSD.
5.2 Checklist prior to start

<table>
<thead>
<tr>
<th>What</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the output of the VSD ≥ motor rating?</td>
<td>✓</td>
</tr>
<tr>
<td>Is the operating voltage range ok?</td>
<td>✓</td>
</tr>
<tr>
<td>Is the rated voltage of the SED2 greater than the motor rated voltage?</td>
<td>✓</td>
</tr>
<tr>
<td>Is the cross-section of the mains cable correct?</td>
<td>✓</td>
</tr>
<tr>
<td>Are the cross-section and the length of the motor cables correct, and are they connected properly?</td>
<td>✓</td>
</tr>
<tr>
<td>Are all control lines connected properly?</td>
<td>✓</td>
</tr>
<tr>
<td>Is the motor not blocked mechanically?</td>
<td>✓</td>
</tr>
<tr>
<td>Is the medium (water) available for the pump actuator? (No dry run!)</td>
<td>✓</td>
</tr>
<tr>
<td>Is there no pumping or blowing against still open valves or dampers?</td>
<td>✓</td>
</tr>
<tr>
<td>Is the danger zone free of items or personnel?</td>
<td>✓</td>
</tr>
</tbody>
</table>

5.3 Operator panels for the SED2

The SED2 comes with the Basic Operator Panel (BOP) mounted as standard. An advanced operator panel (AOP) is available as an option.

5.3.1 Description of the basic operator panel (BOP)

The basic operator panel (BOP) provides access to the parameters of the VSD and allows for application-specific settings of the SED2.

The parameters and measured values are shown in a 5-digit LCD display. The basic operator panel can be mounted directly onto the variable speed drive or, alternatively, it can be mounted into a control cabinet door using a special installation kit.

You cannot store parameter information with the basic operator panel.

For information on setting and changing parameters, refer to section 5.4.4.2 Setting parameters with the BOP or AOP.
5.3.2 Description of the advanced operator panel (AOP)
The advanced operator panel has the following additional functions as compared to the basic operator panel:

- Multilingual and multi-line plain text display.
- Displays units of measurement for speed, frequency, direction of motor rotation, current, etc.
- Comments on current parameters, error messages, etc.
- Diagnostics menu for troubleshooting.
- Main menu can be invoked directly by pressing the Fn and P keys simultaneously.
- Load and store up to 10 parameter sets.
- Communicate via RS232 or RS485 interfaces.
- Programmable with PC without VSD (PC-AOP kit required).
- Multi-drop capability to control up to 31 SED2 variable speed drives.
- 7-day timer with 3 switching operations per day.

For more details, refer to the AOP operating instructions.

5.3.3 Exchanging the operator panels
See illustration in section Removing the operator panel (BOP or AOP) on page 26.

Tips

The BOP or AOP can be connected to or disconnected from the variable speed drive without switching off the power supply.
5.3.4 Buttons and their functions on the operator panel (BOP and AOP)

<table>
<thead>
<tr>
<th>Operator panel/Button</th>
<th>Function</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status display</td>
<td>The LCD (five-digit display for BOP, multi-line clear-text display for AOP) shows the settings used presently by the VSD or used to parameterize the VSD.</td>
<td></td>
</tr>
<tr>
<td>Start motor</td>
<td>Pressing this button starts the variable speed drive. This button is enabled for manual mode as part of the factory setting.</td>
<td></td>
</tr>
<tr>
<td>Stop motor</td>
<td>OFF1 Pressing this button stops the variable speed drive within the selected ramp-down time. This button is enabled for manual mode as part of the factory setting. OFF2 Pressing this button twice (or once with sustained pressure) causes the motor to coast freely to a standstill. This function is enabled in the manual and automatic operating modes.</td>
<td></td>
</tr>
<tr>
<td>Changeover to manual control</td>
<td>Pressing this button while the VSD is running sets the input logic so that the operator controls the SED2. In this mode, none of the controlled variables have any influence on the control of the VSD.</td>
<td></td>
</tr>
<tr>
<td>Changeover to automatic control</td>
<td>In automatic mode, all I/Os are set to represent the system-dependent variables. No manual inputs are accepted. The controller responds to changes depending on its parameter setting. However, it is possible to change system parameters in automatic mode.</td>
<td></td>
</tr>
<tr>
<td>Functions</td>
<td>This button allows for displaying additional information. Refer also to the section Buttons with special functions in the AOP operating instructions. Multiple display mode When you press this button for 2 seconds during operation, the following information is displayed regardless of the parameter: 1. DC link voltage (indicated by d – units V). 2. Output current (A). 3. Output frequency (Hz). 4. Output voltage (indicated by o – units V). 5. The value selected in P0005. (If P0005 is configured to display any of the above (1 to 4), the value is not redisplayed). Briefly press the key repeatedly to cycle through the above displays. Pressing again this button for a sustained time exits the multiple display mode. Jump function You can jump from any parameter (rXXXX or PXXXX) directly to r0000 by pressing the Fn button briefly. This allows you to modify another parameter if required. After jumping to r0000, press the Fn button again to return to the starting point.</td>
<td></td>
</tr>
<tr>
<td>AOP only</td>
<td>Pressing buttons Fn and P simultaneously opens the main menu.</td>
<td></td>
</tr>
<tr>
<td>Access to parameters</td>
<td>Pressing this button allows you to: 1. Access the parameters, and 2.: Exit the parameter by accepting its value.</td>
<td></td>
</tr>
<tr>
<td>Increase value</td>
<td>Press this button to increase the value displayed. This button helps increase the current value during parameterization. In manual mode, this button allows for increasing the speed (internal motor potentiometer).</td>
<td></td>
</tr>
<tr>
<td>Decrease value</td>
<td>Press this button to decrease the value displayed. This button helps decrease the current value during parameterization. In manual mode, this button allows for decreasing the speed (internal motor potentiometer).</td>
<td></td>
</tr>
</tbody>
</table>
5.4 Commissioning modes

5.4.1 Overview of commissioning with the BOP or AOP
Mechanical and electrical installation must be complete.

Prerequisites:

- Setting the mains frequency *
 DIP switch 2: OFF = 50 Hz / ON = 60 Hz

- Check prior to start
 See section 5.2 checklist prior to switch-on.

- Further commissioning via
 P0004 (parameter filter) and P0003 access level
 Refer to the parameter list for detailed information on the parameters.

* Factory setting: 50 Hz.

Note

We recommend that you commission the VSD as shown in the diagram below. However, experienced users may commission the equipment without the filter functions of P0004.

5.4.2 Quick commissioning
To achieve a structured procedure, it is **important** to use parameter P0010 for commissioning, and P0003 to select the number of parameters to be accessed. Parameter P0010 allows you to select a group of parameters that can be used for quick commissioning. These include parameters for the motor data and for the motor ramp-up and ramp-down settings (ramp settings).

At the end of the quick commissioning procedure, select P3900. When set to 1, this parameter performs the necessary motor calculations and sets all remaining parameters (those not included under P0010 = 1) to the default values, including P0010=0 (if P0010 is set to 1, the VSD cannot start). This process is only possible in “quick commissioning” mode.
Quick commissioning flow chart

P0003 Parameter access level
0 Customized Parameter List; see P0013
1 Standard: Access to most commonly used parameters (factory setting)
2 Extended: Extended access, e.g., to VSD I/O functions
3 Expert: For experienced users only
4 Service: For authorized service personnel only (password protected)

P0010 Start quick commissioning
0 Ready for operation
1 Quick commissioning
30 Factory setting

Note
Always reset P0010 to "0" before operating the motor. If, after commissioning, P3900 = 1 is set, this is done automatically.

P0100 Operation for Europe/North America
0 Power in kW; f default 50 Hz
1 Power in hp; f default 60 Hz
2 Power in PS; f default 60 Hz

Note
Use the DIP switch for settings 0 & 1 to allow for a permanent setting.

P0304 Rated motor voltage
10 V – 2000 V
Rated motor voltage (V) from rating plate

P0305 Rated motor current
0 – 2 x VSD rated current (A)
Rated motor current (A) from rating plate

P0307 Rated motor power
0 kW – 2000 kW
Rated motor power (kW) of rating plate. If P0100 = 1, the values are output in hp

P0310 Rated motor frequency
12 Hz – 650 Hz
Rated motor frequency (Hz) from rating plate

P0311 Rated motor speed
0 – 40,000 U/min
Rated motor speed (U/min) from rating plate

1) Motor-specific parameters – see drawing of motor rating plate below.
2) Indicates parameters incorporating detailed lists of possible settings for use in special site applications.
 Refer to the engineering manual and operating instructions.

P0700 Selection of command source
(on / off / reverse)
0 Factory setting
1 Basic operator panel
2 Terminal / digital inputs

P1000 Selection of frequency setpoint
0 No frequency setpoint
1 BOP frequency control ↑↓
2 Analog setpoint

P1080 Min. motor frequency
Sets the minimum motor frequency (0 – 650 Hz) at which the motor runs irrespective of the frequency setpoint. The value set here applies to both directions of rotation.

P1082 Max. motor frequency
Sets the maximum motor frequency (0 – 150 Hz) at which the motor runs irrespective of the frequency setpoint. The value set here applies to both directions of rotation.

P1120 Ramp-up time
0 s – 650 s
Time taken for the motor to accelerate from standstill to maximum motor frequency.

P1121 Ramp-down time
0 s – 650 s
Time taken for the motor to decelerate from maximum motor frequency to standstill.

P3900 End quick commissioning
0 No quick commissioning (factory setting)
1 End quick commissioning with motor calculation and resetting all other parameters to the factory setting (recommended)
2 End quick commissioning with motor calculation and I/O reset (recommended)
3 End quick commissioning with motor calculation but without I/O reset

Note
If, after commissioning, P3900 = 1 is set, this is done automatically.
5.4.3 Motor data for parameterization

![Motor Data Diagram]

5.4.4 Commissioning with the BOP or AOP

5.4.4.1 Country-specific default settings for operation with the BOP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default setting for Europe (North America)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0100</td>
<td>European or US op mode</td>
<td>0 = 50 Hz, kW</td>
</tr>
<tr>
<td>P0307</td>
<td>Nominal motor power</td>
<td>Value in kW (hp) Unit depends on the setting in P0100(^2).</td>
</tr>
<tr>
<td>P0310</td>
<td>Nominal motor frequency</td>
<td>50 Hz (60 Hz).</td>
</tr>
<tr>
<td>P0311</td>
<td>Nominal motor speed</td>
<td>1395 (1680) U/min (depends on model)(^3).</td>
</tr>
<tr>
<td>P1082</td>
<td>Max. motor frequency</td>
<td>50 Hz (60 Hz).</td>
</tr>
</tbody>
</table>

\(^1\) Use DIP switch 2 under the BOP/AOP. This overwrites the above parameter settings.

\(^2\) This parameter can only be modified if P00010 = 1 (commissioning mode).

\(^3\) This parameter can only be modified if P00010 = 1 or 3.
5.4.4.2 Setting parameters with the BOP or AOP

The following describes how to change parameter P1082. Use this description as a guide to setting all other parameters with the BOP.

Changing P0004 – parameter filter function

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Resulting display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Press (\square) to access the parameters.</td>
<td>(\text{P0004})</td>
</tr>
<tr>
<td>2</td>
<td>Press (\uparrow) until P0004 is displayed.</td>
<td>(\text{P0004})</td>
</tr>
<tr>
<td>3</td>
<td>Press (\square) to access the parameter value level.</td>
<td>(0)</td>
</tr>
<tr>
<td>4</td>
<td>Press (\uparrow) or (\downarrow) to display the required value.</td>
<td>(3)</td>
</tr>
<tr>
<td>5</td>
<td>Press (\square) to confirm and save the value.</td>
<td>(\text{P0004})</td>
</tr>
<tr>
<td>6</td>
<td>Only the motor parameters are now visible for the user.</td>
<td></td>
</tr>
</tbody>
</table>

Changing an indexed value under P1082 – setting the maximum motor frequency

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Resulting display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Press (\square) to access the parameters.</td>
<td>(\text{P0004})</td>
</tr>
<tr>
<td>2</td>
<td>Press (\uparrow) until P1082 is displayed.</td>
<td>(\text{P1082})</td>
</tr>
<tr>
<td>3</td>
<td>Press (\square) to access the parameter value level.</td>
<td>(50.00)</td>
</tr>
<tr>
<td>4</td>
<td>Press (\uparrow) or (\downarrow) to display the required value.</td>
<td>(75.00)</td>
</tr>
<tr>
<td>5</td>
<td>Press (\square) to confirm and save the value.</td>
<td>(\text{P1082})</td>
</tr>
<tr>
<td>6</td>
<td>Press (\square) to return to P0010.</td>
<td>(\text{P0010})</td>
</tr>
<tr>
<td>7</td>
<td>Press (\square) to access the parameter value level P0010.</td>
<td>(1)</td>
</tr>
<tr>
<td>8</td>
<td>Press (\square) to restore the value to P0010 = 0.</td>
<td>(0)</td>
</tr>
<tr>
<td>9</td>
<td>Press (\square) to save the parameter and exit the parameter value level.</td>
<td>(\text{P0010})</td>
</tr>
<tr>
<td>10</td>
<td>Press (\uparrow) until r0000 is displayed.</td>
<td>(\text{r0000})</td>
</tr>
<tr>
<td>11</td>
<td>Press (\square) to revert to the standard motor display (as defined by the customer).</td>
<td></td>
</tr>
</tbody>
</table>
“Busy” signal

In some cases, the BOP displays a busy signal for a maximum of 5 seconds while parameters are being changed. This means that the variable speed drive is busy with higher-priority activities.

You can change motor parameters only if P0010 = 1.

Changing individual digits of the parameters

You can adjust individual digits in the display to quickly change a parameter value as follows:

1. Press (function button) – the rightmost digit starts to flash.
2. Change the value of this digit by pressing the / buttons.
3. Pressing the button again causes the next digit to start flashing.
4. Repeat steps 2 to 4 until the required value is displayed.
5. Press to exit the parameter change level.

5.4.5 Resetting SED2 parameters to the factory settings

1. Parameter P0010 = 30
2. Parameter P0970 = 1
3. Now press to restore the factory settings of the VSD.

The reset process takes approximately 10 seconds.

Refer to the default values in the system parameter list for the factory settings of the parameters.

5.4.6 Basic operation with the BOP

- P0010 = 0 to ensure the correct initialization of the RUN command.
- P0700[1] = 1 to enable the start/stop button on the BOP (factory setting).
- P1000[1] = 1 to enable the motor potentiometer setpoints (factory setting).

1. Press the green button to start the motor.
2. With the motor running, press .
 The motor speed increases to 50 Hz.
3. When the variable speed drive reaches 50 Hz, press .
 The motor speed and the value displayed now decrease.
4. Use P1820 to change the direction of rotation.
 Note: You can also change the direction of rotation via an appropriately configured digital input.
5. To stop the motor, press the red “STOP” button .

5.4.7 10 Hz test

The 10 Hz test helps check the installation of both motor and VSD. It helps verify the direction of rotation and the basic functions of the VSD. This ensures that a possible faulty installation of the power section is detected early on.

Testing with the BOP

1. Restore the factory settings in the SED2. Refer to section 5.4.5.
2. Press to switch to manual operation.
3. Press to switch the device on.
Testing with the AOP
1. Restore the factory settings in the SED2.
2. Set parameter P700.1 from 1 to 4.
3. Press 0.
4. Press to switch to manual operation.
5. Press 1 to switch the device on.

5.4.8 General operation
The SED2 engineering manual contains a full description of the standard and extended parameters.

♦ You can change motor parameters only if P0010 = 1.
♦ To start the motor, reset P0010 to 0.
♦ The variable speed drive has no mains isolating switch and is live as soon as supply voltage is connected. It remains with the output disabled until you press 0 or until it receives a digital ON signal.

Note
If a BOP or AOP is used and the display of the output frequency is selected (P0005 = 21), the value on the display shows the setpoint and the actual value (0 Hz) alternating for the stopped VSD.
6 Programming

6.1 Introduction to the SED2 system parameters

6.1.1 General notes

You can change the parameters only via the basic operator panel (BOP), the advanced operator panel (AOP), or the serial interface.

The BOP or AOP can be used to enter and change parameters to define the required characteristics of the variable speed drive, such as motor data, ramp times, maximum and minimum frequency, etc.

- Read-only parameters are identified by the letter “r” in place of the “P”.
- P0010 = 1 initiates the “Quick commissioning” procedure.
- The variable speed drive runs only if P0010 is set to 0 after access. This function is automatic if P3900 is greater than 0.
- P0004 operates as a filter and allows access to the parameters according to their functionality.
- If you attempt to change a parameter that cannot be changed under the current conditions (e.g., because it cannot be changed during operation or can only be changed in the “quick commissioning” mode), “---” is displayed.
- Busy signal

In some cases, the BOP displays “---” for a maximum of 5 seconds while parameters are being changed. This means that the variable speed drive is busy with higher-priority activities.

6.2 Access to parameters

6.2.1 Parameter access levels (P0003)

In total, there are four access levels. The three access levels available to the user are Standard, Extended, and Expert. Set the required access level with parameter P0003.

For most applications, the Standard and Extended levels are sufficient.

The number of parameters displayed within each function group depends on the access level set in parameter P0003. The factory setting is P0003 = 1 (Standard). Refer to the engineering manual for detailed information about the parameters.

6.2.2 Parameter filter (P004)

You can further limit the selection of available parameters with parameter filter P0004. This filters the available parameters by their functionality. For example, if P0004 = 3, only the motor parameters are visible.

Some parameters are intended for commissioning only and can be viewed as a function of this filter. However, in order to set these parameters, set P0010 to 1 (quick commissioning).
6.2.3 Diagram for a parameter overview

Drive Parameters
- P0003: User access level
- P0010: Commissioning parameter filter
- r0026: VSD DC link voltage
- r0039 - P0040: Energy consumption meter
- P0100: US/Europe
- r0206 - r0209: Performance data
- P1000 - P1028: Frequency setpoint
- P1080 - P1110: Frequency adjustment

Motor Parameters
- r0021 - r0035: Motor performance data
- P0304 - P0313: Standard data
- P0340: Calculation of motor parameters
- P0601 - P0640: Motor protection
- P1910: Motor data identification
- P2000: Reference frequency

Analog Inputs 1+2
- P0756 - P0762

Digital Input
- P0700: Command source
- P0701 - P0706 (P0705 counter)
- P0722 - P0725 (NPN - PNP)
- Analog inputs 1+2 configured as digital input P0707 - P0708

PTC
- P0601

PID
- P2200: Enable PID
- P2201 - P2231: Fixed setpoint
- P2240 - r2260: PID setpoint
- P2253 - P2305: Standard setpoint
- P2264 - r2272: PID feedback

Drive Features
- P1270: Enable essential mode
- P1210 - P1212: Automatic restart

Communication
- P2000 - r2091

Siemens Building Technologies
HVAC Products
Programming

CM1US192en
01.2002

54/126
6.3 Basic functions of the SED2

6.3.1 Digital inputs

External switch-on and switch-off arrangements are required for stand-alone operation of variable speed drives. The digital input port provides six channels, which can be extended to eight by use of the two analog inputs. You can program the function of the digital inputs as required.

Setting parameters for DIN1 to 6 (or DIN1…8) (commissioning)

P0701 to P0706

Digital inputs 1 to 6

The available settings for each of the input channels are listed below:

- 0: Digital input disabled.
- 1: ON / OFF1 – OFF as per the ramp-down time defined in P1121.
- 2: ON + change direction of rotation / OFF1.
- 3: OFF2 – coast to standstill.
- 4: OFF3 – faster ramp-down (quick stop = ramp-down at power limit).
- 9: Error acknowledgement.
- 10: JOG right.
- 11: JOG left.
- 12: Reverse direction of rotation.
- 13: Motor potentiometer (MOP) higher (increased frequency).
- 14: Motor potentiometer (MOP) lower (reduced frequency).
- 15: Fixed setpoint (binary coded).
- 16: Fixed setpoint (binary-coded decimal + ON).
- 17: Fixed setpoint (binary-coded decimal + ON).
- 25: Enable DC braking.
- 26: Enable Essential Service.
- 27: Enable PID controller.
- 28: Bypass command input (in bypass mode).
- 29: External fault.
- 33: Disable additional frequency setpoint.
- 99: Enable BICO parameter-setting.

Index: Example for P0701, applies also to parameters P0702 to P0708.

P0701[0]: 1. command data set (CDS).
P0701[1]: 2. command data set (CDS).
P0701[2]: 3. command data set (CDS).
Setting 99 (BICO) is intended for experienced users only. For more detailed information, refer to the SED2 engineering manual. Factory settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0701</td>
<td>1</td>
</tr>
<tr>
<td>P0702</td>
<td>12</td>
</tr>
<tr>
<td>P0703</td>
<td>9</td>
</tr>
<tr>
<td>P0704</td>
<td>15</td>
</tr>
<tr>
<td>P0705</td>
<td>15</td>
</tr>
<tr>
<td>P0706</td>
<td>3</td>
</tr>
</tbody>
</table>

P0707 to P0708

Analog inputs 1 and 2 can be reconfigured with parameters P0707 and P0708 as digital inputs if required. The following limit values apply to analog inputs configured as digital inputs:

- $\leq 1.6 \text{ VDC} = \text{Off}$.
- $\geq 4.0 \text{ VDC} = \text{On}$.

Factory setting: 0

P0725

Operating mode for the digital inputs NPN or PNP
This parameter determines whether the digital inputs DIN1 to 6 are to be enabled by "logic 0" or "logic 1".

Possible settings:

- 0 NPN mode \Rightarrow active low.
- 1 PNP mode \Rightarrow active high (factory setting).

r0722

Check of the digital and analog inputs
This parameter can be used to check the functions of the digital and analog inputs. You can check the presence of a signal at the channel. When an active signal is present, the associated segment of the display lights up. The allocation of each of the inputs to a specific segment is illustrated below.
Example of the display while testing the input signals:

6.3.2 Analog inputs

The analog inputs are used to send positioning, control, and feedback signals to the VSD and convert them to digital signals via A/D converters.

The analog inputs AIN1 and AIN2 are specified as follows:
- **Input level**: 0 to 10 V or 0 to 20 mA
- **Resolution**: 10 bit
- **Read cycle**: 10 ms

Set the analog inputs to 0 to 10 V or 0 to 20 mA via the 2 DIP switches on the I/O module.

<table>
<thead>
<tr>
<th>Setting the DIP switches on the I/O module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
</tr>
<tr>
<td>ON</td>
</tr>
<tr>
<td>OFF</td>
</tr>
</tbody>
</table>

Factory setting for both DIP switches: OFF.

Refer to section 5.1.1.1, Setting the DIP switches on the I/O module.
Parameter setting for AIN1 and AIN2
(commissioning)

P0756
Defines the type of analog input and enables analog input monitoring.

Possible settings:

0 Unipolar voltage input (0 to 10 V) (factory setting).
1 Unipolar voltage input with monitoring (0 to 10 V).
2 Unipolar current input (0 to 20 mA).
3 Unipolar current input with monitoring (0 to 20 mA).
5 LG-Ni 1000 sensor input (−10 to +10 V).

Important: The parameter setting must match the setting of the 2 DIP switches on the I/O module.

Index:
P0756[0] : Analog input 1 (ADC 1).

Note on dependency:
This function is disabled if the analog scaling block is programmed to negative output setpoints (see P0757 to P0760).

Note on the monitoring function
If monitoring is enabled and the dead zone is defined (P0761), an error message appears (F0080) as soon as the analog input voltage drops below 50% of the dead zone voltage.

P0753
Defines the filter time in ms for the analog input.
Setting range: 0 to 10,000 ms
Factory setting: 100 ms

Index:
P0753[0] : Analog input 1 (ADC 1).

Note:
Increasing this time reduces (smooths) the ripples but also slows down the response to the analog input.

P0757 – P0760
Parameters P0757 to P0760 are used to configure the input scaling for the analog inputs according to the following curve:
The factory setting of the input scaling corresponds to 0 V = 0% and 10 V = 100%.

P0761
Defines the **ADC dead zone for the analog inputs**.
Setting range: 0 to 20 V or mA
Factory setting: 0

Note: P0761[x] = 0: No enabled dead zone.

The dead zone runs from 0 V(mA) to the value of P0761, if the values of P0758 and P0760 (y-coordinate for ADC scaling) have the same sign. The dead zone is enabled from the intersecting point (x-axis with ADC scaling curve) in both directions, if P0758 and P0760 have different signs.

When using a configuration with neutral point in the center, Fmin (P1080) should be zero. There is no hysteresis at the end of the dead zone.

P0762
Defines the **delay time** in ms between the drop-off of the analog setpoint and the display of error message F0080.
Setting range: 0 to 10,000 ms
Factory setting: 1000 ms
6.3.3 Analog outputs

The analog outputs primarily help display status variables such as output frequency, motor voltage, or present motor current within the scaleable range.

Parameter setting for AOUT1 and AOUT2 (commissioning)

- **Parameter r0770**
 - Shows the **number of available analog outputs**.

- **Parameter P0771**
 - Defines the **physical status variable** to be displayed as an analog signal.
 - **Possible settings**:
 - 21 Present output frequency (scaled to P2000), (factory setting).
 - 24 Present VSD output frequency (scaled to P2000).
 - 25 Present output voltage (scaled to P2001).
 - 26 Present link voltage (scaled to P2001).
 - 27 Present output current (scaled to P2002).
 - **Index**:
 - P0771[0]: Analog output 1 (DAC 1).
 - P0771[1]: Analog output 2 (DAC 2).

- **Parameter P0773**
 - This parameter enables smoothing for the DAC input with a PT1 filter and determines the **smoothing time** in ms for the **analog output signals**.
 - **Setting range**: 0 to 1000 ms
 - **Recommended setting**: 100 ms (factory setting)
 - **Index**:
 - P0773[0]: Analog output 1 (DAC 1).
 - P0773[1]: Analog output 2 (DAC 2).
 - **Note**: The filter is disabled for P0773 = 0.
r0774
Shows the **analog output value** (in V or mA) after filtering and scaling.

Index:
P0774[0]: Analog output 1 (DAC 1).
P0774[1]: Analog output 2 (DAC 2).

P0776
Defines the **type of analog output**.
Possible settings:

- 0 Current output 0 to 20 mA (factory setting)
- 1 Voltage output 0 to 10 V

Note: The analog outputs are designed as current outputs within 0 to 20 mA. Both analog outputs must be configured as the same type. Both channels are configured, e.g., as either current outputs with range 0 to 20 mA, or as voltage outputs with range 0 to 10 V.

P0777 to P0780:
Define the output characteristic in %. The DAC scaling parameters (P0777 to P0781) are used to set the output characteristics. They are configured according to the following curve.

![Output Characteristic Diagram](image)

Points P1 (x1, y1) and P2 (x2, y2) are freely selectable.

Example:
The factory-set scaling is as follows:
P1: 0.0 % = 0 mA or 0 V and
P2: 100.0 % = 20 mA or 10 V.

Index:
P0777[0]: Analog output 1 (DAC 1).
P0777[1]: Analog output 2 (DAC 2).

- **P0777:** Defines x1 of the output characteristics (factory setting = 0.0).
- **P0778:** Defines y1 of the output characteristics (factory setting = 0).
- **P0779:** Defines x2 of the output characteristics (factory setting = 100).
- **P0780:** Defines y2 of the output characteristics (factory setting = 10).
P0781
Defines the DAC dead zone for the analog inputs.
Setting range: 0 to 20 mA or 0 to 10 V
Factory setting: 0

Index:
P0781[0]: Analog output 1 (DAC 1).
P0781[1]: Analog output 2 (DAC 2).

6.3.4 Frequency setpoint (P1000)
➢ Default setting: Terminal 3/2 (AIN+/AIN–, 0 to 10 V corresponds to 0 to 50/60 Hz).
➢ Additional settings: See P1000.

6.3.5 Selecting the command source (P0700)
Possible settings for P0700:
0 Factory setting (BICO reset), resets all digital inputs to the factory settings (possible only if P0701=99).
1 Operator panel BOP or AOP.
2 Control terminal bar (factory setting).
4 USS on BOP link.
5 USS on COM link.
6 CB on COM link.

Start motor
➢ Default setting: Terminal 5 (DIN 1, high).
➢ Additional settings: See P0700 to P0708.

Notes
The ramp-up and ramp-down smoothing times influence the motor’s start and stop behavior. Refer to the engineering manual, parameter list, parameters P1120, P1121 for more information on these functions.

Stop motor
There are several ways to stop the motor:
Default setting:
♦ OFF1 Terminal 5 (DIN 1, low).
♦ OFF2 OFF button on BOP/AOP; sustained pressing of the OFF button (2 seconds) or repeated pressing of the button (in case of default settings not possible without BOP/AOP).
➢ Additional settings: See P0700 to P0708.

Reversal of the motor’s direction of rotation
➢ Default setting: Terminal 6 (DIN 2, high).
➢ Additional settings: See P0700 to P0708.
6.3.6 OFF functions

OFF1
This command (by eliminating the ON command) stops the variable speed drive within the selected ramp-down time.
Parameters to change the ramp-down time: See P1121.

Notes
- The ON and the consecutive OFF1 command must have the same source.
- If the ON/OFF1 command is set for more than one digital input, only the last set digital input is valid, e.g., DIN3 is enabled.

OFF2
This command causes a free coasting of the motor to standstill (impulses for the power section of the VSD are disabled).

Note
The OFF2 command may have one or several sources. By default, the OFF2 command is set to BOP/AOP. This source remains even if other sources are defined by one of the parameters P0700 to P0708.

6.3.7 Control types

The different control types of the SED2 control the relationship between the motor speed and the voltage supplied by the VSD. Below is a summary of the available control types.

- **Linear V/f control**
 P1300 = 0
 Can be used for variable or constant torque applications such as delivery systems and positive displacer pumps.

- **Linear V/f control with flow control (FCC)**
 P1300 = 1
 This factory-set control mode can be used to improve performance and dynamic behavior of the motor.

- **Parabolic V/f control**
 P1300 = 2
 This factory-set control mode can be used for variable torque load such as fans and pumps.

- **Multi-point V/F control**
 P1300 = 3
 Refer to the engineering manual for information on this control mode.

- **Linear V/f control with energy saving mode**
 P1300 = 4
 This function automatically increases or decreases the motor voltage to locate the lowest possible energy consumption. This control mode is enabled as soon as the default setpoint speed is reached.

- **V/f control for textile applications**
 P1300 = 5
 There is no slip compensation or resonance smoothing. The Imax controller relates to voltage instead of frequency.

- **V/f control with FCC for textile applications**
 P1300 = 6
 A combination of P1300 = 1 and P1300 = 5.

6.3.8 Communication

A serial interface RS485 is integrated. A RS232 interface is integrated in the optional door mounting set for BOP/AOP.
See section 9.1 Options.
USS, P1, and N2 protocols are implemented as part of the series.
For detailed information, refer to the engineering manual.
6.4 HVAC functions of the SED2

The functions listed below were implemented specifically in the SED2 for HVAC applications.

6.4.1 PID controller

In order to achieve independent control within a stand-alone application by means of the SED2 VSD, Siemens SBT implemented a proven PID controller. This controller allows for temperature (LG-Ni 1000), pressure, and speed control. The factory settings for the implemented PID parameters are designed for pressure control. For temperature or speed control, the controller's time constants must be adjusted to the new control loop. See "Parameterizing the PID controller" below.

Parameterizing the PID controller

(Commissioning)

Fixed setpoint

External setpoint

Note: The setpoint and the actual value signal are to be displayed as a percentage (%) or absolute value. Make sure, however, that the two signals match each other.

P2201
Enter fixed setpoint (or absolute value in %). The setpoint is active if switching command "ON" is sent to DIN1.

P2253
Set to value 2224 (fixed PI setpoint).

P0701[0]
Enter value 16 (sets DIN1 to ON with fixed setpoint; see section 6.3.1 Digital inputs).

P2253[0]
Set to 755 (setpoint is configured to AIN 1).

P0756[0]
Select the type of analog input 1 for the setpoint. See section Analog inputs.

P0757[0] to P0760[0]
Set scaling of AIN 1.

P0756[1]
Define the type of analog input 2 for the actual value signal (see section 6.3.2 Analog inputs).
Continued:

Parameterizing the PID controller

P0757[1] to P0760[1]
Set the scaling of the actual value for analog input 2 (see section 6.3.2 Analog inputs).

P2264
Set to 755[1] (defines AIN2 as actual value).

P2271
Define the reaction of the PID controller to the actual values (0=heating, 1=cooling).

P2200
Enable the PID controller (0=disable, 1=enable).

r2262
Check for setpoint (scaled PID setpoint in %).
Note: VSD must be set to automatic control.
DIN1 must be set to ON.

r2272
Check for actual value (scaled PID actual value in %).

Set and optimize P2280 PID proportional gain and P2285 PID integration time.

Changeover to automatic control.

6.4.2 Belt failure detection without sensor (P2181)

This function allows for monitoring power transmission components such as drive belts. The function can also detect motor overload, e.g. in the case of jam. The actual frequency / torque curve is compared to a preprogrammed tolerance band (see P2182 to P2190) as part of this function. If the actual curve is outside the tolerance band, a warning or error message is generated.
The permissible frequency/torque area is defined by the zone shaded gray. The frequency limit values 1 to 3 define the areas used to compare the actual torque to the preset torque. Nine parameters define torque monitoring. Parameters (P2182 to P2184) define the frequency limit values to be set. Parameters (P2185 to P2190) limit the tolerance band compared to the present torque curve.

1. **Frequency limit value parameter P2182 to P2184.**
 Setting the three frequency limit values:
 The 3 frequency limit values F1;F2;F3 determine a reasonable division across the required torque area. Set the values desired in the manual mode by pressing buttons up and down and read and write down the corresponding torque values via parameter r0031.
 Factory setting: 5;30;50 Hz.

2. Set the desired **reaction of drive belt failure detection** via parameter P2181.
 Possible settings for P2181:
 0 Belt failure detection disabled (factory setting).
 1 Warn low torque/speed.
 2 Warn high torque/speed.
 3 Warn high/low torque/speed.
 4 Trip low torque/speed.
 5 Trip high torque/speed.
 6 Trip high/low torque/speed.

 Note
 Parameter P2181 must be set before P2185 to P2190 (not to 0).

3. **Set the torque limit value parameters P2185 to P2190** as follows:
 Add ±15% to the torque derived from the setting of the frequency limit values to define a permissible tolerance band for the torque values.
 For allocation of variables, refer to the frequency/torque curve.

 Factory setting: 99999.0.
4. Set the **alarm delay parameter P2192**:
P2192 allows for setting a delay (between 0 to 65 sec) before a warning or error message is generated. The parameter helps avoid false alarms caused by temporary transition states. This delay can also be used for belt failure detection via sensor.
Factory setting: 10 s.

5. In manual mode, vary the torque frequency in the selected range to check the function.

6. Changeover to automatic control.

6.4.3 Belt failure detection with sensor (P0400)

A simple sensor (inductive sensor) mounted to the drive unit (e.g. for a fan) supplies one pulse for each rotation. The pulse train generated this way—which can vary from 1 to 20,000 pulses per minute—is sent to the digital input DIN5 of the VSD. The frequency resulting from the pulse train is compared to the present output frequency of the VSD.

Parameter P0400 defines the encoder type.
If parameter P0400 = 0 (factory setting), this type of belt failure detection is disabled and the variant "belt failure detection without sensor (P2182)" is used instead.

Only digital input DIN5 works with a counter signal!

Parameterizing belt failure detection with sensor (commissioning)

1. Determine the speed transformation ratio between the motor and the shaft driven by the belt.
2. Define the **encoder type** using parameter **P0400**.
 Possible settings for P0400:
 0 Disabled (factory setting).
 1 Single channel encoder.
 2 Quadrature encoder without zero pulse.
 3 External pulse train.
 12 Quadrature encoder with zero pulse.
3. Use parameter **P0409** to set the **pulse rate** (number of pulses/sec) generated by the **sensor** at **nominal frequency** (nominal speed) by including the transmission ratio determined in point 1.
 Setting range: 1 to 500
 Factory setting: 25
4. Set the desired **reaction of drive belt failure detection** via parameter **P2181**.
 Possible settings for P2181:
 0 Belt failure detection disabled (factory setting).
 1 Warn low torque/speed.
 2 Warn high torque/speed.
 3 Warn high/low torque/speed.
 4 Trip low torque/speed.
 5 Trip high torque/speed.
 6 Trip high/low torque/speed.
 Suggested setting: 1 Warn low torque/speed.

5. Use parameter **P2191** to set the **maximum permissible deviation** of the pulse train frequency (actual value) generated by the sensor from the VSD output frequency (setpoint). If the tolerance band for frequency is exceeded, a warning or trip is generated.
 Setting range: 0 to 20 Hz.
 Factory setting: 3 Hz.

6. In manual mode, vary the torque frequency in the selected range to check the function.

7. Changeover to automatic control.

6.4.4 Staging pumps or fans

The motor control staging allows to control up to two additional pumps or fans based on the integrated PID control system. The complete system comprises a pump (fan) controlled by the VSD, and up to two additional pumps (fans) switched by contactors or motor starters. The contactors or motor starters are controlled by relay switching contacts integrated in the VSD. The diagram below shows a typical pump system. A similar system comprising fans could be used for ventilating systems.

MV: Motor, speed-controlled by SED2.
M1: Motor, controlled by relay 1 DOUT1.
M2: Motor, controlled by relay 2 DOUT2.
If MV runs at maximum frequency and the PID feedback shows that a higher speed is demanded in accordance with the staging, the VSD switches on one of the relay-controlled motors M1 or M2 (staging). To keep the controlled variable as constant as possible, and to compensate for the difference in output, the VSD must be decreased to minimum frequency. See the illustration below. During the staging process, PID control is suppressed.

If MV runs in parallel to M1 and M2 at a minimum frequency, and if the PID feedback demands an even lower speed, the VSD switches off one of the relay-controlled motors M1 or M2 (destaging). In this case, the VSD must increase the ramp from the minimum to the maximum frequency. In this phase, PID control is suppressed.

Motor staging on output demand

Diagram from motor staging
Parameterizing motor staging
(commissioning)

As a rule, the factory settings can be used.

P2371
Defines the configuration of additional pumps or fans.
Max. 2 pumps can be added.
Factory setting: 0
Maximum setting: 2

P2372
Enable motor cycling
If this parameter is enabled, one or two motors are switched on or off—during staging, in addition to the speed-controlled motor—in a specified sequence based on the motor operating hours (parameter 2380). During staging, the motor having the lowest number of operating hours is first switched on. During destaging, the motor having the highest number of operating hours is first switched off.
In the case of different output of the motors to be switched on, the motor promising to best satisfy the demanded output is switched on first, regardless of its operating hours.
Factory setting: 0 (disabled).

P2373
Defines the staging hysteresis: Value in % of the PID setpoint.
Setting range: 0 to 200 %
Factory setting: 20 %

P2374
Delay on staging
Setting range: 0 to 650 s
Factory setting: 30 s

P2375
Delay on destaging
Setting range: 0 to 650 s
Factory setting: 30 s

P2376
Overriding the delay on staging/destaging
The value of P2376 is set as a percentage of the PID setpoint. If the PID fault (P2273) exceeds this value, a motor is switched on or off, regardless of the delay time set in P2374 and P2375.
Setting range: 0 to 200 %
Factory setting: 25 %

P2377
This parameter is used to lock the delay override (P2376) after staging or destaging for a specified period of time. This prevents a second staging immediately following the first staging, that, for example, could have been triggered by the first staging.
Setting range: 0 to 650 s
Factory setting: 30 s
Staging frequency
This parameter is defined as a particular percentage of the maximum output frequency. This determines the frequency used to switch on or off the relay (DOUT1 or DOUT2) during staging or destaging. See the diagram below.

Factory setting: = 50 % (defined as a percentage = 100%, at fmax = 50 Hz).

P0731 (DOUT1)
Function of the digital output 1 (relay 1)
Set parameter to 2379[0] (relay 1 to motor 1). Factory setting: 52.3 = VSD fault enabled.

P0732 (DOUT2)
Function of the digital output 2 (relay 2)
Set parameter to 2379[1] (relay 2 to motor 2). Factory setting: 52.2 = VSD in operation.

Complete parameter setting by changing over to automatic control.
6.4.5 Temperature control with LG-Ni 1000 sensor

Use the SED2 to directly measure the temperature by means of a passive temperature sensor of type LG-Ni 1000. Simple temperature control is possible accordingly. The sensor is connected to the VSD. The signal can be scaled according to requirements.

Parameterization

temperature control

(Commissioning notes)

Same procedure as for commissioning analog inputs. The temperature sensor can be connected as follows to the analog inputs:

LG-Ni 1000 on AIN 1

Connection terminals: 2 / 4

LG-Ni 1000 on AIN 2

Connection terminals: 2 / 11

Note: When connecting a LG-Ni 1000 sensor, no other input signal can be processed on the same channel, even if terminals 3 / 10 for an analog signal of 0 to 10 V are free.

P0757 to P0760, scaling

During scaling, the LG-Ni 1000 sensor’s temperature range of -50 to 150 °C can be converted to %.

Example: LG-Ni 1000 on AIN1:

P0757[0] = -50 °C
P0758[0] = -50%
P0759[0] = 150 °C
P0760[0] = 150%

Factory settings:

P0757 = 0
P0758 = 0.0
P0759 = 10
P0760 = 100
6.4.6 Bypassing the VSD

There are applications demanding maximum motor output. Additionally, there are applications requiring a VSD bypass system for safety reasons. For these cases, the SED2 has an integrated bypass function.

Parameterizing the bypass function (commissioning)

P1260
Defines the possible triggers for changing over to bypass operating mode.

The following settings are possible:

- 0 Bypass disabled (factory setting).
- 1 Controlled by VSD trip.
- 2 Controlled by DIN, see P1266.
- 3 Controlled by DIN and VSD trip.
- 4 Controlled by VSD frequency.
- 5 Controlled by VSD frequency and VSD trip.
- 6 Controlled by VSD frequency and DIN.
- 7 Controlled by VSD frequency and DIN and VSD trip.

r1261
Read parameter for the bypass function showing how the motor is driven:

The following states are possible:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Motor supplied by drive</td>
<td>0 Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 No</td>
</tr>
<tr>
<td>01</td>
<td>Motor supplied by mains</td>
<td>0 Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 No</td>
</tr>
</tbody>
</table>

P1262
Defines the time delay between changing over the VSD to bypass and vice-versa to demagnetize the motor.

See bypass diagram below.

Setting range: 0 to 20 s
Recommended setting: 1 s (factory setting).
P1263
Defines the time delay between the bypass alarm OFF and the bypass switching contactor OFF. See bypass diagram below.
Setting range: 0 to 300 s
Recommended setting: 1 s (factory setting).

P1264
Defines the time delay between the bypass alarm ON and the VSD switching contactor OFF.
See bypass diagram below.
Setting range: 0 to 300 s
Recommended setting: 1 s (factory setting).

Bypass time diagram

![Bypass Diagram]

Complete parameter setting by changing over to automatic control.
6.4.7 Hibernation mode

If the VSD reaches the hibernation setpoint in PID operating mode, the hibernation timer P2391 starts. After the timer has expired, the VSD drives the output frequency of the ramp to 0 Hz. See illustration below.

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Hibernation frequency reached.</td>
</tr>
<tr>
<td></td>
<td>Start of hibernation timer.</td>
</tr>
<tr>
<td>T2</td>
<td>Minimum output frequency reached.</td>
</tr>
<tr>
<td>T3</td>
<td>Output frequency decreased in accordance with the set ramp.</td>
</tr>
<tr>
<td></td>
<td>PID control of the output frequency is interrupted.</td>
</tr>
<tr>
<td>T4</td>
<td>Output frequency = zero (motor standstill).</td>
</tr>
<tr>
<td>T3 to T5</td>
<td>The PID fault signal [%] is monitored.</td>
</tr>
<tr>
<td>Note:</td>
<td>The polarity of the PID fault signal.</td>
</tr>
<tr>
<td></td>
<td>The polarity of the PID fault signal must match the sequence of the controlled functions (cooling/heating or vice-versa).</td>
</tr>
<tr>
<td></td>
<td>The temperature setpoint can be below 0 °C.</td>
</tr>
<tr>
<td></td>
<td>The PID fault signal can be positive or negative.</td>
</tr>
<tr>
<td>T5</td>
<td>The VSD output frequency is again increased.</td>
</tr>
<tr>
<td></td>
<td>The PID control of the output frequency is again enabled.</td>
</tr>
</tbody>
</table>
Parameterizing the hibernation function (commissioning)

P2390
Hibernation frequency setpoint [%]
Setting range: ± 200 %
Recommended setting: Value 15 to 20% greater than the minimum frequency.
Note: The hibernation function is disabled if the hibernation setpoint is set to 0 (corresponds to the factory setting).

P2391
Hibernation timer [s]
Set the desired time T1 to T3 (before hibernation mode kicks in) (see diagram above).
Setting range: 0 to 254 s

P2392
Restart PID controller deviation [%]
This parameter defines the PID controller deviation at which the motor is to restart.
Setting range: ± 200 %

Note
Note the signs according to the application (heating or cooling sequence).
Complete parameter setting by changing over to automatic control.
6.5 System parameter list for levels 1 to 3

r0000 Drive display
Level 1
Displays the user selected output as defined in P0005.
Unit: --
Def: -
Max: -
Note: Pressing the "Fn" button for 2 seconds allows the user to view the values of DC link voltage, output current, output frequency, and chosen r0000 setting (defined in P0005).

r0002 Drive state
Level 3
Displays actual drive state.
Unit: -
Def: -
Max: -
Settings:
0=Commissioning mode (P0010=0)
1=Drive ready
2=Fault active
3=Drive starting (DC link precharging)
4=Drive running
5=Stopping (ramping down)
Dependency: State 3 visible only while precharging DC link, and when externally powered communications board is fitted.

P0003 User access level
Level 1
Defines user access level to parameter sets. The default setting (standard) is sufficient for most simple applications.
Unit: --
Def: 1
Max: 4
Settings:
0=User defined parameter list - see P0013 for details
1=Standard: Access into frequently used parameters.
2=Extended: Access to e.g. variable speed drive I/O functions.
3=Expert: For experienced users only
4=Service: Only for use by authorized service personal -

P0004 Parameter filter
Filters available parameters according to functionality to enable a more focussed approach to commissioning.
Unit: -
Def: 0
Max: 22
Example: P0004=22 specifies that only PID parameters will be visible.
Settings:
0=All parameters
2=Variable speed drive
3=Motor
4=Speed sensor
5=Technol. application/units
7=Commands, binary I/O
8=ADC and DAC
10 =Setpoint channel / RFG
12 =Drive features
13 =Motor control
16 =Technology controller (e.g. PID)
20 =Communications
21 =Alarms / warnings / monitoring
22 =Technology controller (e.g. PID)
Dependency: Parameters marked "Quick Comm: Yes" in the parameter header can only be set when P0010=1 (Quick Commissioning).
Note: The variable speed drive will start with any setting of P0004.

P0005 Display selection
Selects display for parameter r0000 (drive display).
Unit: -
Def: 21
Max: 2294
Settings:
21=Actual frequency
25=Output voltage
26=DC link voltage
27=Output current
Note: These settings refer to read only parameter numbers ("rxxxx").
Details: See relevant "rxxxx" parameter descriptions.

P0006 Display mode
Defines mode of display for r0000 (drive display).
Unit: -
Def: 4
Max: 4
Settings:
0=In Ready state alternate between setpoint and output frequency. During run, display output freq.
1=In Ready state display setpoint. In run display output freq.
2=In Ready state alternate between P0005 value and r0020 value. In run display P0005 value
3=In Ready state alternate between r0002 value and r0020 value. In run display r0002 value
Note: When variable speed drive is not running, the display alternates between the values for "Not Running" and "Running". Per default, the setpoint and actual frequency values are displayed alternately.

P0010 Commissioning parameter filter
Filters parameters so that only those related to a particular functional group are selected.
Unit: -
Def: 0
Max: 30
Settings:
0=Ready
1=Quick commissioning
2=Variable speed drive
29 =Download
30 =Factory setting
Dependency: Reset to 0 for variable speed drive to run.
P0003 (user access level) also determines access to parameters.
Note: If P3900 is not 0 (0 is the default value), this parameter is automatically reset to 0.

P0011 Lock for user-defined parameter
Unit: -
Def: 65535
Max: 65535
Details: See P0013 (user-defined parameter).

P0012 Key for user-defined parameter
Unit: -
Def: 65535
Max: 65535
Details: See P0013 (user-defined parameter).

P0013[20] User-defined parameter
Defines a limited set of parameters to which the end user will have access.
Unit: -
Def: 65535
Max: 65535
Instructions:
1. Step 1: Set P0003=3 (expert user)
2. Step 2: Go to P0013 indices 0 to 16 (user list)
3. Step 3: Enter into P0013 index 0 to 16 the parameters required to be visible in the user-defined list. The following values are fixed and cannot be changed:
 - P0013 index 19=12 (key for user defined parameter)
 - P0013 index 18=10 (commissioning parameter filter)
 - P0013 index 17=3 (user access level)
4. Step 4: Set P0003=0 to activate the user defined parameter.

Dependency:
First, set P0011 ("lock") to a different value than P0012 ("key") to prevent changes to user-defined parameter. Then, set P0003 to 0 to activate the user-defined list.

When locked and the user-defined parameter is activated, the only way to exit the user-defined parameter (and view other parameters) is to set P0012 ("key") to the value in P0011 ("lock").

Note:
Alternatively, set P0010=30 (commissioning parameter filter=factory setting) and P0970=1 (factory reset) to perform a complete factory reset. The default values of P0011 ("lock") and P0012 ("key") are the same.

r0018
Firmware version
Displays version number of installed firmware.

r0019
CO/BO: BOP control word
Displays status of operator panel commands.
The settings below are used as the "source" codes for keypad control when connecting to BICO input parameters.

Bit fields:
- Bit00 ON/OFF1 0 NO, 1 YES
- Bit01 OFF2: Electrical stop 0 YES, 1 NO
- Bit02 not used 0 NO, 1 YES
- Bit03 not used 0 NO, 1 YES
- Bit04 Hand Operation 0 NO, 1 YES
- Bit05 Motor potentiometer MOP up 0 NO, 1 YES
- Bit06 Motor potentiometer MOP down 0 NO, 1 YES
- Bit07 Auto Operation 0 NO, 1 YES

Note:
When BICO technology is used to allocate functions to panel buttons, this parameter displays the actual status of the relevant command.
The following functions can be "connected" to individual buttons:
- ON/OFF1 - JOG - INCREASE
- OFF2 - REVERSE - DECREASE

r0020
CO: Act. frequency setpoint
Displays actual frequency setpoint (output from ramp function generator).

r0021
CO: Act. frequency
Displays actual variable speed drive output frequency (r0024) excluding slip compensation, resonance damping and frequency limitation.

r0022
Act. rotor speed
Displays calculated rotor speed based on variable speed drive output frequency [Hz] x 120 / number of poles.

Note:
This calculation makes no allowance for load-dependent slip.

r0024
CO: Act. output frequency
Displays actual output frequency (slip compensation, resonance damping and frequency limitation are included).

r0025
CO: Act. output voltage
Displays [rms] voltage applied to motor.

r0026
CO: Act. DC-link voltage
Displays DC-link voltage.

r0027
CO: Act. output current
Displays [rms] value of motor current [A].

r0031
CO: Act. torque
Displays motor torque.

r0032
CO: Act. power
Displays motor power.

Dependency:
Value is displayed in [kW] or [hp] depending on setting for P0100 (operation for Europe / North America).
r0035
CO: Act. motor temperature

- **Level 3**
- **Unit:** °C
- **Min:** -
- **Def:** -
- **Max:** -

Displays measured motor temperature.

r0039
CO: Energy consumption meter [kWh]

- **Level 3**
- **Unit:** kWh
- **Min:** -
- **Def:** -
- **Max:** -

Displays electrical energy used by variable speed drive since display was last reset (see P0040 - reset energy consumption meter).

Dependency: Value is reset when P3900=1 (end quick commissioning), P0970=1 (factory reset) or P0040=1 (reset energy consumption meter).

P0040
Reset energy consumption meter

- **Level 3**
- **Unit:** -
- **Min:** 0
- **Def:** 0
- **Max:** 1

Resets value of parameter r0039 (energy consumption meter) to zero.

Settings:

- 0 = No reset
- 1 = Reset r0039 to 0.

Dependency: No reset until "P" is pressed.

r0052
CO/BO: Act. status word 1

- **Level 3**
- **Unit:** -
- **Def:** -
- **Max:** -

Displays first active status word of variable speed drive (bit format) and can be used to diagnose variable speed drive status.

Bit fields:

- **Bit00** Drive ready 0 NO, 1 YES
- **Bit01** Drive ready to run 0 NO, 1 YES
- **Bit02** Drive running 0 NO, 1 YES
- **Bit03** Drive fault active 0 NO, 1 YES
- **Bit04** OFF2 active 0 YES, 1 NO
- **Bit05** OFF3 active 0 YES, 1 NO
- **Bit06** ON inhibit active 0 NO, 1 YES
- **Bit07** Drive warning active 0 NO, 1 YES
- **Bit08** Deviation setp/act value 0 YES, 1 NO
- **Bit09** PID control 0 NO, 1 YES
- **Bit10** Maximum frequency reached 0 NO, 1 YES
- **Bit11** Warning: Motor current limit 0 YES, 1 NO
- **Bit12** Motor holding brake active 0 NO, 1 YES
- **Bit13** Motor overload 0 YES, 1 NO
- **Bit14** Motor runs direction right 0 NO, 1 YES
- **Bit15** VSD drive overload 0 YES, 1 NO

Note: Output of Bit3 (Fault) will be inverted on digital output high=No Fault.

r0053
CO/BO: Act. status word 2

- **Level 3**
- **Unit:** -
- **Def:** -
- **Max:** -

Displays second status word of variable speed drive (in bit format).

Bit fields:

- **Bit00** DC brake active 0 NO, 1 YES
- **Bit01** Act. freq. r0024 > P2167 0 NO, 1 YES
- **Bit02** Act. freq. r0024 > P1080 0 NO, 1 YES
- **Bit03** Act. current r0027 >= P2170 0 NO, 1 YES
- **Bit04** Act. freq. r0024 > P2155 0 NO, 1 YES
- **Bit05** Act. freq. r0024 <= P2155 0 NO, 1 YES
- **Bit06** Act. freq. r0024 >= setpoint 0 NO, 1 YES
- **Bit07** Act. Vdc r0026 < P2172 0 NO, 1 YES
- **Bit08** Act. Vdc r0026 > P2172 0 NO, 1 YES
- **Bit09** Ramping finished 0 NO, 1 YES
- **Bit10** PID output r2294 < P2291 0 NO, 1 YES
- **Bit11** PID output r2294 >= P2291 0 NO, 1 YES
- **Bit14** Download data set 0 from AOP 0 NO, 1 YES
- **Bit15** Download data set 1 from AOP 0 NO, 1 YES

r0054
CO/BO: Act. control word 1

- **Level 3**
- **Unit:** -
- **Def:** -
- **Max:** -

Displays first control word of variable speed drive and can be used to diagnose which commands are active.

Bit fields:

- **Bit00** ON/OFF1 0 NO, 1 YES
- **Bit01** OFF2: Electrical stop 0 YES, 1 NO
- **Bit02** OFF3: Fast stop 0 YES, 1 NO
- **Bit03** Pulse enable 0 NO, 1 YES
- **Bit04** RFG enable 0 NO, 1 YES
- **Bit05** RFG start 0 NO, 1 YES
- **Bit06** Setpoint enable 0 NO, 1 YES
- **Bit07** Fault acknowledge 0 NO, 1 YES
- **Bit08** JOG right 0 NO, 1 YES
- **Bit09** JOG left 0 NO, 1 YES
- **Bit10** Control from PLC 0 NO, 1 YES
- **Bit11** Reverse (setpoint inversion) 0 NO, 1 YES
- **Bit13** Motor potentiometer MOP up 0 NO, 1 YES
- **Bit14** Motor potentiometer MOP down 0 NO, 1 YES
- **Bit15** CDS Bit 0 (Local/Remote-Hand/Auto) 0 NO, 1 YES

r0055
CO/BO: Add. act. control word

- **Level 3**
- **Unit:** -
- **Def:** -
- **Max:** -

Displays additional control word of variable speed drive and can be used to diagnose which commands are active.
Bit fields:

<table>
<thead>
<tr>
<th>Bit fields</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit00</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit01</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit02</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit03</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit08</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit09</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit11</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit12</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit13</td>
<td>0 YES, 0 NO</td>
<td></td>
</tr>
</tbody>
</table>

r0056 CO/BO: Status of motor control Level 3

Displays status of motor control (V/f status), which can be used to diagnose variable speed drive status.

<table>
<thead>
<tr>
<th>Bit fields</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit00 Init. control finished</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit01 Motor demagnetizing finished</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit02 Pulses enabled</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit03 Voltage soft start select</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit04 Motor excitation finished</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit05 Starting boost active</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit06 Acceleration boost active</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit07 Frequency is negative</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit08 Field weakening active</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit09 Volts setpoint limited</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit10 Slip frequency limited</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit11 P_out > P_max Freq. limited</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit12 Phase reversal selected</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit13 I-max controller active</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit14 Vdc-max controller active</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
<tr>
<td>Bit15 Vdc-min controller active</td>
<td>0 NO, 1 YES</td>
<td></td>
</tr>
</tbody>
</table>

r0061 CO: Act. rotor speed Level 3

Displays current speed detected by encoder.

<table>
<thead>
<tr>
<th>Unit: Hz</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
</table>

r0086 CO: Act. active current Level 3

Displays active (real part) of motor current.

<table>
<thead>
<tr>
<th>Unit: A</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
</table>

Dependency:

Applies when V/f control is selected in P1300 (control mode): otherwise, the display shows the value zero.

P0100 Europe / North America

Determine whether power settings (e.g. nominal rating plate power - P0307) are expressed in [kW] or [hp].

The default settings for the nominal rating plate frequency (P0310) and maximum motor frequency (P1082) are also set automatically here, in addition to reference frequency (P2000).

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
</table>

Settings:

- 0 = Europe [kW], frequency default 50 Hz
- 1 = North America [hp], frequency default 60 Hz
- 2 = North America [kW], frequency default 60 Hz

Dependency:

The setting of DIP switch 2 under the I/O board determines the validity of settings 0 and 1 for P0100 according to the following table:

<table>
<thead>
<tr>
<th>DIP 2 Setting</th>
<th>Meaning</th>
<th>P0100 Setting</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>[kW], frequency default 50 Hz</td>
<td>Overwrites</td>
<td>1 [hp], frequency default 60 Hz</td>
</tr>
<tr>
<td>On</td>
<td>[hp], frequency default 60 Hz</td>
<td>Overwrites</td>
<td>0 [kW], frequency default 50 Hz</td>
</tr>
</tbody>
</table>

Stop drive first (i.e. disable all pulses) before you change this parameter. P0100=1 (commissioning mode) enables changes to be made.

Changing P0100

Resets all rated motor parameters as well as other parameters that depend on the rated motor parameters (see P0340 - calculation of motor parameters).

Note:

P0100 setting 2 (kW, frequency default 60 Hz) is not overwritten by the setting of DIP switch 2 (see table above).

r0200 Act. power stack code number Level 3

Identifies hardware variant

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
</table>

Note:

Parameter r0200=0 indicates that no power stack has been identified.

r0206 Rated variable speed drive power [kW] / [hp] Level 3

Displays nominal rated motor power from the variable speed drive.

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
</table>

Dependency:

Value is displayed in [kW] or [hp] depending on setting for P0100 (operation for Europe / North America).

r0207 Rated variable speed drive current Level 3

Displays maximum continuous output current of the variable speed drive.

<table>
<thead>
<tr>
<th>Unit: A</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
</table>

r0208 Rated variable speed drive voltage Level 3

Displays nominal AC supply voltage of the variable speed drive.

<table>
<thead>
<tr>
<th>Unit: V</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
</table>

Note:

P0100 setting 2 (kW, frequency default 60 Hz) is not overwritten by the setting of DIP switch 2 (see table above).
Maximum variable speed drive current

| Unit: A | Min: - | Def: - | Max: - |

Displays maximum output current of the variable speed drive.

Rated motor voltage

| Unit: V | Min: 10 | Def: 230 | Max: 2000 |

Nominal motor voltage [V] from rating plate. The following diagram shows a typical rating plate with the locations of the relevant motor data.

Dependency: Changeable only when P0010=1 (quick commissioning).

Rated motor current

| Unit: A | Min: 0.01 | Def: 3.25 | Max: 10000.00 |

Nominal motor current [A] from rating plate.

Dependency: Changeable only when P0010=1 (quick commissioning).

Note: For asynchronous motors, the maximum value is defined as the maximum variable speed drive current (r0209). For synchronous motors, the maximum value is defined as twice the maximum variable speed drive current (r0209). The minimum value is defined as 1/32 times variable speed drive rated current (r0207).

Rated motor power

| Unit: kW/hp | Min: 0.01 | Def: 0.75 | Max: 2000.00 |

Nominal motor power [kW/hp] from rating plate.

Dependency: If P0100=1 ([kW], frequency default 50 Hz), values will be in [hp]. Changeable only when P0010=1 (quick commissioning).

Rated motor cosPhi

| Unit: - | Min: 0.000 | Def: 0.000 | Max: 1.000 |

Nominal motor power factor (cosPhi) from rating plate.

Dependency: Visible only when P0100=1, (i.e. motor power entered in [kW]). Setting 0 causes internal calculation of value (see r0332).

Rated motor efficiency

| Unit: % | Min: 0.0 | Def: 0.0 | Max: 99.9 |

Nominal motor efficiency in [%] from rating plate.

Dependency: Visible only when P0100=1, (i.e. motor power entered in [kW]). Setting 0 causes internal calculation of value (see r0332).

Note: P0309=100 % corresponds to superconducting.

Rated motor frequency

| Unit: Hz | Min: 12.00 | Def: 50.00 | Max: 650.00 |

Nominal motor frequency [Hz] from rating plate.

Dependency: Visible only when P0100=1, (i.e. motor power entered in [kW]). Setting 0 causes internal calculation of value (see r0332).

Rated motor speed

| Unit: 1/min | Min: 0 | Def: 0 | Max: 40000 |

Nominal motor speed [rpm] from rating plate.

Dependency: Visible only when P0100=1, (i.e. motor power entered in [kW]). Setting 0 causes internal calculation of value (see r0332).

Motor pole pairs

| Value: | r0313=1 : 2-pole motor | r0313=2 : 4-pole motor, etc. |

Displays the number of motor pole pairs that the variable speed drive is currently using for internal calculations.

Dependency: Recalculated automatically when P0310 (rated motor frequency) or P0311 (rated motor speed) is changed.

Calculation of motor parameters

| Unit: - | Min: 0 | Def: 0 | Max: 4 |

Calculates various motor parameters, including:

| Data: | Motor weight (Level 3) | P0344 | Stator resistance (Level 2) | P0350 | Magnetization time (Level 3) | P0346 | Reference frequency (Level 2) | P2000 | Demagnetization time (Level 3) | P0347 | Reference current (Level 3) | P2002 |

Settings:

- 0=No calculation
- 1=Complete parameterization
- 2=Calc. equivalent circuit data
- 3=Calc. V/f
- 4=Calc. only controller setting

Note: This parameter is required during commissioning to optimize the variable speed drive performance.

Stator resistance (line-to-line)

| Unit: Ohm | Min: 0.00001 | Def: 4.0 | Max: 2000.0 |

Stator resistance value in [Ohms] for the connected motor (from line-to-line). The parameter value includes the cable resistance.
Data: Stator resistance value in [Ohms] for the connected motor (from line-to-line). The parameter value includes the cable resistance. There are three ways to determine the value for this parameter:
1. Calculate using P0340=1 (data entered from rating plate) or P3900=1, 2 or 3 (end of quick commissioning).
3. Measure manually using an Ohmmeter.

Note: Since measured line-to-line, this value may appear to be higher (up to 2 times higher) than expected. The value entered in P0350 (stator resistance) is the one obtained by the method last used.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0395</td>
<td>CO: Total stator resistance [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays stator resistance of motor as [%] of combined stator/cable resistance.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Settings:
- 0=disabled
- 1=Single channel encoder
- 2=Quadrature encoder without zero pulse

Note: The term “quadrature” in settings 2 and 12 refers to 2 periodic functions separated by a quarter cycle or 90 degrees.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0400</td>
<td>Select encoder type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selects encoder type.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3=External pulse train</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12=Quadrature encoder with zero pulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0501[2]</td>
<td>Type of sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defines type of process variable sensor that each analog input is to be configured for. Note that setting this parameter will in turn set P0756 (analogue input mode). To switch between voltage and current analogue input modes also requires the DIP switches on the terminal board to be set correctly. See description for P0756.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0507[3]</td>
<td>Scalar values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This parameter performs no function within the variable speed drive. It is a storage place for use with the AOP to scale particular parameters.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0508[4]</td>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This parameter performs no function within the variable speed drive. It is a storage place for use with the AOP to store a string for unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0509[12]</td>
<td>String</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This parameter performs no function within the variable speed drive. It is a storage place for use with the AOP to store a string for parameter unit description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0601</td>
<td>Motor temperature sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selects motor temperature sensor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Settings:
- 0=No sensor
- 1=PTC thermistor
- 2=KTY84

Dependency: If “no sensor” is selected, motor temperature monitoring occurs based on the estimated value of the thermal motor model.
P0610 Motor I2t temperature reaction

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Settings:
- 0 = No reaction, warning only
- 1 = Warning and I_max reduction (results in reduced output freq.)
- 2 = Warning and trip (F0010)

P0640 Motor overload factor [%]

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.0</td>
<td>110.0</td>
<td>400.0</td>
</tr>
</tbody>
</table>

P0700[2] Selection of command source

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Settings:
- 0 = Factory default setting
- 1= BOP (keypad)
- 2= Terminal
- 4= USS on BOP link
- 5= USS on COM link
- 6= CB on COM link

Index:
- P0700[0] : 1st command data set (CDS)
- P0700[1] : 2nd command data set (CDS)

P0701[2] Function of digital input 1

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Settings:
- 0 = Digital input disabled
- 1 = ON/OFF 1
- 2 = ON reverse / OFF 1
- 3 = OFF 2 - coast to standstill
- 4 = OFF 3 - quick ramp-down
- 9 = Fault acknowledge
- 10 = JOG right

Index:
- P0701[0] : 1st command data set (CDS)
- P0701[1] : 2nd command data set (CDS)

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

P0704[2] Function of digital input 4

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Settings:
- 0 = Digital input disabled
- 1 = ON/OFF 1
- 2 = ON reverse / OFF 1
- 3 = OFF 2 - coast to standstill
- 4 = OFF 3 - quick ramp-down
- 9 = Fault acknowledge
- 10 = JOG right

Index:
- P0707[0] : 1st command data set (CDS)
- P0707[1] : 2nd command data set (CDS)

P0708[2] Function of digital input 8

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min:</th>
<th>Def:</th>
<th>Max:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Changing this parameter resets (to default) all settings on item selected. For example: Changing form 1 to 2 resets all digital inputs to default settings.
- Setting 99 (BICO) for expert use only
- Setting 99 (BICO) (enable BICO parameterization) requires P0700 (command source) or P3900 (end of quick commissioning)=1, 2 or P0970 (factory reset)=1 in order to reset.
CO/BO: Hand / Auto

Selects function of digital input 8 (via analog input).

| Unit: - | Min: 0 | Def: 0 | Max: 1 |

CO/BO: Binary input values

Displays status of digital inputs.

<table>
<thead>
<tr>
<th>Bit fields</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit00</td>
<td>Digital input 1</td>
<td>OFF, 1</td>
<td>ON</td>
</tr>
<tr>
<td>Bit01</td>
<td>Digital input 2</td>
<td>OFF, 1</td>
<td>ON</td>
</tr>
<tr>
<td>Bit02</td>
<td>Digital input 3</td>
<td>OFF, 1</td>
<td>ON</td>
</tr>
<tr>
<td>Bit03</td>
<td>Digital input 4</td>
<td>OFF, 1</td>
<td>ON</td>
</tr>
<tr>
<td>Bit04</td>
<td>Digital input 5</td>
<td>OFF, 1</td>
<td>ON</td>
</tr>
<tr>
<td>Bit05</td>
<td>Digital input 6</td>
<td>OFF, 1</td>
<td>ON</td>
</tr>
<tr>
<td>Bit06</td>
<td>Digital input 7 (via ADC 1)</td>
<td>OFF, 1</td>
<td>ON</td>
</tr>
<tr>
<td>Bit07</td>
<td>Digital input 8 (via ADC 2)</td>
<td>OFF, 1</td>
<td>ON</td>
</tr>
</tbody>
</table>

Note: Segment is lit when signal is active.

PNP / NPN digital inputs

Switches between active high (PNP) and active low (NPN). This is valid for all digital inputs simultaneously.

The following is valid by using the internal supply:

| Unit: - | Min: 0 | Def: 1 | Max: 1 |

BI: Function of digital output 1

Defines source of digital output 1.

| Unit: - | Min: 0.0 | Def: 52.3 | Max: 4000.0 |

Settings:
- 0 = NPN mode
- 1 = PNP mode

BI: Function of digital output 2

Defines source of digital output 2.

| Unit: - | Min: 0.0 | Def: 52.2 | Max: 4000.0 |

Details:
See P0731 (function of digital output 1).

CO/BO: State of digital outputs

Displays status of digital outputs (also includes inversion of digital outputs via P0748).

| Unit: - | Min: - | Def: - | Max: - |

Invert digital outputs

Defines high and low states of relay for a given function.

| Unit: - | Min: 0 | Def: 0 | Max: 7 |

Act. input of ADC [V] or [mA]

Displays smoothed analog input value in volts before the characteristic block.

| Unit: - | Min: - | Def: - | Max: - |

Index:
- P0752[0] : Analog input 1 (ADC 1)
- P0752[1] : Analog input 2 (ADC 2)

Smooth time ADC

Defines filter time (PT1 filter) in [ms] for analog input.

| Unit: ms | Min: 0 | Def: 100 | Max: 10000 |

Note:
Increasing this time (smooth) reduces jitter but slows down response to the analog input.

Act. ADC value after scaling [%]

Shows smoothed value of analog input in [%] after scaling block.

| Unit: % | Min: - | Def: - | Max: - |

Index:
- P0754[0] : Analog input 1 (ADC 1)
- P0754[1] : Analog input 2 (ADC 2)

Dependency:
- P0757 to P0760 define range (ADC scaling)
CO: Act. ADC after scaling (4000h)

Displays analog input, scaled using ASPmin and ASPmax.

Unit: - Min: - Dec: - Max: -

Data: The analog setpoint (ASP) from the analog scaling block can vary from min. analog setpoint (ASPmin) to a max. analog setpoint (ASPmax) as shown in P0757 (ADC scaling).

The largest magnitude (value without sign) of ASPmin and ASPmax defines the scaling of 16384.

Example:

ASPmin=300 %, ASPmax=100 % then 16384 represents 300 %.
This parameter will vary from 5461 to 16364
ASPmin=200 %, ASPmax=100 % then 16384 represents 200 %.
This parameter will vary from -16384 to +8192.

Index: r0755[0] : Analog input 1 (ADC 1) r0755[1] : Analog input 2 (ADC 2)

Note: This value is used as an input to analog BICO connectors.
ASPmax represents the highest analog setpoint (this may be at 10 V)
ASPmin represents the lowest analog setpoint (this may be at 0 V).

Details: See parameters P0757 to P0760 (ADC scaling).

P0756[2]

Type of ADC
Defines type of analog input and also enables analog input monitoring.

Unit: - Min: 0 Def: 0 Max: 5

Data: Defines type of analog input and also enables analog input monitoring. To switch over from voltage to current analog input it is not sufficient to merely modify parameter P0756. Rather, the DIPs on the terminal board must also be set to the correct position. The DIP settings are as follows:
- OFF= voltage input (10 V)
- ON= current input (20 mA)

Allocation of DIPs to analog inputs is as follows:
- DIP on left (DIP 1)= Analog input 1
- DIP on right (DIP 2)= Analog input 2

Settings:
0= Unipolar voltage input (0 to +10 V)
1= Unipolar voltage input with monitoring (0 to 10 V)
2= Unipolar current input (0 to 20 mA)
3= Unipolar current input with monitoring (0 to 20 mA)
4= Bipolar voltage input (-10 V to +10 V)
5= LG-Ni 1000 sensor input

Index: P0756[0] : Analog input 1 (ADC 1) P0756[1] : Analog input 2 (ADC 2)

Dependency: Function disabled if analog scaling block programmed to output negative setpoints (see P0757 to P0760).

Note: When monitoring is enabled and a deadband defined (P0761), a fault condition will be generated (F0080) if the analog input voltage falls below 50 % of the deadband voltage.

Details: See P0757 to P0760 (ADC scaling).

P0757[2]

Value x1 of ADC scaling [V / mA]
Parameters P0757 - P0760 configure the input scaling

Unit: - Min: -50.0 Def: 0 Max: 150.0

Data: Parameters P0757 - P0760 configure the input scaling where:
- Analog setpoints represent a [%] of the normalized frequency in P2000.
- Analog setpoints may be larger than 100 %
- ASP max represents highest analog setpoint (this may be at 10 V).
- ASP min represents lowest analog setpoint (this may be at 0 V).
- Default values provide a scaling of 0 V=0 %, and 10 V=100 %.

Index: P0757[0] : Analog input 1 (ADC 1) P0757[1] : Analog input 2 (ADC 2)

Dependency: Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0758[2]

Value y1 of ADC scaling [%]
Sets value of Y1 in [%] as described in P0757 (ADC scaling)

Unit: % Min: -99999.9 Def: 0.0 Max: 99999.9

Index: P0758[0] : Analog input 1 (ADC 1) P0758[1] : Analog input 2 (ADC 2)

Dependency: Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0759[2]

Value x2 of ADC scaling [V / mA]
Sets value of X2 as described in P0757 (ADC scaling)

Unit: % Min: -99999.9 Def: 10 Max: 99999.9

Index: P0759[0] : Analog input 1 (ADC 1) P0759[1] : Analog input 2 (ADC 2)

Dependency: Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0760[2]

Value y2 of ADC scaling [%]
Sets value of Y2 in [%] as described in P0757 (ADC scaling)

Unit: % Min: -99999.9 Def: 100.0 Max: 99999.9

Index: P0760[0] : Analog input 1 (ADC 1) P0760[1] : Analog input 2 (ADC 2)

Dependency: Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0761[2]

Width of ADC deadband [V / mA]
Defines width of deadband on analog input. The diagrams below explain its use

Unit: - Min: 0 Def: 0 Max: 150.0

Index: P0761[0] : Analog input 1 (ADC 1) P0761[1] : Analog input 2 (ADC 2)

Note: P0761[x]=0: No deadband active.
Deadband starts from 0 V to value of P0761, if both values of P0758 and P0760 (y coordinates of ADC scaling) are positive or negative respectively. However, deadband is active in both directions from point of intersection (x axis with ADC scaling curve), if sign of P0758 and P0760 are opposite.
Fmin (P1080) should be zero when using center zero setup. There is no hysteresis at the end of the deadband.

P0771[2]

CI: DAC
Defines function of the 0 - 20 mA analog output.
P0773[2] Smooth time DAC

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min: 0</th>
<th>Def: 100</th>
<th>Max: 1000</th>
</tr>
</thead>
</table>

Settings:
- 0: Current output
- 1: Voltage output

Note:
- The analog output is designed as a current output with a range of 0...20 mA.
- For the ECB variant, the two analog output channels must be of the same type i.e. both channels are current outputs with a range of 0...20 mA or both channels are defined as voltage outputs with a range of 0...10 V.

P0776 Type of DAC

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min: 0</th>
<th>Def: 1</th>
<th>Max: 1</th>
</tr>
</thead>
</table>

P0777[2] Value x1 of DAC scaling

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: -99999.0</th>
<th>Def: 0.0</th>
<th>Max: 99999.0</th>
</tr>
</thead>
</table>

Data:
- Defines x1 output characteristic in [%]. Scaling block is responsible for adjustment of output value defined in P0771 (DAC connector input).

P0778[2] Value y1 of DAC scaling

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: -99999.0</th>
<th>Def: 100.0</th>
<th>Max: 99999.0</th>
</tr>
</thead>
</table>

P0779[2] Value x2 of DAC scaling

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: -99999.0</th>
<th>Def: 100.0</th>
<th>Max: 99999.0</th>
</tr>
</thead>
</table>

Dependency:
- Affects P2000 to P2003 (reference frequency, voltage, current or torque) depending on which setpoint is to be generated.

P0780[2] Value y2 of DAC scaling

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: -99999.0</th>
<th>Def: 100.0</th>
<th>Max: 99999.0</th>
</tr>
</thead>
</table>

P0781[2] Width of DAC deadband

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 20</th>
</tr>
</thead>
</table>

P0809[3] Copy Command Data Set

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 2</th>
</tr>
</thead>
</table>

Note:
- Start value in index 2 is automatically reset to 0 after execution of function.

P0810 Bit: CDS bit 0 (Local / Remote)

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min: 0</th>
<th>Def: 718:0</th>
<th>Max: 4095:0</th>
</tr>
</thead>
</table>

Note:
- Bit 1 is also relevant for BICO data set selection.

P0918 CB address

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min: 0</th>
<th>Def: 3</th>
<th>Max: 65535</th>
</tr>
</thead>
</table>

Data:
- Defines address of CB (communication board) or address of the other option modules.
- There are two ways to set the bus address:
 1. via DIP switches on the PROFIBUS module
 2. via a user-entered value
Note:
Possible PROFIBUS settings:
1 ... 125
0, 126, 127 are not allowed
The following applies when a PROFIBUS module is used:
DIP switch =0 Address defined in P0918 (CB address) is valid
DIP switch not=0 DIP switch setting has priority and P0918 indicates DIP switch setting.

P0927 Parameter changeable via Level 3
Specifies the interfaces which can be used to change parameters.

- Unit: Min: 0 Def: 15 Max: 15
- Example: "b - - n n" (bits 0, 1, 2 and 3 set) in the default setting means that parameters can be changed via any interface.
- "b - r n" (bits 0, 1 and 3 set) would specify that parameters can be changed via PROFIBUS/CB, BOP and USS on COM link (RS485 USS) but not via USS on BOP link (RS232)

- Bit fields:
 - Bit00 PROFIBUS / CB 0 NO, 1 YES
 - Bit01 BOP 0 NO, 1 YES

r0947[8] Last fault code Level 3
Displays fault history according to the diagram below

- Unit: Min:- Def:- Max:-
- Data:
 - Displays fault history, where:
 - "F1" is the first active fault (not yet acknowledged).
 - "F2" is the second active fault (not yet acknowledged).
 - "F1e" is the occurrence of the fault acknowledgement for F1 & F2.
 - This moves the value in the 2 indices down to the next pair of indices, where they are stored. Indices 0 & 1 contain the active faults. When faults are acknowledged, indices 0 & 1 are reset to 0.

- Example:
 If the variable speed drive trips on undervoltage and then receives an external trip before the undervoltage is acknowledged, you will obtain:
 - Index 0=3 Undervoltage
 - Index 1=85 External trip

- Index:
 - r0947[0] : Recent fault trip --, fault 1
 - r0947[1] : Recent fault trip --, fault 2
 - r0947[2] : Recent fault trip --, fault 3
 - r0947[3] : Recent fault trip -1, fault 4
 - r0947[4] : Recent fault trip -1, fault 5
 - r0947[5] : Recent fault trip -1, fault 6
 - r0947[7] : Recent fault trip -3, fault 8

- Dependency:
 - Index 2 used only if second fault occurs before first fault is acknowledged.

r0948[12] Fault time Level 3
Time stamp to indicate when the fault has occurred. P2114 (run-time counter) or P2115 (real time clock) are the possible sources of the time stamp.

- Unit: Min:- Def:- Max:-
- Data:
 - Time stamp to indicate when the fault has occurred. P2114 (run-time counter) or P2115 (real time clock) are the possible sources of the time stamp.

- Example:
 The time is taken from P2115 if this parameter has been updated with the real time. If not, P2114 is used.

- Index:
 - r0948[0] : Recent fault trip --, fault time seconds+minutes
 - r0948[1] : Recent fault trip --, fault time hours+days
 - r0948[2] : Recent fault trip --, fault time month+year
 - r0948[3] : Recent fault trip -1, fault time seconds+minutes
 - r0948[4] : Recent fault trip -1, fault time hours+days
 - r0948[5] : Recent fault trip -1, fault time month+year
 - r0948[6] : Recent fault trip -2, fault time seconds+minutes
 - r0948[7] : Recent fault trip -2, fault time hours+days
 - r0948[8] : Recent fault trip -2, fault time month+year
 - r0948[9] : Recent fault trip -3, fault time seconds+minutes
 - r0948[10]: Recent fault trip -3, fault time hours+days
 - r0948[11]: Recent fault trip -3, fault time month+year

- Note:
P2115 can be updated via AOP, Starter, Drive Monitor, etc.

r0949[8] Fault value Level 3
Displays drive fault values. It is for service purposes and indicate the type of fault reported. The fault values are not documented. They are listed in the code where faults are reported.

- Unit: Min:- Def:- Max:-
- Index:
 - r0949[0] : Recent fault trip --, fault value 1
 - r0949[1] : Recent fault trip --, fault value 2
 - r0949[2] : Recent fault trip --, fault value 3
 - r0949[3] : Recent fault trip -1, fault value 4
 - r0949[4] : Recent fault trip -1, fault value 5
 - r0949[5] : Recent fault trip -1, fault value 6
 - r0949[6] : Recent fault trip -1, fault value 7
 - r0949[7] : Recent fault trip -1, fault value 8

P0952 Total number of faults Level 3
Displays number of faults stored in P0947 (last fault code).

- Unit: Min: 0 Def: 0 Max: 8
- Dependency:
 - Setting 0 resets fault history (changing to 0 also resets parameter P0948 - fault time).

r0967 Control word 1 Level 3
Displays control word 1.

- Unit: Min:- Def:- Max:-
- Bit fields:
 - Bit00 ON/OFF1 0 NO, 1 YES
 - Bit01 OFF2: Electrical stop 0 YES, 1 NO
 - Bit02 OFF3: Fast stop 0 YES, 1 NO
 - Bit03 Pulse enable 0 NO, 1 YES
 - Bit04 RFG enable 0 NO, 1 YES
 - Bit05 RFG start 0 NO, 1 YES
 - Bit06 Setpoint enable 0 NO, 1 YES
 - Bit07 Fault acknowledge 0 NO, 1 YES
 - Bit08 JOG right 0 NO, 1 YES
 - Bit09 JOG left 0 NO, 1 YES
 - Bit10 Control from PLC 0 NO, 1 YES
 - Bit11 Reverse (setpoint inversion) 0 NO, 1 YES
Bit13 Motor potentiometer MOP up 0 NO, 1 YES
Bit14 Motor potentiometer MOP down 0 NO, 1 YES
Bit15 CDS Bit 0 (Local/Remote-Hand/Auto) 0 NO, 1 YES

r0968 Status word 1
Displays active status word of variable speed drive (in binary) and can be used to diagnose which commands are active.

Unit: - Min: - Def: - Max: -

Bit fields:
Bit00 Drive ready 0 NO, 1 YES
Bit01 Drive ready to run 0 NO, 1 YES
Bit02 Drive running 0 NO, 1 YES
Bit03 Drive fault active 0 YES, 1 NO
Bit04 OFF2 active 0 YES, 1 NO
Bit05 OFF3 active 0 YES, 1 NO
Bit06 ON inhibit active 0 NO, 1 YES
Bit07 Drive warning active 0 NO, 1 YES
Bit08 Deviation setp. / act. value 0 YES, 1 NO
Bit09 P2D control 0 NO, 1 YES
Bit10 Maximum frequency reached 0 NO, 1 YES
Bit11 Warning: Motor current limit 0 YES, 1 NO
Bit12 Motor holding brake active 0 NO, 1 YES
Bit13 Motor overload 0 YES, 1 NO
Bit14 Motor runs direction right 0 NO, 1 YES
Bit15 VSD drive overload 0 YES, 1 NO

P0970 Factory reset
P0970 = 1 resets all parameters to their default values.

Unit: - Min: 0 Def: 0 Max: 1

Settings:
0=Disabled 1=Parameter reset

Dependency: First set P0010=30 (factory settings) and stop drive (i.e. disable all pulses) before you can reset parameters to default values.

Note: The following parameters retain their values after a factory reset:
P0918 (CB address),
P2010 (USS baud rate) and
P2011 (USS address)

P0971 Transfer data from RAM to EEPROM
Transfers values from RAM to EEPROM when set to 1.

Unit: - Min: 0 Def: 0 Max: 1

Settings:
0=Disabled 1=Start transfer

Note: All values in RAM are transferred to EEPROM. Parameter is automatically reset to 0 (default) after successful transfer.

P1000[2] Selection of frequency setpoint
Selects frequency setpoint source. In the table of possible settings below, the main setpoint is selected from the least significant digit (i.e., 0 to 6) and any additional setpoint from the most significant digit (i.e., x0 through to x6).

Unit: - Min: 0 Def: 2 Max: 77

Data:
Selects frequency setpoint source. In the table of possible settings below, the main setpoint is selected from the least significant digit (i.e., 0 to 6) and any additional setpoint from the most significant digit (i.e., x0 through to x6).

Example: Setting 12 selects main setpoint (2) derived from analog input with additional setpoint (1) taken from the motor potentiometer.

Settings:
1 Motor potentiometer setpoint
2 Analog input
3 Fixed frequency setpoint
4 USS on BOP link
5 USS on COM link
6 Communication board (CB) on COM link

Settings:
0=No main setpoint
1=MOP setpoint
2=Analog setpoint
3=Fixed frequency
4=USS on BOP link
5=USS on COM link
6=CB on COM link
7=Analog setpoint 2
10=No main setpoint + MOP setpoint
11=MOP setpoint + MOP setpoint
12=Analog setpoint + MOP setpoint
13=Fixed frequency + MOP setpoint
14=USS on BOP link + MOP setpoint
15=USS on COM link + MOP setpoint
16=CB on COM link + MOP setpoint
17=Analog setpoint 2 + MOP setpoint
20=No main setpoint + Analog setpoint
21=MOP setpoint + Analog setpoint
22=Analog setpoint + Analog setpoint
23=Fixed frequency + Analog setpoint
24=USS on BOP link + Analog setpoint
25=USS on COM link + Analog setpoint
26=CB on COM link + Analog setpoint
27=Analog setpoint 2 + Analog setpoint
30=No main setpoint + Fixed frequency
30=No main setpoint + Analog setpoint

<table>
<thead>
<tr>
<th>Number</th>
<th>Formula Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>MOP setpoint + Fixed frequency</td>
</tr>
<tr>
<td>32</td>
<td>Analog setpoint + Fixed frequency</td>
</tr>
<tr>
<td>33</td>
<td>Fixed frequency + Fixed frequency</td>
</tr>
<tr>
<td>34</td>
<td>USS on BOP link + Fixed frequency</td>
</tr>
<tr>
<td>35</td>
<td>USS on COM link + Fixed frequency</td>
</tr>
<tr>
<td>36</td>
<td>CB on COM link + Fixed frequency</td>
</tr>
<tr>
<td>37</td>
<td>Analog setpoint 2 + Fixed frequency</td>
</tr>
<tr>
<td>71</td>
<td>MOP setpoint + Analog setpoint 2</td>
</tr>
<tr>
<td>72</td>
<td>Analog setpoint + Analog setpoint 2</td>
</tr>
<tr>
<td>73</td>
<td>Fixed frequency + Analog setpoint 2</td>
</tr>
<tr>
<td>74</td>
<td>USS on BOP link + Analog setpoint 2</td>
</tr>
<tr>
<td>75</td>
<td>USS on COM link + Analog setpoint 2</td>
</tr>
<tr>
<td>76</td>
<td>CB on COM link + Analog setpoint 2</td>
</tr>
<tr>
<td>77</td>
<td>Analog setpoint 2 + Analog setpoint 2</td>
</tr>
</tbody>
</table>

Index:

P1000[0] : 1st command data set (CDS)
P1001[1] : 2nd command data set (CDS)

Note: Single digits denote main setpoints that have no additional setpoint.

P1001 Fixed frequency 1

Level 3

Data:

- There are 3 types of fixed frequencies:
 1. Direct selection (P0701 - P0706=15)
 - In this mode of operation 1 digital input selects 1 fixed frequency. If several inputs are active together, the selected frequencies are summed, e.g., FF1 + FF2 + FF3 + FF4 + FF5 + FF6.
 2. Direct selection + ON command (P0701 - P0706=16)
 - The fixed frequency selection combines the fixed frequencies with an ON command. In this mode of operation 1 digital input selects 1 fixed frequency. If several inputs are active together, the selected frequencies are summed, e.g., FF1 + FF2 + FF3 + FF4 + FF5 + FF6.
 3. Binary coded selection + ON command (P0701 - P0706=17)
 - Select up to 16 fixed frequencies using this method. Select the fixed frequencies according to the following table:

<table>
<thead>
<tr>
<th>DIN4</th>
<th>DIN3</th>
<th>DIN2</th>
<th>DIN1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1001</td>
<td>FF1</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1002</td>
<td>FF2</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1003</td>
<td>FF3</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>P1004</td>
<td>FF4</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>P1005</td>
<td>FF5</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>P1006</td>
<td>FF6</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>P1007</td>
<td>FF7</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>P1008</td>
<td>FF8</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1009</td>
<td>FF9</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1010</td>
<td>FF10</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1011</td>
<td>FF11</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1012</td>
<td>FF12</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1013</td>
<td>FF13</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1014</td>
<td>FF14</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>P1015</td>
<td>FF15</td>
<td>Active</td>
<td>Active</td>
</tr>
</tbody>
</table>

Dependency: Select fixed frequency operation (using P1000). Variable speed drive requires ON command to start in the case of direct selection (P0701 to P0706=15).

Note: Fixed frequencies can be selected using the digital inputs, and can also be combined with an ON command.

P1002-P1015 Fixed frequency 2 through 15

Level 3

Data:

- Defines fixed frequency setpoint 2.

Note: Default fixed frequency setpoint values are as follows:

<table>
<thead>
<tr>
<th>Fixed Frequency</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>5.00</td>
</tr>
<tr>
<td>3</td>
<td>10.00</td>
</tr>
<tr>
<td>4</td>
<td>15.00</td>
</tr>
<tr>
<td>5</td>
<td>20.00</td>
</tr>
<tr>
<td>6</td>
<td>25.00</td>
</tr>
<tr>
<td>7</td>
<td>30.00</td>
</tr>
<tr>
<td>8</td>
<td>35.00</td>
</tr>
<tr>
<td>9</td>
<td>40.00</td>
</tr>
<tr>
<td>10</td>
<td>45.00</td>
</tr>
<tr>
<td>11</td>
<td>50.00</td>
</tr>
<tr>
<td>12</td>
<td>55.00</td>
</tr>
<tr>
<td>13</td>
<td>60.00</td>
</tr>
<tr>
<td>14</td>
<td>65.00</td>
</tr>
</tbody>
</table>

P1016 to P1019 Fixed frequency mode - Bit 0 through 3

Level 3

Data:

- Fixed frequencies can be selected in three different modes. Parameter P1016 defines the mode of selection Bit 0.

Note: See table in P1001 (fixed frequency 1) for a description of how to use fixed frequencies.

Level 3

Data:

- Defines origin of fixed frequency selection.

Note: See table in P1001 (fixed frequency 1) for a description of how to use fixed frequencies.
Dependency: Accessible only if P0701 - P0706=99 (function of digital inputs=BICO)

r1024

CO: Act. fixed frequency
Displays sum total of selected fixed frequencies.

Unit: Hz Min: - Def: - Max: -

P1025

Fixed frequency mode - Bit 4
Direct selection or direct selection + ON for bit 4.

Unit: - Min: 1 Def: 1 Max: 2
Settings: 1=Direct selection 2=Direct selection + ON command 3=Binary coded selection + ON command
Details: See parameter P1001 for description of how to use fixed frequencies.

P1026[2]

BI: Fixed frequency selection Bit 4
Defines origin of fixed frequency selection.

Unit: - Min: 0 Def: 722:4 Max: 4000:0
Dependency: Accessible only if P0701 - P0706=99 (function of digital inputs=BICO).
Details: See P1020 (fixed frequency selection Bit 0) for most common settings.

P1027

Fixed frequency mode - Bit 5
Direct selection or direct selection + ON for bit 5.

Unit: - Min: 1 Def: 1 Max: 2
Settings: 1=Direct selection 2=Direct selection + ON command 3=Binary coded selection + ON command
Details: See parameter P1001 for description of how to use fixed frequencies.

P1028[2]

BI: Fixed frequency selection Bit 5
Defines origin of fixed frequency selection.

Unit: - Min: 0 Def: 722:5 Max: 4000:0
Dependency: Accessible only if P0701 - P0706=99 (function of digital inputs=BICO).
Details: See P1020 (fixed frequency selection Bit 0) for most common settings.

P1031

Setpoint memory of the MOP
Saves last motor potentiometer setpoint (MOP) that was active before OFF command or power down.

Unit: - Min: 0 Def: 1 Max: 1
Settings: 0=PID-MOP setpoint will not be stored 1=PID-MOP setpoint will be stored (P2240 is updated)
Note: On next ON command, motor potentiometer setpoint will be the saved value in parameter P1040 (setpoint of the MOP).

P1032

Inhibit reverse direction of MOP
Inhibits reverse setpoint selection.

Unit: - Min: 0 Def: 1 Max: 1
Settings: 0=Reserve direction is allowed 1=Reserve direction inhibited
Dependency: Motor potentiometer (P1040) must be chosen as main setpoint or additional setpoint (using P1000).
Note: It is possible to change motor direction using the motor potentiometer setpoint (increase / decrease frequency either by using digital inputs or BOP/AOP keypad up / down).

P1040

Setpoint of the MOP
Determines setpoint for motor potentiometer control (P1000 = 1).

Unit: Hz Min: -650.00 Def: 10.00 Max: 650.00
Note: If motor potentiometer setpoint is selected either as main setpoint or additional setpoint, the reverse direction will be inhibited by default of P1032 (inhibit reverse direction of MOP). To re-enable reverse direction, set P1032=0.

r1050

CO: Act. Output frequency of the MOP
Display output frequency of motor potentiometer setpoint (Hz).

Unit: Hz Min: - Def: - Max: -

r1078

CO: Total frequency setpoint
Displays sum of main and additional setpoints in [Hz].

Unit: Hz Min: - Def: - Max: -

P1080

Min. Frequency
Sets minimum motor frequency [Hz] at which motor will run irrespective of frequency setpoint.

Unit: Hz Min: 0.00 Def: 10.00 Max: 650.00
Note: Value set here is valid both for clockwise and for counter-clockwise rotation. Under certain conditions (e.g. ramping, current limiting), motor can run below minimum frequency.

P1082

Max. Frequency
Sets maximum motor frequency [Hz] at which motor will run irrespective of the frequency setpoint.

Unit: Hz Min: 0.00 Def: 50.00 Max: 150.00
Dependency: Limited internally to 200 Hz or 5 * rated motor frequency (P0305) when P1300 >= 20 (control mode=vector control). The value is displayed in r0209 (maximum frequency).
Note: The value set here is valid for both clockwise and counter-clockwise rotation. The maximum output frequency of variable speed drive can be exceeded if one of the following is active: Slip compensation=\(f_{\text{max}} + f_{\text{slip comp max}} \) or Flying restart=\(f_{\text{max}} + f_{\text{slip nom}} \) Maximum motor speed is subject to mechanical limitations.
Skip frequency 1 through 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1091 to P1094</td>
<td>Defines skip frequency 1 which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth).</td>
<td>Hz</td>
<td>0.00 to 650.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Details</td>
<td>Defines the skip frequency which avoids effects of mechanical resonance and suppresses frequencies within +/- P1101 (skip frequency bandwidth). P1091 defines skip frequency 1, P1092 defines skip frequency 2, P1093 defines skip frequency 3, and P1094 defines skip frequency 4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Stationary operation is not possible within the suppressed frequency range; the range is merely passed through (on the ramp). For example, if P1091=10 Hz and P1101=2 Hz, it is not possible to operate continuously between 10 Hz +/- 2 Hz (i.e. between 8 and 12 Hz)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Skip frequency bandwidth

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1101</td>
<td>Delivers frequency bandwidth to be applied to skip frequencies (in Hz).</td>
<td>Hz</td>
<td>0.00 to 10.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Details</td>
<td>Delivers frequency bandwidth to be applied to skip frequencies (in Hz).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>See P1091 through P1094 (skip frequencies 1 through 4).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bi: Inhibit neg. freq. setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1110</td>
<td>Inhibits direction reversal, thus preventing a negative setpoint from causing motor from running in reverse. Instead, it will run at minimum frequency (P1080) in the normal direction.</td>
<td>Hz</td>
<td>0.00 to 4000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Settings</td>
<td>0=Disabled 1=Enabled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>P1110[0] : 1st command data set (CDS) P1110[1] : 2nd command data set (CDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>It is possible to disable all reverse commands (i.e. the command is ignored). To do this, set P0719=0 (remote selection of command/setpoint source) and define the command sources (P1113) individually. This function does not disable the "reverse" command function; rather, a reverse command causes motor to run in the normal direction as described above.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ramp-up time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1120</td>
<td>Time taken for motor to accelerate from standstill up to maximum motor frequency (P1082) when no rounding is used.</td>
<td>s</td>
<td>0.00 to 650.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Details</td>
<td>Setting the ramp-up time too short can cause the variable speed drive to trip (overcurrent). If an external frequency setpoint with set ramp rates is used (e.g. from a PLC), the best way to achieve optimum drive performance is to set ramp times in P1120 and P1121 slightly shorter than those of the PLC.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ramp-down time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1121</td>
<td>Time taken for motor to decelerate from maximum motor frequency (P1082) down to standstill when no rounding is used.</td>
<td>s</td>
<td>0.00 to 650.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Details</td>
<td>Setting the ramp-down time too short can cause the variable speed drive to trip (overcurrent (F0001) / overvoltage (F0002)).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OFF3 ramp-down time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1135</td>
<td>Time taken from maximum frequency to standstill for OFF3 command.</td>
<td>s</td>
<td>0.00 to 650.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Details</td>
<td>Setting the ramp-down time too short can cause the variable speed drive to trip (overcurrent (F0001) / overvoltage (F0002)).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BI: RFG enable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1140[0]</td>
<td>Defines command source of RFG enable command (RFG: ramp function generator).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>P1140[0] : 1st command data set (CDS) P1140[1] : 2nd command data set (CDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BI: RFG start

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1141[0]</td>
<td>Defines command source of RFG start command (RFG: ramp function generator).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>P1141[0] : 1st command data set (CDS) P1141[1] : 2nd command data set (CDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BI: RFG enable setpoint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1142[0]</td>
<td>Defines command source of RFG enable setpoint command (RFG: ramp function generator).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>P1142[0] : 1st command data set (CDS) P1142[1] : 2nd command data set (CDS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flying start

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1200</td>
<td>Starts variable speed drive onto a spinning motor by rapidly changing the output frequency of the variable speed drive until the actual motor speed has been found. Then, the motor runs up to setpoint using the normal ramp time.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Details</td>
<td>Starts variable speed drive onto a spinning motor by rapidly changing the output frequency of the variable speed drive until the actual motor speed has been found. Then, the motor runs up to setpoint using the normal ramp time.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Settings:

0 = Flying start disabled
1 = Flying start is always active, start in direction of setpoint
2 = Flying start is active if power on, fault, OFF2, start in direction of setpoint
3 = Flying start is active if fault, OFF2, start in direction of setpoint
4 = Flying start is always active, only in direction of setpoint
5 = Flying start is active if power on, fault, OFF2, only in direction of setpoint
6 = Flying start is active if fault, OFF2, only in direction of setpoint

Note:
Useful for motors with high inertia loads.
Settings 1 to 3 search in both directions.
Settings 4 to 6 search only in direction of setpoint.
Flying start must be used in cases where the motor may still be turning (e.g. after a short mains break) or can be driven by the load. Otherwise, overcurrent trips will occur.

P1202 Motor-current: Flying start
Defines search current used for flying start.
Unit: % Min: 10 Def: 100 Max: 200
Details:
Defines search current used for flying start. Value is in [%] based on rated motor current (P0305).
Note:
Reducing the search current may improve performance for flying start if the inertia of the system is not very high.

P1203 Search rate: Flying start
Sets factor by which the output frequency changes during flying start to synchronize with turning motor. This value is entered in [%] relative to the default time factor which defines the initial gradient in the curve below (and thus influences the time taken to search for the motor frequency):

\[f_{\text{max}} + 2 f_{\text{slip}} \]

Unit: % Min: 10 Def: 100 Max: 200
Details:
Sets factor by which output frequency changes during flying start to synchronize with turning motor. Enter this value in [%] relative to default time factor (which defines the initial gradient and influences time taken to search for motor frequency). The search time is the time taken to search through all possible frequencies (between \([f_{\text{max}} + 2f_{\text{slip}}]\) and 0 Hz). P1203=100 % is defined as giving a rate of 2 % of \(f_{\text{slip,nom}} / [\text{ms}]\). P1203=200 % would result in a rate of frequency change of 1 % of \(f_{\text{slip,nom}} / [\text{ms}]\).

Example:
For a motor with 50 Hz, 1350 rpm, 100 % would produce a maximum search time of 600 ms. If the motor is turning, the motor frequency is found in a shorter time.

Note:
A higher value produces a flatter gradient and thus a longer search time.
A lower value has the opposite effect.

P1210 Automatic restart
Enables restart after a mains break or after a fault.
Unit: - Min: 0 Max: 5
Settings:
0 = Disabled
1 = Trip reset after power on: P1211 disabled
2 = Restart mains break; power on: P1211 disabled
3 = Restart after fault/mains break: P1211 enabled
4 = Restart after mains break: P1211 enabled
5 = Restart mains break/fault/power on: P1211 disabled

Dependency:
Auto restart requires constant ON command (e.g. via a digital input wire link).
Caution:
Settings 2 to 5 can cause the motor to restart unexpectedly

Note:
Flying start must be used in cases where the motor may still be turning (e.g. after a short mains break) or can be driven by the load (P1200).

P1211 Number of restart attempts
Specifies number of times the variable speed drive will attempt to restart if P1210 (flying start) is activated.
Unit: - Min: 0 Max: 10

P1212 Time to first restart
Selects the time before the variable speed drive is restarted for the first time if P1210 is activated.
Unit: s Min: 0 Max: 1000

P1213 Restart time increment
Selects the amount the restart time is incremented for each restart of the variable speed drive if P1210 is activated.
Unit: s Min: 0 Max: 1000

P1230[2] BI: Enable DC braking
Enables DC braking via a signal applied from an external source. Function remains active while external input signal is active. DC braking causes the motor to stop rapidly by applying a DC braking current (current applied also holds shaft stationary). When the DC braking signal is applied, the variable speed drive output pulses are blocked and the DC current is not applied until the motor has been sufficiently demagnetized.
Unit: - Min: 0 Max: 4000
Details:
Enables DC braking via a signal applied from an external source. Function remains active while external input signal is active. DC braking causes the motor to stop rapidly by applying a DC braking current (current applied also holds shaft stationary). When the DC braking signal is applied, the variable speed drive output pulses are blocked and the DC current is not applied until the motor has been sufficiently demagnetized.
Settings:
722.0=Digital input 1 (requires P0701 set to 99, BICO)
722.1=Digital input 2 (requires P0702 set to 99, BICO)
722.2=Digital input 3 (requires P0703 set to 99, BICO)
722.3=Digital input 4 (requires P0704 set to 99, BICO)
722.4=Digital input 5 (requires P0705 set to 99, BICO)
Index:

Caution:
Frequent use of long periods of DC braking can cause the motor to overheat.

Note: This delay time is set in P0347 (demagnetization time). If this delay is too short, overcurrent trips can occur.

P1232 DC braking current
- Level 3
- Defines the level of DC current in [%] relative to the rated motor current (P0305).
 - Unit: %
 - Min: 0
 - Def: 100
 - Max: 250

P1233 Duration of DC braking
- Level 3
- Defines duration for which DC injection braking is to be active following an OFF1 command.
 - Unit: s
 - Min: 0
 - Def: 0
 - Max: 250
 - Value:
 - P1233=0: Not active following OFF1.
 - P1233=1 - 250: Active for the specified duration.

Caution: Frequent use of long periods of DC braking can cause the motor to overheat.

Note: Increasing the value will generally improve braking performance; however, if you set the value too high, an overcurrent trip may result.

P1234 Configuration of Vdc controller
- Level 3
- Enables / disables Vdc controller.
 - Unit: -
 - Min: 0
 - Def: 0
 - Max: 3
 - Details: The Vdc controller dynamically controls the DC link voltage to prevent overvoltage trips on high inertia systems.
 - Settings:
 - 0 =Vdc controller disabled
 - 1 =Vdc-min controller enabled
 - 2 =Vdc-max controller enabled
 - 3 =Vdc-max and Vdc-min controller enabled
 - Note: Vdc max automatically increases ramp-down times to keep the DC-link voltage within limits (P2172).

P1260 Source of changeover control
- Level 2
- Selects the possible sources for contactor changeover control
 - Unit: -
 - Min: 0
 - Def: 0
 - Max: 7
 - Settings:
 - 0 = Bypass disabled
 - 1 = Controlled by variable speed drive trip
 - 2 = Controlled by DIN - see P1266
 - 3 = Controlled by DIN & variable speed drive trip
 - 4 = Controlled by variable speed drive frequency
 - 5 = Controlled by variable speed drive frequency & variable speed drive trip
 - 6 = Controlled by variable speed drive frequency & DIN
 - 7 = Controlled by variable speed drive frequency & DIN & variable speed drive trip

P1261 BO: Contactor control word
- Level 2
- Output word from the bypass feature that allows external connections to be made.
 - Unit: -
 - Min: -
 - Def: -
 - Max: -
 - Bit fields:
 - Bit00: Motor supplied by drive 0 YES, 1 NO
 - Bit01: Motor supplied by mains 0 YES, 1 NO

P1262 Bypass dead time
- Level 2
- Time delay between switching contactors to allow motor to allow motor to demagnetize.
 - Unit: s
 - Min: 0
 - Def: 1.000
 - Max: 20.000

P1263 De-Bypass time
- Level 2
- Time delay before a request to switch back to the variable speed drive is acted on.
 - Unit: s
 - Min: 0
 - Def: 1.0
 - Max: 300.0

P1264 Bypass time
- Level 2
- Time delay before a request to switch to mains is acted on.
 - Unit: s
 - Min: 0
 - Def: 1.0
 - Max: 300.0

P1265 Mains frequency
- Level 2
- Mains frequency.
 - Unit: Hz
 - Min: 12.00
 - Def: 50.00
 - Max: 650.00

P1266 BI: Bypass command
- Level 2
- Mains frequency.
 - Unit: -
 - Min: 0
 - Def: 0
 - Max: 4000:0
P1270

BI: Enable essential service

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min: 0:0</th>
<th>Def: 0:0</th>
<th>Max: 4000:0</th>
</tr>
</thead>
</table>

P1300

Control mode

Controls relationship between speed of motor and voltage supplied by the variable speed drive as illustrated in the diagram below.

<table>
<thead>
<tr>
<th>Unit:</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 23</th>
</tr>
</thead>
</table>

P1301

Continuous boost

Defines the boost level in [%] relative to P0305 (rated motor current) applicable to both linear and quadratic V/f curves according to the diagram below:

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: 0.0</th>
<th>Def: 50.0</th>
<th>Max: 250.0</th>
</tr>
</thead>
</table>

P1302

Acceleration boost

Applies boost in [%] relative to P0305 (rated motor current) following a positive setpoint change and drops back out once the setpoint is reached.

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: 0.0</th>
<th>Def: 0.0</th>
<th>Max: 250.0</th>
</tr>
</thead>
</table>

P1303

Starting boost

Applies a constant linear offset (in [%] relative to P0305 (rated motor current)) to active V/f curve (either linear or quadratic) after an ON command and is active until setpoint is reached for the first time. This is useful for starting loads with high inertia.

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: 0.0</th>
<th>Def: 0.0</th>
<th>Max: 250.0</th>
</tr>
</thead>
</table>

P1304

Slip compensation

Dynamically adjusts output frequency of variable speed drive so that motor speed is kept constant independent of motor load.

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: 0.0</th>
<th>Def: 0.0</th>
<th>Max: 600.0</th>
</tr>
</thead>
</table>

P1305

Slip limit

Compensation slip limit in [%] relative to r0330 (rated motor slip), which is added to frequency setpoint.

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: 0</th>
<th>Def: 250</th>
<th>Max: 600</th>
</tr>
</thead>
</table>

r1337

CO: V/f slip frequency

Displays actual compensated motor slip as [%].
<table>
<thead>
<tr>
<th>Details:</th>
<th>Displays actual compensated motor slip as [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependency:</td>
<td>Slip compensation (P1335) active.</td>
</tr>
</tbody>
</table>

P1499 Scaling acceleration torque control
Enters scaling of acceleration in [%] for sensorless torque control (SLVC) at low frequencies.

Unit: %
Min: 0.0
Def: 100.0
Max: 400.0

Details: Enters scaling of acceleration in [%] for sensorless torque control (SLVC) at low frequencies.

Dependency: Slip compensation (P1335) active.

Note:
- Sets pulse frequency of power switches in the variable speed drive. The frequency can be changed in steps of 2 kHz.
- Pulse frequencies > 4 kHz selected on 380-480 V units reduce the maximum continuous motor current.

P1800 Pulse frequency
Sets pulse frequency of power switches in the variable speed drive. The frequency can be changed in steps of 2 kHz.
- Pulse frequencies > 4 kHz selected on 380-480 V units reduce the maximum continuous motor current.

Unit: kHz
Min: 2
Def: 4
Max: 16

Details: Sets pulse frequency of power switches in variable speed drive. The frequency can be changed in steps of 2 kHz.
- Pulse frequencies > 4 kHz selected on 380-480 V units reduce the maximum continuous motor current.

Dependency: Minimum pulse frequency depends on P1082 (maximum frequency) and P0310 (rated motor frequency).

Note:
- At 4 kHz, full output current is obtained up to 50 degrees C (CT mode); over 50 degrees C, full output may be obtained at 8 kHz.
- If silent operation is not absolutely necessary, lower pulse frequencies may be selected to reduce variable speed drive losses and radio-frequency emissions.
- Under certain circumstances, the variable speed drive may reduce the switching frequency to provide protection against over-temperature (see P0290, Level 3).

r1801 CO: Act. switching frequency
Actual pulse frequency of power switches in variable speed drive.

Unit: kHz
Min: -
Def: -
Max: -

Note: Actual pulse frequency of power switches in variable speed drive. Under certain conditions (variable speed drive overtemperature, see P0290), this can differ from the values selected in P1800 (pulse frequency).

P1820 Reverse output phase sequence
Changes direction of motor rotation without changing setpoint polarity.

Settings:
- 0=OFF
- 1=ON

Dependency:
- If positive and negative revolution is enabled, frequency setpoint is directly used.
- If both positive and negative revolution are disabled, reference value is set to zero.

Details: See P1000 (select frequency setpoint).

P1910 Select motor data identification
Performs stator resistance measuring.

Unit: -
Min: 0
Def: 0
Max: 20

Settings:
- 0=Disabled
- 1=Identification of all parameters with parameter change
- 2=Identification of all parameters without parameter change
- 20=Set voltage vector

Dependency:
- No measurement if motor data incorrect.
- P1910=1: Calculated value for stator resistance (see P0350) is overwritten.
- P1910=2: Values already calculated are not overwritten.

Note: Before selecting motor data identification, "Quick commissioning" has to be performed in advance.
- Once enabled (P1910=1), A0541 generates a warning that the next ON command will initiate measurement of motor parameters. When choosing the setting for measurement, observe the following:
- 1. "With parameter change" means that the value is actually adopted as P0350 parameter setting and applied to the control as well as being shown in the read-only parameters below.
- 2. "Without parameter change" means that the value is only displayed, i.e., shown for checking purposes in the read-only parameter r1912 (identified stator resistance). The value is not applied to the control.

r1912[3] Identified stator resistance
Displays measured stator resistance value (line-to-line) in [ohm].

<table>
<thead>
<tr>
<th>Unit: Ohm</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
</tr>
</thead>
</table>

Note: This value is measured using P1910=1 or 2, i.e., identification of all parameters with/without change.

P2000 Reference frequency
Full-scale frequency setting used by serial link (corresponds to 4000H), analog I/O and P/D controller.

Unit: Hz
Min: 1.00
Def: 50.00
Max: 650.00

P2001 Reference voltage
Full-scale output voltage (i.e. 100 %) used over serial link (corresponds to 4000H).

Unit: V
Min: 10
Def: 1000
Max: 2000

Example: P2001=230 specifies that 4000H received via USS denotes 230 V.

P2002 Reference current
Full-scale output current used over serial link (corresponds to 4000H).

Unit: A
Min: 0.10
Def: 0.10
Max: 10000.00

P2004 Reference power
Full-scale reference power used over the serial link (corresponds to 4000H).

Unit: -
Min: -
Def: -
Max: -
USS normalization

<table>
<thead>
<tr>
<th>Setting</th>
<th>Min</th>
<th>Def</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Index: P2009[0] : Serial interface COM link
Note: If enabled, the main setpoint (word 2 in PZD) is not interpreted as 100% = 4000H, but as "absolute" instead (e.g. 4000H = 16384 means 163.84 Hz).

USS baudrate

Unit: -
Range: Min: 4 Def: 6 Max: 12
Settings:
- 4: 2400 baud
- 7= 19200 baud
- 9= 57600 baud
- 11= 93750 baud
- 10= 76800 baud
- 12= 115200 baud

Index: P2010[0] : Serial interface COM link
Note: By default (time set to 0), no fault is generated (i.e. watchdog disabled).

USS address

Unit: -
Range: Min: 0 Def: 0 Max: 31
Settings:
- 0=Disabled
- 1=Enabled

Index: P2011[0] : Serial interface COM link
Note: You can connect up to a further 30 variable speed drives via the serial link (i.e. 31 variable speed drives in total) and control them with the USS serial bus protocol.

USS telegram off time

Unit: ms
Range: Min: 0 Def: 0 Max: 65535
Settings:
- Status word 1=52
- CO/BO: Act. status word 1 (see r0052)
- Actual value 1= 21 variable speed drive output frequency (see r0021)
- Other BICO settings are possible

CB parameter

Unit: -
Range: Min: 0 Def: 0 Max: 65535
Index: P2041[0] : CB parameter 0
Note: See relevant communication board manual for protocol definition and appropriate settings.

CB identification

Unit: -
Range: Min: - Def: - Max: -
Settings:
- 0=No CB option board
- 1=PROFIBUS DP
- 2=DeviceNet
- 56 not defined

CB diagnosis

Unit: -
Range: Min: - Def: - Max: -
Index: r2054[0] : CB diagnosis 0
Note: Displays diagnostic information of the communication board (CB).
P2100[3] Alarm number selection
- **Level 3**
- **Unit:** -
- **Min:** 0
- **Def:** 0
- **Max:** 65535

Example: If you want F0005 to perform an OFF3 instead of an OFF2, set P2100[0]=5, then select the desired reaction in P2101[0] (in this case, set P2101[0]=3).

Note: All fault codes have a default reaction to OFF2. Some fault codes caused by hardware trips (e.g. overcurrent) cannot be changed from the default reactions.

P2101[3] Stop reaction value
- **Level 3**
- **Unit:** -
- **Min:** 0
- **Def:** 0
- **Max:** 5

Details:
- Sets drive stop reaction values for fault selected by P2100 (alarm number stop reaction).
- This indexed parameter specifies the special reaction to the faults/warnings defined in P2100 indices 0 to 2.

Settings:
- 0 = No reaction, no display
- 1 = OFF1 stop reaction
- 2 = OFF2 stop reaction
- 3 = OFF3 stop reaction
- 4 = No reaction warning only
- 5 = Goto fixed frequency 15

Note:
- Settings 0 - 3 only are available for fault codes.
- Settings 0 and 4 only are available for warnings.
- Index 0 (P2101) refers to fault/warning in index 0 (P2100).

P2110[4] Warning number
- **Level 3**
- **Unit:** -
- **Def:** -
- **Max:** -

Details:
- Displays warning information.
- A maximum of 2 active warnings (indices 0 and 1) and 2 historical warnings (indices 2 and 3) may be viewed.

Index:
- r2110[0] : Recent Warnings --, warning 1
- r2110[1] : Recent Warnings --, warning 2
- r2110[2] : Recent Warnings -1, warning 3
- r2110[3] : Recent Warnings -1, warning 4

Note:
- The keypad will flash while a warning is active. The LEDs indicate the warning status in this case.
- If an AOP is in use, the display will show number and text of the active warning.
- Indices 0 and 1 are not stored.

P2111 Total number of warnings
- **Level 3**
- **Unit:** -
- **Min:** 0
- **Def:** 0
- **Max:** 4

Details:
- Displays number of warning (up to 4) since last reset. Set to 0 to reset the warning history.

r2114[2] Run time counter
- **Level 3**
- **Unit:** -
- **Min:** -
- **Def:** -
- **Max:** -

Details:
- Displays run time counter. It is the total time the drive has been powered up. Every time you do power cycle, it will save the value then restore it and the counter carries on ticking.

P2115[3] AOP real time clock
- **Level 3**
- **Unit:** -
- **Min:** 0
- **Def:** 0
- **Max:** 65535

Details:
- Displays run time counter. See P0948 (fault time).

P2181 Belt failure detection mode
- **Level 3**
- **Unit:** -
- **Min:** 0
- **Def:** 0
- **Max:** 6

Details:
- Sets belt failure detection mode. This function allows detection of mechanical failure of the drive train, e.g. a broken drive belt. It can also detect conditions which cause an overload, such as a jam.

Settings:
- 0 = Belt failure detection disabled
- 1 = Warn low torque/speed
- 2 = Warn high torque/speed
- 3 = Warn low/high torque/speed
- 4 = Trip low torque/speed
- 5 = Trip high torque/speed
- 6 = Trip high/low torque/speed

P2182 Belt threshold frequency 1
- **Level 3**
- **Unit:** Hz
- **Min:** 0.00
- **Def:** 5.00
- **Max:** 650.00

Details:
- Sets a frequency threshold F1 for comparing actual torque to the torque envelope for belt failure detection.
- The frequency torque envelope is defined by 9 parameters - 3 are frequency parameters (P2182 - P2184), and the other 6 define the low and high torque limits (P2185 - P2190) for each frequency.

Note:
- The torque is unlimited below P2182, and above P2184. Normally P2182 <= lower torque limit (P1521), and P2184 >= upper torque limit (P1520).

P2183 Belt threshold frequency 2
- **Level 3**
- **Unit:** Hz
- **Min:** 0.00
- **Def:** 30.00
- **Max:** 650.00

Details:
- Sets a threshold F2 for comparing actual torque to the torque envelope for belt failure detection.

Note: See P2182 (belt threshold frequency 1).

P2184 Belt threshold frequency 3
- **Level 3**
- **Unit:** Hz
- **Min:** 0.00
- **Def:** 0.00
- **Max:** 650.00

Details:
- Sets a threshold F3 for comparing actual torque to the torque envelope for belt failure detection.
Siemens Building Technologies SED2 variable speed drives CM1U5192en HVAC Products Programming 01.2002

Upper torque threshold 1, 2, and 3

- **Unit:** Hz
- **Min:** 0.0
- **Def:** 50.00
- **Max:** 650.00

Details: Sets a threshold F3 for comparing actual torque to the envelope for belt failure detection.

Note: See P2182 (belt threshold frequency).

Lower torque threshold 1, 2, and 3

- **Unit:** Hz
- **Min:** 0.0
- **Def:** 0.0
- **Max:** 99999.0

Details: Sets a threshold F3 for comparing actual torque to the envelope for belt failure detection.

Note: See P2182 (belt threshold frequency).

P2191 Belt failure speed tolerance

- **Unit:** Hz
- **Min:** 0.00
- **Def:** 3.00
- **Max:** 20.00

Details: Sets a threshold F3 for comparing actual torque to the envelope for belt failure detection.

Note: See P2182 (belt threshold frequency).

P2192 Time delay for belt failure

- **Unit:** s
- **Min:** 0
- **Def:** 10
- **Max:** 65

Details: Sets a threshold F3 for comparing actual torque to the envelope for belt failure detection.

Note: See P2182 (belt threshold frequency).

Monitoring Words

r2197 CO/BO: Monitoring word 1

- **Bit fields:**
 - Bit00: `Act. freq. r0024 <= P1080`
 - Bit01: `Act. freq. r0024 <= P2155`
 - Bit02: `Act. freq. r0024 > P2155`
 - Bit03: `Act. freq. r0024 <= zero`
 - Bit04: `Act. freq. r0024 >= setp.`
 - Bit05: `Act. freq. r0024 <= P2167`
 - Bit06: `Act. freq. r0024 >= P1082`
 - Bit07: `Act. freq. r0024 >= P2155`
 - Bit08: `Act. unfilt. Vdc < P2172`
 - Bit09: `Act. unfilt. Vdc > P2172`
 - Bit10: `Act. unfilt. Vdc > P2172`
 - Bit11: `No load condition`

Details: Monitoring word 1 which indicates the state of monitor functions. Each bit represents one function.

Bit fields:
- Bit00: `n,filtered r2169 < P2157`
- Bit01: `n,filtered r2169 > P2157`
- Bit02: `n,filtered r2169 <= P2159`
- Bit03: `n,filtered r2169 > P2159`
- Bit04: `n,filtered r2169 > P2161`
- Bit05: `n,filtered r2169 > P2157`
- Bit06: `Motor blocked`
- Bit07: `Motor stalled`
- Bit08: `I,act r0068 < P2170`
- Bit09: `T,act > P2174 & setpoint reached`
- Bit10: `T,act > P2174`
- Bit11: `Belt failure warning`
- Bit12: `Belt failure trip`

Details: Monitoring word 2 which indicates the state of monitor functions. Each bit represents one function.

P2200[2] Bi: Enable PID controller

Unit: Hz
- **Min:** 0.0
- **Def:** 0.0
- **Max:** 4000.0

Details: Enables or disables the PID controller. Setting 1 enables the PID closed-loop controller.

Dependency: Setting 1 automatically disables normal ramp times set in P1120 and P1121 and the normal frequency setpoints. Following an OFF1 or OFF3 command, however, the variable speed drive frequency will ramp down to zero using the ramp time set in P1121 (P1135 for OFF3).
Note: The PID setpoint source is selected using P2253. The PID setpoint and the PID feedback signal are interpreted as [%] values (not [Hz]). The output of the PID controller is displayed as [%] and then normalized into [Hz] through P2000 (reference frequency) when PID is enabled. In level 3, the PID controller source enable can also come from the digital inputs in settings 722.0 to 722.2 for DIN1 to DIN3 or from any other BiCo source. The minimum and maximum motor frequencies (P1080 and P1082) as well as the skip frequencies (P1091 to P1094) remain active on the variable speed drive output. However, enabling skip frequencies with PID control can produce instabilities.

P2201 through P2215

Fixed PID setpoint 1 through 15
Level 3

Details: Defines fixed PID setpoint 1. In addition, you can set any of the digital input parameters to fixed PID setpoint via the digital inputs (P0701 - P0706).

There are three selection modes for the PID fixed setpoint:

1. Direct selection (P0701=15 or P0702=15, etc)
2. Direct selection with ON command (P0701=16 or P0702=16, etc.)
3. Binary Coded Decimal selection with ON command (P0701 - P0706=17)

Using this method to select the PID Fixed Setpoint allows you to choose up to 16 different PID setpoints. The setpoints are selected according to the following table:

<table>
<thead>
<tr>
<th>DIN1</th>
<th>DIN2</th>
<th>DIN3</th>
<th>DIN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>FF1</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>FF2</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>FF3</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>FF4</td>
<td>Inactive</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>FF5</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>FF6</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>FF7</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>FF8</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>FF9</td>
<td>Inactive</td>
<td>Inactive</td>
<td>Active</td>
</tr>
<tr>
<td>FF10</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>FF11</td>
<td>Inactive</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>FF12</td>
<td>Active</td>
<td>Inactive</td>
<td>Inactive</td>
</tr>
<tr>
<td>FF13</td>
<td>Active</td>
<td>Active</td>
<td>Inactive</td>
</tr>
<tr>
<td>FF14</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
</tr>
<tr>
<td>FF15</td>
<td>Active</td>
<td>Active</td>
<td>Active</td>
</tr>
</tbody>
</table>

Dependency: P2000=1 required in user access level 2 to enable setpoint source.

In mode 1 (above):
- ON command required to start motor (enable pulses).

In mode 2 (above):
- If inputs programmed to PID fixed setpoint and selected together, the selected setpoints are summed.

Note: You may mix different types of frequencies; however, remember that they will be summed if selected together. P2201=100 \% corresponds to 4000 hex.

Default fixed PID setpoint values are as follows:

<table>
<thead>
<tr>
<th>Fixed PID</th>
<th>Default</th>
<th>Fixed PID</th>
<th>Default</th>
<th>Fixed PID</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>6</td>
<td>50.00</td>
<td>11</td>
<td>100.00</td>
</tr>
<tr>
<td>2</td>
<td>10.00</td>
<td>7</td>
<td>60.00</td>
<td>12</td>
<td>110.00</td>
</tr>
<tr>
<td>3</td>
<td>20.00</td>
<td>8</td>
<td>70.00</td>
<td>13</td>
<td>120.00</td>
</tr>
<tr>
<td>4</td>
<td>30.00</td>
<td>9</td>
<td>80.00</td>
<td>14</td>
<td>130.00</td>
</tr>
<tr>
<td>5</td>
<td>40.00</td>
<td>10</td>
<td>90.00</td>
<td>15</td>
<td>130.00</td>
</tr>
</tbody>
</table>

P2216, P2217, P2218, P2219

Fixed PID setpoint mode - Bit 0, Bit 1, Bit 2, and Bit 3
Level 3

Fixed frequencies for PID setpoint can be selected in three different modes. Parameter P1016 defines the mode of selection bit 0.

Unit: -
Min: 1
Def: 1
Max: 3

Settings:

1=Direct selection
2=Direct selection + ON command
3=Binary coded selection + ON command

P2220[2]

Bi: Fixed PID setpoint select Bit 0
Level 3

Defines command source of fixed PID setpoint selection bit 0.

Unit: -
Min: 0
Def: 0
Max: 4000

Settings:

722.0=Digital input 1 (requires P0701 set to 99, BICO)
722.1=Digital input 2 (requires P0702 set to 99, BICO)
722.2=Digital input 3 (requires P0703 set to 99, BICO)
722.3=Digital input 4 (requires P0704 set to 99, BICO)
722.4=Digital input 5 (requires P0705 set to 99, BICO)
722.5=Digital input 6 (requires P0706 set to 99, BICO)
722.6=Digital input 7 (via analog input 1, requires P0707 set to 99)
722.7=Digital input 8 (via analog input 2, requires P0708 set to 99)

Index: P2220[0] : 1st command data set (CDS)
P2220[1] : 2nd command data set (CDS)
BI: Fixed PID setpoint select Bit 1, Bit 2, and Bit 3

Defines command source of fixed PID setpoint selection bit 1.

| Unit: - | Min: 0:0 | Def: 0:0 | Max: 4000:0 |

Settings:
- 722.0=Digital input 1 (requires P0701 set to 99, BICO)
- 722.1=Digital input 2 (requires P0702 set to 99, BICO)
- 722.2=Digital input 3 (requires P0703 set to 99, BICO)
- 722.3=Digital input 4 (requires P0704 set to 99, BICO)
- 722.4=Digital input 5 (requires P0705 set to 99, BICO)
- 722.5=Digital input 6 (requires P0706 set to 99, BICO)

Index:
- For P2221:
 - P2221[0]: 1st command data set (CDS)
 - P2221[1]: 2nd command data set (CDS)
- For P2222:
 - P2222[0]: 1st command data set (CDS)
 - P2222[1]: 2nd command data set (CDS)
- For P2223:
 - P2223[0]: 1st command data set (CDS)
 - P2223[1]: 2nd command data set (CDS)

r2224

CO: Act. fixed PID setpoint

Displays total output of PID fixed setpoint selection.

| Unit: % | Min: - | Def: - | Max: - |

Note: r2224=100 % corresponds to 4000 hex.

P2225, P2227

Fixed PID setpoint mode - Bit 4 and Bit 5

Direct selection or direct selection + ON Bit 4 for PID setpoint.

| Unit: - | Min: 1 | Def: 1 | Max: 2 |

Settings:
- 1=Direct selection
- 2=Direct selection + ON command
- 3=Binary coded selection + ON command

Index:
- For P2226:
 - P2226[0]: 1st command data set (CDS)
 - P2226[1]: 2nd command data set (CDS)
- For P2228:
 - P2228[0]: 1st command data set (CDS)
 - P2228[1]: 2nd command data set (CDS)

P2231

Setpoint memory of PID-MOP

Setpoint memory.

| Unit: - | Min: 0 | Def: 1 | Max: 1 |

Settings:
- 0=PID-MOP setpoint will not be stored
- 1=PID-MOP setpoint will be stored (P2240 is updated)

Dependency:
- If 0 selected, setpoint returns to value set in P2240 (setpoint of PID-MOP) after an OFF command
- If 1 is selected, active setpoint is 'remembered' and P2240 updated with current value.

Note: See P2240 (setpoint of PID-MOP).

P2232

Inhibit rev. direct. of PID-MOP

Inhibits reverse setpoint selection when PID motor potentiometer is chosen either as a main setpoint of additional setpoint (using P1000).

| Unit: - | Min: 0 | Def: 1 | Max: 1 |

Details:
- 0=Reverse direction is allowed
- 1=Reverse direction inhibited

Settings:
- 0=Reverse direction is allowed
- 1=Reverse direction inhibited

Note: Setting 0 enables a change of motor direction using the motor potentiometer setpoint (increase/decrease frequency either by using digital inputs or motor potentiometer up/down buttons.

P2240[2]

Setpoint of PID-MOP

Setpoint of the motor potentiometer.

| Unit: % | Min: -200.00 | Def: 10.00 | Max: 200.00 |

Settings:
- 722.0=Digital input 1 (requires P0701 set to 99, BICO)
- 722.1=Digital input 2 (requires P0702 set to 99, BICO)
- 722.2=Digital input 3 (requires P0703 set to 99, BICO)
- 722.3=Digital input 4 (requires P0704 set to 99, BICO)
- 722.4=Digital input 5 (requires P0705 set to 99, BICO)
- 722.5=Digital input 6 (requires P0706 set to 99, BICO)
- 722.7=Digital input 8 (via analog input 2, requires P0708 set to 99)

Dependency:
- To change setpoint:
 1. Use UP / DOWN key on BOP or
 2. Set P0702/P0703=13/14 (function of digital inputs 2 and 3)

Note: P2240=100 % corresponds to 4000 hex.

r2250

CO: Output setpoint of PID-MOP

Displays output setpoint of motor potentiometer in [%].
Siemens Building Technologies SED2 variable speed drives CM1U5192en

HVAC Products Programming 01.2002

P2253[2] CI: PID setpoint

Description: Defines setpoint source for PID setpoint input. This parameter allows the user to select the source of the PID setpoint. Normally, a digital setpoint is selected either using a fixed PID setpoint or an active setpoint.

Unit: -

Min: 0:0

Def: 2250:0

Max: 4000:0

Settings:
- 755 = Analog input 1
- 2224 = Fixed PI setpoint (see P2201 to P2207)
- 2250 = Active PI setpoint (see P2240)

Index:
- P2253[0] : 1st command data set (CDS)
- P2253[1] : 2nd command data set (CDS)

P2254[2] CI: PID trim source

Description: Selects trim source for PID setpoint. This signal is multiplied by the trim gain and added to the PID setpoint.

Unit: -

Min: 0:0

Def: 2250:0

Max: 4000:0

Settings:
- 755 = Analog input 1
- 2224 = Fixed PI setpoint (see P2201 to P2207)
- 2250 = Active PI setpoint (see P2240)

Index:
- P2254[0] : 1st command data set (CDS)
- P2254[1] : 2nd command data set (CDS)

P2261 PID setpoint filter time constant

Description: Sets a time constant for smoothing the PID setpoint.

Unit: s

Min: 0.00

Def: 0.00

Max: 60.00

r2262 CO: Filtered PID setp. after RFG

Description: Displays filtered PID setpoint after PID-RFG in [%].

Unit: -

Min: -

Def: -

Max: -

Note: r2262=100 % corresponds to 4000 hex.

P2264[2] CI: PID feedback

Description: Selects the source of the PID feedback signal.

Unit: -

Min: 755:1

Def: 2250:0

Max: 4000:0

Settings:
- 755 = Analog input 1 setpoint
- 2224 = Fixed PID setpoint
- 2250 = Output setpoint of PID-MOP

Index:
- P2264[0] : 1st command data set (CDS)
- P2264[1] : 2nd command data set (CDS)

P2265 PID feedback filter time constant

Description: Defines time constant for PID feedback filter.

Unit: s

Min: 0.00

Def: 0.00

Max: 60.00

P2267 Max. value for PID feedback

Description: Sets the upper limit for the value of the feedback signal in [%].

Unit: %

Min: -100.00

Def: 100.00

Max: 200.00

Note: P2267=100 % corresponds to 4000 hex. When PID is enabled (P2200=1) and the signal rises above this value, the variable speed drive will trip with P0222.

P2268 Min. value for PID feedback

Description: Sets lower limit for value of feedback signal in [%].

Unit: %

Min: -200.00

Def: 0.00

Max: 200.00

Note: P2268=100 % corresponds to 4000 hex. When PID is enabled (P2200=1) and the signal rises above this value, the variable speed drive will trip with P0221.

P2269 Gain applied to PID feedback

Description: Allows the user to scale the PID feedback as a percentage value [%]. A gain of 100.0 % means that the feedback signal has not changed from its default value.

Unit: -

Min: 0.00

Def: 100.00

Max: 500.00

Note: Allows the user to scale the PID feedback as a percentage value [%]. A gain of 100.0 % means that feedback signal has not changed from its default value.

P2270 PID feedback function selector

Description: Applies mathematical functions to the PID feedback signal, allowing multiplication of the result by P2269 (gain applied to PID feedback).

Unit: -

Min: 0

Def: 0

Max: 3

Details: Applies mathematical functions to the PID feedback signal, allowing multiplication of the result by P2269 (gain applied to PID feedback).

Settings:
- 0=Disabled
- 1=Square root (\(\sqrt{x}\))
- 2=Square (\(x^2\))
- 3=Cube (\(x^3\))

P2271 PID transducer type

Description: Allows the user to select the transducer type for the PID feedback signal.

Unit: -

Min: 0

Def: 0

Max: 1

Value:
- 0 : [default] If the feedback signal is less than the PID setpoint, the PI controller will increase motor speed to correct this.
- 1 : If the feedback signal is greater than the PID setpoint, the PI controller will reduce motor speed to correct this.

Settings:
- 0=Disabled
- 1=Inversion of PID feedback signal

Note: It is essential that you select the correct transducer type. If you are unsure whether 0 or 1 is applicable, you can determine the correct type as follows:
1. Disable the PID function (P2000=0).
2. Increase the motor frequency while measuring the feedback signal.
3. If the feedback signal increases with an increase in motor frequency, the PID transducer type should be 0.
4. If the feedback signal decreases with an increase in motor frequency the PID transducer type should be set to 1.

<table>
<thead>
<tr>
<th>r2272</th>
<th>CO: PID scaled feedback</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>%</td>
<td>Min: -</td>
</tr>
<tr>
<td>Note:</td>
<td>r2272=100 % corresponds to 4000 hex.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r2273</th>
<th>CO: PID error</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>%</td>
<td>Min: -</td>
</tr>
<tr>
<td>Note:</td>
<td>r2273=100 % corresponds to 4000 hex.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2274</th>
<th>PID derivative time</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>s</td>
<td>Min: 0</td>
</tr>
<tr>
<td>Note:</td>
<td>Set PID derivative time</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2279</th>
<th>PID Neutral zone</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>%</td>
<td>Min: 0.00</td>
</tr>
<tr>
<td>Note:</td>
<td>Set PID neutral zone</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2280</th>
<th>PID proportional gain</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td></td>
<td>Min: 0.00</td>
</tr>
<tr>
<td>Details:</td>
<td>Allows user to set proportional gain for standard PID controller. For best results, enable both P and I terms.</td>
<td></td>
</tr>
<tr>
<td>Dependency:</td>
<td>If P term=0, I term acts on the square of the error signal.</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>If the system is prone to sudden step changes in the feedback signal, P term should normally be set to a small value (0.5) with a faster I term for optimum performance. The D term (P2274) multiplies the difference between the present and previous feedback signal thus accelerating the controller reaction to an error that appears suddenly. The D term should be used carefully, since it can cause the controller output to fluctuate as every change in the feedback signal is amplified by the controller derivative action.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2285</th>
<th>PID integral time</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>s</td>
<td>Min: 0.000</td>
</tr>
<tr>
<td>Note:</td>
<td>See P2280 (PID proportional gain).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2291</th>
<th>PID output upper limit</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>%</td>
<td>Min: 0.00</td>
</tr>
<tr>
<td>Dependency:</td>
<td>If P max (P1082) is greater than P2000 (reference frequency), either P2000 or P2291 (PID output upper limit) must be changed to achieve F max.</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>P2291=100 % corresponds to 4000 hex (as defined by P2000 [reference frequency]).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2292</th>
<th>PID output lower limit</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>%</td>
<td>Min: -0.00</td>
</tr>
<tr>
<td>Dependency:</td>
<td>A negative value allows bipolar operation of PID controller.</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>P2292=100 % corresponds to 4000 hex.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2293</th>
<th>Ramp-up /-down time of PID limit</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>s</td>
<td>Min: 0</td>
</tr>
<tr>
<td>Note:</td>
<td>If an OFF1 or OFF3 are issued, the variable speed drive output frequency ramps down as set in P1121 (ramp-down time) or P1135 (OFF3 ramp-down time).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r2294</th>
<th>CO: Act. PID output</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit:</td>
<td>%</td>
<td>Min: -</td>
</tr>
<tr>
<td>Details:</td>
<td>When P1 is enabled, the output limits are ramped up from 0 to the limits set in P2291 (PID output upper limit) and P2292 (PID output lower limit). Limits prevent large step changes appearing on the output of the PID when the variable speed drive is started. Once the limits have been reached, the PID controller output is instantaneous. These ramp times are used whenever a RUN command is issued.</td>
<td></td>
</tr>
<tr>
<td>Note:</td>
<td>r2294=100 % corresponds to 4000 hex.</td>
<td></td>
</tr>
</tbody>
</table>
P2303[2] CI: PID o/p offset Level 3
Selects the source of the PID output offset signal.
Unit: - Min: 0.0 Def: 0.0 Max: 4000.0
Settings: 755 = Analog input 1 setpoint 2224 = Fixed PID setpoint 2250 = Output setpoint of PID-MOP
Note: When analog input is selected, offset and gain can be implemented using parameters P0756 to P0760 (ADC scaling).

P2304 PID opening time Level 2
Sets actuator opening time constant for PID controller.
Unit: s Min: 0 Def: 60 Max: 65535
Details: See P2304 (PID actuator closing time).

P2305 PID closing time Level 2
Sets actuator closing time constant for PID controller.
Unit: s Min: 0 Def: 60 Max: 65535
Details: See P2304 (PID actuator closing time).

P2306 PID Acting Dir Level 2
Direct = 0 = increasing plant output causes increasing controller output
Indirect = 1 = increasing plant output causes decreasing controller output.
Unit: - Min: 0 Def: 1 Max: 1
Settings: 0 Indirect Acting (Cooling Sequence) 1 Direct Acting (Heating Sequence)

P2370 Motor staging stop mode Level 3
Selects stop mode for external motors when motor staging is in use.
Unit: - Min: 0 Def: 0 Max: 1
Settings: 0=Normal stop 1=Sequence stop

P2371 Selection motor configuration Level 3
Selects configuration of external motors used for motor staging feature.
Unit: - Min: 0 Def: 0 Max: 8
Settings: 0=Motor staging Disabled
1=M1=1X, M2=
2=M1=1X, M2=1X
3=M1=1X, M2=2X
Details: Motor staging allows the control of up to 2 additional staged pumps or fans, based on a PID control system. The complete system consists of one pump controlled by the variable speed drive with up to 2 further pumps / fans controlled from contactors or motor starters. The contactors or motor starter are controlled by outputs from the variable speed drive. The diagram below shows a typical pumping system. A similar system could be set up using fans and air ducts, instead of pumps and pipes.

P2372 Enable motor cycling Level 3
Enables motor cycling for the motor staging feature. When enabled, the motor selected for staging/destaging is based on the hours run counter P2380. When staging, the motor with the least hours is switched on. When destaging, the motor with most hours is switched off.
If staged motors are different sizes, the choice of motor is first based on required motor size, and then if there is still a choice, on hours run.
Unit: - Min: 0 Def: 0 Max: 1
Settings: 0=Disabled 1=Enabled

P2373 Motor staging hysteresis Level 3
P2373 as a percentage of the PID setpoint that PID error P2294 must exceed before the staging delay starts.
Unit: % Min: 0.0 Def: 20.0 Max: 200.0
Details: Error as a percentage of setpoint that must be exceeded before staging delay starts.

P2374 Motor staging delay Level 3
Time that PID error P2273 must exceed motor staging hysteresis P2373 before staging occurs.
Unit: s Min: 0 Def: 30 Max: 650
Details: Time that error must exceed hysteresis before staging occurs.

P2375 Motor destaging delay Level 3
Time that PID error P2273 must exceed motor staging hysteresis P2373 before destaging occurs.
Unit: s Min: 0 Def: 30 Max: 650
Details: Time that error must exceed hysteresis before destaging occurs.

P2376 Delay override Level 3
P2376 as a percentage of PID setpoint. When the PID error P2273 exceeds this value, a motor is staged / destaged irrespective of the delay timers.
Unit: % Min: 0.0 Def: 25.0 Max: 200.0
Details: Error as a percentage of setpoint that if exceeded will begin staging without delay.

P2377 Delay override lockout timer Level 3
Time for which delay override is prevented after a motor has been staged or destaged. This prevents a second staging event immediately after a first, being caused by the transient conditions after the first staging event.
Unit: s Min: 0 Def: 30 Max: 650
Details: Time for which delay override is prevented after a motor has been staged or destaged.
P2378 Staging frequency f, %fMax
- **Level:** 3
- **Details:**
 The frequency as a percentage of max. frequency. During a (de) staging event, as the variable speed drive ramps from maximum frequency (or vice versa) this is the frequency at which the relay (DOUT) is switched. This is illustrated by the following diagrams.

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: 0.0</th>
<th>Def: 50.0</th>
<th>Max: 120.0</th>
</tr>
</thead>
</table>

r2379 CO/BO: Status of motor staging
- **Level:** 3
- **Details:**
 The frequency as a percentage of fMax at which an external motor will be started or stopped.

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: -</th>
<th>Def: -</th>
<th>Max: -</th>
</tr>
</thead>
</table>

Bit fields:
- Bit00: Start motor 1
 - 0: YES, 1: NO
- Bit01: Start motor 2
 - 0: YES, 1: NO

P2380[3] Motor hours run
- **Level:** 3
- **Details:**
 Displays hours run for external motors. To reset the running hours, set the value to zero, any other value is ignored.

<table>
<thead>
<tr>
<th>Unit: h</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 100000</th>
</tr>
</thead>
</table>

Index:
- P2380[0]: Motor 1 hrs run
- P2380[1]: Motor 2 hrs run
- P2380[2]: not used

Note:
- To reset the running hours, set the value to zero, any other value is ignored.

P2390 Hibernation frequency
- **Level:** 3
- **Details:**
 When the variable speed drive under PID control drops below hibernation setpoint, the hibernation timer P2391 is started. When the hibernation timer has expired, the variable speed drive is ramped down to stop and enters hibernation mode (see diagram below).

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 200.00</th>
</tr>
</thead>
</table>

P2391 Hibernation timer
- **Level:** 3
- **Details:**
 When the hibernation timer P2391 has expired, the variable speed drive is ramped down to stop and enters hibernation mode (see description and diagram of P2390).

<table>
<thead>
<tr>
<th>Unit: s</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 254</th>
</tr>
</thead>
</table>

P2392 Restart PID controller deviation [%]
- **Level:** 3
- **Details:**
 While in hibernation mode, the PID controller continues to generate the error P2294 - once this reaches the restart point P2392, the variable speed drive immediately ramps to the setpoint calculated by the PID controller (see description and diagram of P2390).

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>Min: -200.00</th>
<th>Def: 0</th>
<th>Max: 200.00</th>
</tr>
</thead>
</table>

P3900 End of quick commissioning
- **Level:** 1
- **Details:**
 Performs calculations necessary for optimized motor operation. After completion of calculation, P3900 and P0010 (parameter groups for commissioning) are automatically reset to their original value 0.

<table>
<thead>
<tr>
<th>Unit: -</th>
<th>Min: 0</th>
<th>Def: 0</th>
<th>Max: 3</th>
</tr>
</thead>
</table>

Settings:
- 0=No quick commissioning
- 1=Start quick commissioning with factory reset
- 2=Start quick commissioning
- 3=Start quick commissioning only for motor data

Dependency:
Changeable only when P0010=1 (quick commissioning)

Note:
- When setting 1 is selected, only those parameters which depend on the parameters in the commissioning menu "Quick commissioning" (P0010=1) are calculated. The I/O settings are also reset to default and the motor calculations performed. Exiting quick commissioning with this setting saves time (for example, if only motor rating plate data have been changed).
- Calculates a variety of motor parameters, overwriting previous values. These include P0344 (Level 3, motor weight), P0350 (Level 3, demagnetization time), P2000 (reference frequency), P2002 (Level 3, reference current).
6.6 Overview of factory and user parameter settings

Please enter your parameter settings in the table below.

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>User settings</th>
<th>Factory settings</th>
<th>Parameter number</th>
<th>User settings</th>
<th>Factory settings</th>
<th>Parameter number</th>
<th>User settings</th>
<th>Factory settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0003</td>
<td>1</td>
<td></td>
<td>P004</td>
<td>0</td>
<td></td>
<td>P0140</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P0004</td>
<td>0</td>
<td></td>
<td>P0007</td>
<td>1</td>
<td></td>
<td>P0141</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P0005</td>
<td>21</td>
<td></td>
<td>P0007</td>
<td>100</td>
<td></td>
<td>P0142</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P0006</td>
<td>2</td>
<td></td>
<td>P0007</td>
<td>0</td>
<td></td>
<td>P1200</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0010</td>
<td>0</td>
<td></td>
<td>P0007</td>
<td>100.0</td>
<td></td>
<td>P1202</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>P0011</td>
<td>0</td>
<td></td>
<td>P0079</td>
<td>1</td>
<td></td>
<td>P1203</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>P0012</td>
<td>0</td>
<td></td>
<td>P0080</td>
<td>10</td>
<td></td>
<td>P1210</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P0013</td>
<td>0</td>
<td></td>
<td>P0781</td>
<td>0</td>
<td></td>
<td>P1211</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>P0040</td>
<td>0</td>
<td></td>
<td>P0809</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0054</td>
<td>-</td>
<td></td>
<td>P0810</td>
<td>718.0</td>
<td></td>
<td>P1212</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>P0055</td>
<td>-</td>
<td></td>
<td>P0918</td>
<td>3</td>
<td></td>
<td>P1213</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>P0056</td>
<td>-</td>
<td></td>
<td>P0937</td>
<td>15</td>
<td></td>
<td>P1230</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>P0086</td>
<td>-</td>
<td></td>
<td>P0952</td>
<td>0</td>
<td></td>
<td>P1232</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>P00100</td>
<td>0</td>
<td></td>
<td>P0970</td>
<td>0</td>
<td></td>
<td>P1233</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0304</td>
<td>230</td>
<td>3.25</td>
<td>P1000</td>
<td>2</td>
<td></td>
<td>P1236</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0305</td>
<td>3.75</td>
<td></td>
<td>P1001</td>
<td>0.00</td>
<td></td>
<td>P1240</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0306</td>
<td>0.00</td>
<td></td>
<td>P1002</td>
<td>5.00</td>
<td></td>
<td>P1260</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0309</td>
<td>0.00</td>
<td></td>
<td>P1003</td>
<td>10.00</td>
<td></td>
<td>P1262</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>P0310</td>
<td>50.00</td>
<td></td>
<td>P1004</td>
<td>15.00</td>
<td></td>
<td>P1263</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P0311</td>
<td>0.00</td>
<td></td>
<td>P1005</td>
<td>20.00</td>
<td></td>
<td>P1264</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P0330</td>
<td>0.00</td>
<td></td>
<td>P1006</td>
<td>25.00</td>
<td></td>
<td>P1265</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>P0335</td>
<td>4.00</td>
<td></td>
<td>P1007</td>
<td>30.00</td>
<td></td>
<td>P1266</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>P0400</td>
<td>0.00</td>
<td></td>
<td>P1008</td>
<td>35.00</td>
<td></td>
<td>P1270</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>P0409</td>
<td>25</td>
<td></td>
<td>P1009</td>
<td>40.00</td>
<td></td>
<td>P1300</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>P0501</td>
<td>0</td>
<td></td>
<td>P1010</td>
<td>45.00</td>
<td></td>
<td>P1310</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>P0506</td>
<td>754</td>
<td></td>
<td>P1011</td>
<td>50.00</td>
<td></td>
<td>P1311</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>P0507</td>
<td>1.0</td>
<td></td>
<td>P1012</td>
<td>55.00</td>
<td></td>
<td>P1312</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>P0508</td>
<td>0</td>
<td></td>
<td>P1013</td>
<td>60.00</td>
<td></td>
<td>P1335</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>P0509</td>
<td>0</td>
<td></td>
<td>P1014</td>
<td>65.00</td>
<td></td>
<td>P1336</td>
<td>250.00</td>
<td></td>
</tr>
<tr>
<td>P0601</td>
<td>0</td>
<td></td>
<td>P1015</td>
<td>65.00</td>
<td></td>
<td>P1499</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>P0610</td>
<td>2</td>
<td></td>
<td>P1016</td>
<td>1</td>
<td></td>
<td>P1800</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>P0640</td>
<td>110.00</td>
<td></td>
<td>P1017</td>
<td>1</td>
<td></td>
<td>P1820</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0700</td>
<td>2</td>
<td></td>
<td>P1018</td>
<td>1</td>
<td></td>
<td>P1910</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0701</td>
<td>1</td>
<td></td>
<td>P1019</td>
<td>1</td>
<td></td>
<td>P2001</td>
<td>1000.00</td>
<td></td>
</tr>
<tr>
<td>P0702</td>
<td>12</td>
<td></td>
<td>P1020</td>
<td>0.00</td>
<td></td>
<td>P2002</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>P0703</td>
<td>9</td>
<td></td>
<td>P1021</td>
<td>0.00</td>
<td></td>
<td>P2009</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0704</td>
<td>15</td>
<td></td>
<td>P1022</td>
<td>0.00</td>
<td></td>
<td>P2010</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>P0705</td>
<td>15</td>
<td></td>
<td>P1023</td>
<td>722.3</td>
<td></td>
<td>P2011</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0706</td>
<td>29</td>
<td></td>
<td>P1024</td>
<td>1</td>
<td></td>
<td>P2014</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0707</td>
<td>0</td>
<td></td>
<td>P1025</td>
<td>722.4</td>
<td></td>
<td>P2040</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>P0708</td>
<td>0</td>
<td></td>
<td>P1026</td>
<td>722.5</td>
<td></td>
<td>P2051</td>
<td>52.00</td>
<td></td>
</tr>
<tr>
<td>P0709</td>
<td>0</td>
<td></td>
<td>P1027</td>
<td>1</td>
<td></td>
<td>P2052</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0718</td>
<td>1</td>
<td></td>
<td>P1028</td>
<td>722.5</td>
<td></td>
<td>P2053</td>
<td>52.00</td>
<td></td>
</tr>
<tr>
<td>P0725</td>
<td>1</td>
<td></td>
<td>P1031</td>
<td>1</td>
<td></td>
<td>P2100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0731</td>
<td>52.3</td>
<td></td>
<td>P1032</td>
<td>1</td>
<td></td>
<td>P2101</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0732</td>
<td>52.2</td>
<td></td>
<td>P1040</td>
<td>10</td>
<td></td>
<td>P2111</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0733</td>
<td>0.0</td>
<td></td>
<td>P1080</td>
<td>10</td>
<td></td>
<td>P2115</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0748</td>
<td>0</td>
<td></td>
<td>P1082</td>
<td>50</td>
<td></td>
<td>P2181</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P0753</td>
<td>100</td>
<td></td>
<td>P1091</td>
<td>0.00</td>
<td></td>
<td>P2182</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>P0756</td>
<td>0</td>
<td></td>
<td>P1092</td>
<td>0.00</td>
<td></td>
<td>P2183</td>
<td>30.00</td>
<td></td>
</tr>
<tr>
<td>P0757</td>
<td>0</td>
<td></td>
<td>P1093</td>
<td>0.00</td>
<td></td>
<td>P2184</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>P0758</td>
<td>0.0</td>
<td></td>
<td>P1094</td>
<td>0.00</td>
<td></td>
<td>P2185</td>
<td>99999.0</td>
<td></td>
</tr>
<tr>
<td>P0759</td>
<td>10</td>
<td></td>
<td>P1101</td>
<td>2</td>
<td></td>
<td>P2186</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>P0760</td>
<td>100</td>
<td></td>
<td>P1110</td>
<td>1.0</td>
<td></td>
<td>P2187</td>
<td>99999.0</td>
<td></td>
</tr>
<tr>
<td>P0761</td>
<td>0</td>
<td></td>
<td>P1120</td>
<td>10.00</td>
<td></td>
<td>P2188</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>P0771</td>
<td>21</td>
<td></td>
<td>P1121</td>
<td>30.00</td>
<td></td>
<td>P2189</td>
<td>99999.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P1135</td>
<td>5.00</td>
<td></td>
<td>P2190</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Continued: Overview of factory and user parameter settings

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>User settings</th>
<th>Factory settings</th>
<th>Parameter number</th>
<th>User settings</th>
<th>Factory settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2191</td>
<td>3.00</td>
<td></td>
<td>P2374</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>P2192</td>
<td>10</td>
<td></td>
<td>P2375</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>P2200</td>
<td>0.0</td>
<td></td>
<td>P2376</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>P2201</td>
<td>0.00</td>
<td></td>
<td>P2377</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>P2202</td>
<td>10.00</td>
<td></td>
<td>P2378</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>P2203</td>
<td>20.00</td>
<td></td>
<td>P2380</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P2204</td>
<td>30.00</td>
<td></td>
<td>P2390</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P2205</td>
<td>40.00</td>
<td></td>
<td>P2391</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P2206</td>
<td>50.00</td>
<td></td>
<td>P2392</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P2207</td>
<td>60.00</td>
<td></td>
<td>P3900</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>P2208</td>
<td>70.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2209</td>
<td>80.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2210</td>
<td>90.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2211</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2212</td>
<td>110.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2213</td>
<td>120.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2214</td>
<td>230.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2215</td>
<td>130.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2216</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2217</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2218</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2219</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2220</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2221</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2222</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2223</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2225</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2226</td>
<td>722.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2227</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2228</td>
<td>722.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2231</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2232</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2240</td>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2253</td>
<td>2250.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2254</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2261</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2264</td>
<td>755.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2265</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2267</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2268</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2269</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2270</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2271</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2274</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2279</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2280</td>
<td>1.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2285</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2291</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2292</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2293</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2303</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2304</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2305</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2306</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2307</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2371</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2372</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2373</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 Troubleshooting

7.1 Troubleshooting using the operator panel

If a warning or trip code appears on the display, refer to section 7.2.1 Error code list or section 7.2.2 Warning code lists.

If the motor does not start with the ON command:

- Check if $P0010 = 0$.
- Check if there is a valid ON signal.
- Check if $P0700 = 2$ (for digital input control) or $P0700 = 1$ (for BOP control).
- Check if the correct setpoint is available (0 to 10 V on terminal 3), or if the setpoint was entered in the correct location in dependence of the setpoint source ($P1000$).

Refer to the parameter list for more detailed information.

If the motor does not start after changing the parameters, set $P0010 = 30$ and then $P0970 = 1$, and press P to reset the variable speed drive to the factory-set parameter default values.

Use a switch between terminals 5 and 8 on the control terminal bar. The drive should now run according to the default setpoint at the analog input.

The voltage and current range of the VSD must match the motor data.

Note
7.2 Error messages

7.2.1 Error code list

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Diagnosis & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
</table>
| F0001 Overcurrent | - Motor power (P0307) is greater than VSD power (P0206).
- Motor lead short circuit.
- Earth faults. | Check the following:
1. Motor power (P0307) ≤ VSD power (P0206).
2. Cable length limits must not be exceeded.
3. Motor cable and motor must not have short circuits or earth faults.
4. Motor parameters must match the motor in use.
5. Value of stator resistance (P0350) must be correct.
6. The motor must not be obstructed or overloaded.
Increase ramp-up time.
Reduce boost level. | Off2 |
| F0002 Overvoltage | - DC link voltage (r026) exceeds trip level (P2172).
- Overvoltage can be caused either by too high main supply voltage or if motor is in regenerative mode.
- Regenerative mode can be caused by fast ramp downs or if the motor is driven from an active load. | Check the following:
1. The supply voltage (P0210) must lie within the limits indicated on the rating plate.
2. The DC link voltage controller must be enabled (P1240) and parameterized correctly.
3. The ramp-down time (P1121) must match the inertia of load.
4. The required braking power must lie within the specified limits.
Note: Higher inertia requires long ramp-up times; otherwise, apply braking resistor. | Off2 |
| F0003 Undervoltage | - Mains supply failed.
- Shock load outside the specified limits. | Check the following:
1. The supply voltage (P0210) must lie within the limits indicated on the rating plate.
2. The supply voltage must not be susceptible to temporary failures or voltage reductions outside tolerance. | Off2 |
| F0004 VSD overtemperature | - Ventilation is inadequate.
- The fan is inoperative.
- The ambient temperature is too high. | Check the following:
1. The fan must turn when the VSD is running.
2. The pulse frequency must be set to a lower value.
3. The ambient temperature could be higher than specified for the VSD. | Off2 |
| F0005 VSD I2T | - The VSD is overloaded.
- The duty cycle is outside the tolerance.
- The Motor power (P0307) exceeds the VSD power (P0206). | Check the following:
1. The load cycle must lie within the limits specified.
2. Motor power (P0307) ≤ VSD power (P0206). | Off2 |
| F0011 Motor overtemperature | - The motor is overloaded. | Check the following: Make sure that the load duty cycles (temporary overload) lie within the limits specified. | Off1 |
| F0012 VSD temperature signal lost | - Wire breakage of the VSD temperature sensor (heatsink). | | Off2 |
| F0015 Motor temperature signal lost | - Breakage or short-circuit of the motor temperature sensor.
If a signal loss is detected, temperature monitoring switches to monitoring the thermic motor image. | | Off2 |
| F0020 1 phase for mains supply missing | - One of the 3 phases for the mains supply voltage is missing. | Check the wiring of the 3 phases at the supply voltage input of the VSD. | Off2 |
| F0021 Earth fault | - The fault occurs if the sum of the phase currents is higher than 5% of the nominal VSD current.
Note This error message occurs on VSDs with 3 current sensors, i.e., for VSDs of frame sizes D to F. | | Off2 |
<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Diagnosis & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0022</td>
<td>Power stack fault The fault is caused by the following events:</td>
<td></td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td>♦ (1) dc link overcurrent = short circuit of IGBT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>♦ (2) short circuit of dc link chopper.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>♦ (3) earth fault.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Frame sizes A to C (1),(2),(3).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Frame sizes D to E (1),(2).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Frame size F (2).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Since all these faults are assigned to one signal on the power stack,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>it is not possible to establish which one actually occurred.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0023</td>
<td>Fault at VSD output The On-phase is interrupted at the VSD output.</td>
<td></td>
<td>Off2</td>
</tr>
<tr>
<td>F0024</td>
<td>Rectifier overtemperature ➢ The ventilation is inadequate.</td>
<td>Check the following:</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td>➢ The fan is inoperative.</td>
<td>1. The fan must turn when the VSD is running.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ The ambient temperature is too high.</td>
<td>2. The pulse frequency (P1800) must be set to default value 4 kHz.</td>
<td></td>
</tr>
<tr>
<td>F0030</td>
<td>Fan fault ➢ The fan no longer works.</td>
<td>The fault cannot be masked while the options module (AOP or BOP) is connected.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace the fan.</td>
<td></td>
</tr>
<tr>
<td>F0041</td>
<td>Motor data identification failure ➢ Motor data identification failed.</td>
<td></td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 0: Load is missing.</td>
<td>0: Check if the motor is connect to the VSD.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 1: Current limit value reached during identification.</td>
<td>1-40: Check if the motor data in P304-311 are correct.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 2: Identified stator resistance less than 0.1% or</td>
<td>Check the type of motor wiring required (star, delta).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than 100%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 3: Identified rotor resistance less than 0.1% or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than 100%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 4: Identified stator reactance less than 50% or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than 500%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 5: Identified main reactance less than 50% or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than 500%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 6: Identified rotor time constant less than 10 ms or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than 5s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 7: Identified total leakage reactance less than 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or more than 50%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 8: Identified stator leakage reactance less than</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25% or more than 250%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 9: Identified rotor leakage reactance less than</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25% or more than 250%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 10: Identified IGBT ON-voltage less than 0.5 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>more than 10 V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 30: Current controller at voltage limit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Alarm value = 40: Inconsistency of identified data set, at least</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>one identification failed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percentage values based on impedance Zb = Vmot,nom / sqrt(3) /</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Imot,nom.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0051</td>
<td>Parameter EEPROM fault ➢ Read or write failure while saving non-</td>
<td>Reset VSD to factory setting and re-parameterize.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td>volatile parameter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0052</td>
<td>Power stack fault ➢ Read failure for power stack information or</td>
<td>Exchange VSD.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td>invalid data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0053</td>
<td>I/O EEPROM fault ➢ Read failure for I/O EEPROM information or</td>
<td>Check the data.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td>invalid data.</td>
<td>Exchange the I/O module.</td>
<td></td>
</tr>
<tr>
<td>F0054</td>
<td>Wrong I/O print ➢ I/O print is not connected.</td>
<td></td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td>➢ Wrong I/O print is connected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ NO ID found on I/O print, no data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0060</td>
<td>ASIC timeout ➢ Internal communication error.</td>
<td>If error reappears, exchange VSD.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact customer service.</td>
<td></td>
</tr>
<tr>
<td>F0070</td>
<td>CB setpoint fault ➢ No setpoints from CB (communications board)</td>
<td>Check communications module (CB) and communications partner.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td>during telegram off time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>Cause</td>
<td>Diagnosis & Remedy</td>
<td>Reaction</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>F0071 USS (BOP link)</td>
<td>setpoint fault</td>
<td>No setpoints from USS during telegram off time.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check communications to data transmission module.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check USS master.</td>
<td></td>
</tr>
<tr>
<td>F0072 USS (COM link)</td>
<td>setpoint fault</td>
<td>No setpoints from USS during telegram off time.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check USS master.</td>
<td></td>
</tr>
<tr>
<td>F0080 ADC input signal</td>
<td>lost</td>
<td>Broken wire at analog input.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal level outside defined limits.</td>
<td></td>
</tr>
<tr>
<td>F0085 External fault</td>
<td></td>
<td>External fault triggered via input terminals.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disable input terminals for fault trigger, or eliminate external fault.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check if DIN is set to ON.</td>
<td></td>
</tr>
<tr>
<td>F0101 Stack overflow</td>
<td></td>
<td>Software or processor error</td>
<td>Off2</td>
</tr>
<tr>
<td>F0221 PID feedback</td>
<td>below min. value of P2268.</td>
<td>PID feedback below min. value of P2268.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change value of P2268.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjust feedback amplification.</td>
<td></td>
</tr>
<tr>
<td>F0222 PID feedback</td>
<td>below max. value of P2267.</td>
<td>PID feedback below max. value of P2267.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change value of P2267.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adjust feedback amplification.</td>
<td></td>
</tr>
<tr>
<td>F0450 BIST tests failure</td>
<td></td>
<td>Alarm value:</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Some power section tests have failed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Some control board tests have failed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Some functional test have failed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8. Some I/O module tests have failed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16. Internal RAM failed on power-up check.</td>
<td></td>
</tr>
<tr>
<td>F0452 Belt failure</td>
<td>detected</td>
<td>Load condition changes at the motor indicate a belt failure or mechanical fault.</td>
<td>Off2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Drive belt ok. The drive is not obstructed or seized?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. If external speed sensor is used, check proper function. Check the following parameters:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P0409 (impulses/sec on nominal speed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2191 (belt failure and speed monitoring)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2192 (delay time for P2191).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. For belt failure detection without sensor, check the following parameters:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2182 (threshold frequency f1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2183 (threshold frequency f2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2184 (threshold frequency f3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2185 (upper torque threshold 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2186 (lower torque threshold 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2187 (upper torque threshold 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2188 (lower torque threshold 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2189 (upper torque threshold 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2190 (lower torque threshold 3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P2192 (delay for belt failure).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Lubricate the drive if necessary.</td>
<td></td>
</tr>
</tbody>
</table>
7.2.2 Warning code lists

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Diagnosis & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
</table>
| A0501 | [Motor power > VSD power.](#)
 | [Motor cables are too long.](#)
 | [Earth faults.](#) | Check the following:
 1. Motor power (P0307) ≤ VSD power (P0206).
 2. Cable length limits must not be exceeded.
 3. Motor cable and motor must not have short circuits or earth faults.
 4. Motor parameters must match the motor in use.
 5. Value of stator resistance (P0350) must be correct.
 6. The motor must not be obstructed or overloaded.
 Increase ramp-up time.
 Reduce boost level. | -- |
| A0502 | [The overvoltage limit is reached.](#)
 | This warning may appear on ramp-down if the dc link is disabled (P1240 = 0). | If this warning is displayed permanently, check the drive input voltage or extend the ramp-down time for the drive. | -- |
| A0503 | [Main power supply failed.](#)
 | The main power supply (P0210) and consequently the DC link voltage (R0026) are below the defined threshold value (P2172). | Check the main supply voltage (P0210). | -- |
| A0504 | [The warning level of the VSD heatsink temperature (r0037) is exceeded.](#)
 | This results in a reduced pulse frequency and/or a reduced output frequency (dependent on parameterization in (P0610). | Check the following:
 1. The ambient temperature must lie within the limits specified.
 2. The load conditions and duty cycle must lie within the specified conditions.
 3. The fan must turn when the VSD is running. | -- |
| A0505 | [Warning level exceeded. The current supply is reduced if parameterized (P0610 = 1).](#) | Check that the duty cycle lies within the limits specified.
 Motor power (P0307) > VSD power (P0206). | -- |
| A0506 | [Difference between the heatsink temperature and the IGBT exceeds the warning levels.](#) | Check the following: Make sure that the load duty cycles (temporary overload) lie within the limits specified. | -- |
| A0511 | [The motor is overloaded.](#)
 | [The duty cycle is outside the tolerance.](#) | -- |
| A0520 | [The warning level of the rectifier heatsink temperature is exceeded.](#) | Check the following:
 1. The ambient temperature must lie within the limits specified.
 2. The load conditions and duty cycle must lie within the specified conditions.
 3. The fan must turn when the VSD is running. | -- |
| A0523 | [The On-phase is interrupted at the VSD output.](#) | -- |
| A0541 | [Motor data identification (P1910) selected or running.](#) | -- |
| A0600 | [RTOS data loss](#) | -- |
| A0910 | [Vdc max controller disabled as not able to keep the DC link voltage (r0026) within threshold limits (P2172).](#)
 | [Permanent supply overvoltage.](#)
 | [Occurs if the motor is driven by a load forcing the motor to go into energy recovery operation.](#)
 | [Occurs during ramp-down of very high duty cycles.](#) | Check the following:
 1. Input voltage must lie within specified range.
 2. The load must be adjusted.
 3. In some cases, brake resistance must be applied. | -- |
| A0911 | [Vdc max controller is enabled.](#)
<pre><code> | The ramp-down times are increased automatically to keep the DC link voltage (r0026) within the limits specified (P2172). | -- |
</code></pre>
<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Diagnosis & Remedy</th>
<th>Reaction</th>
</tr>
</thead>
</table>
| A0912 | Vdc (min) controller enabled | ➢ Vdc min controller enabled if the DC link voltage (r0026) drops below the min. value (P2172).
➤ The motor's kinetic energy is used to buffer the DC link voltage and thus slow the drive.
➤ Temporary supply failures do not automatically lead to undervoltage shutdown. | -- |
| A0920 | ADC parameters not set properly | ➢ ADC parameters must not be set to identical values, as illogical values would result.
➤ Index 0: Parameter settings for output identical.
➤ Index 1: Parameter settings for input identical.
➤ Index 2: Parameter settings for input do not correspond to ADC type. | -- |
| A0921 | DAC parameters not set properly | ➢ DAC parameters must not be set to identical values, as illogical values would result.
➤ Index 0: Parameter settings for output identical.
➤ Index 1: Parameter settings for input identical.
➤ Index 2: Parameter settings for output do not correspond to DAC type. | -- |
| A0922 | No load applied to VSD | ➢ No load is applied to the VSD.
Some functions may not work as under normal load conditions. | -- |
| A0923 | Both JOG left and JOG right are requested | ➢ Both JOG right and JOG left (P1055/P1056) have been requested. This freezes the RFG output frequency at its current value. | -- |
| A0924 | Belt failure detected | ➢ Load conditions at the motor indicate a belt failure or mechanical fault.
Check the following:
1. No breakage, seizure, or obstruction of drive train.
2. Correct operation of external speed sensor, if in use.
3. P0402 (pulse/min at rated speed), P2164 (hysteresis frequency deviation) and P2165 (delay time for permissible deviation) must have correct values:
P2155 (threshold frequency 1)
P2157 (threshold frequency 2)
P2159 (threshold frequency 3)
P2174 (upper torque threshold 1)
P2175 (lower torque threshold 1)
P2176 (delay T_Torque)
P2182 (upper torque threshold 2)
P2183 (lower torque threshold 2)
P2184 (upper torque threshold 3)
P2185 (lower torque threshold 3) | -- |
Technical data for the SED2

8.1 General technical data

<table>
<thead>
<tr>
<th>Operating temperature ranges</th>
<th>IP 20: −10 °C to +40 °C.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP 54: −10 °C to +40 °C.</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>−40 °C to +70 °C.</td>
</tr>
<tr>
<td>Humidity</td>
<td>95% relative humidity — non-condensing.</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 1000 meters above sea level without performance decrease.</td>
</tr>
<tr>
<td>Overload capacity</td>
<td>110 % periodic overload capacity for 60 s within 5 minutes relative to the nominal output current.</td>
</tr>
<tr>
<td>Protection functions</td>
<td>Protection against:</td>
</tr>
<tr>
<td></td>
<td>• Undervoltage</td>
</tr>
<tr>
<td></td>
<td>• Overvoltage</td>
</tr>
<tr>
<td></td>
<td>• Earth fault</td>
</tr>
<tr>
<td></td>
<td>• Short-circuit</td>
</tr>
<tr>
<td></td>
<td>• Stall</td>
</tr>
<tr>
<td></td>
<td>• Rotor jam</td>
</tr>
<tr>
<td></td>
<td>• Motor overtemperature</td>
</tr>
<tr>
<td></td>
<td>• VSD overtemperature</td>
</tr>
<tr>
<td>Electromagnetic compatibility</td>
<td>Integrated EMC filter as per EN 55011 class B (as footprint filter for frame sizes A to C / IP20). The filter is integrated in the VSD for frame sizes D to F/IP20 and for all IP54 devices. Satisfies the requirements of EMC product standard EN 61800-3.</td>
</tr>
<tr>
<td>Input frequency</td>
<td>47 to 63 Hz.</td>
</tr>
<tr>
<td>Setpoint resolution</td>
<td>0.01 Hz digital,</td>
</tr>
<tr>
<td></td>
<td>0.01 Hz serial,</td>
</tr>
<tr>
<td></td>
<td>10 bit analog.</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>4 kHz to 16 kHz (2 kHz steps).</td>
</tr>
<tr>
<td>Fixed frequencies</td>
<td>15 programmable.</td>
</tr>
<tr>
<td>Masking frequencies</td>
<td>4 programmable.</td>
</tr>
<tr>
<td>Analog inputs</td>
<td>Number: 2 / can be changed over to 0/2 to 10 V (programmable scaling) or 0/4 to 20 mA (programmable scaling).</td>
</tr>
<tr>
<td></td>
<td>Terminals used: 3, 4, 10, 11 #.</td>
</tr>
<tr>
<td></td>
<td>Resolution: 10 bits.</td>
</tr>
<tr>
<td></td>
<td>Read cycle: 10 ms.</td>
</tr>
<tr>
<td></td>
<td>Analog inputs AIN1/2 can be configured for direct connection of an LG-Ni 1000 temperature sensor.</td>
</tr>
<tr>
<td>Digital inputs</td>
<td>6 (potential-free) inputs extendable to 8 (see Analog inputs).</td>
</tr>
<tr>
<td></td>
<td>Freely programmable and possible changeover high-active/ low-active.</td>
</tr>
<tr>
<td></td>
<td>Terminals used: 5, 6, 7, 8, 16, 17 #.</td>
</tr>
</tbody>
</table>

Further information on terminals used: See diagram.
Min. input current: 6 mA (actual: 8 mA) at ≥15 V.
Logical 0 = <3 V, logical 1 = >13 V.
Max. input voltage: 33 V.

Analog outputs

- **Number:** 2
- Can be changed over for 0 to 10 V or 0/4 to 20 mA, (programmable scaling/parameter).
- Factory setting: 0 to 10 V.
- Terminals used: 12, 13, 26, 27.º
- Impedance on configuration 0 to 10 V: 1 kΩ.
- Read cycle: 10 ms.

Relay outputs

- 2 programmable relays, 6 contacts.
- Terminals used: RL1: 18, 19, 20; RL2: 23, 24, 25.º
- Max. contact rating: DC 30 V / 5 A, (resistive).
- AC 250 V / 2 A (resistive).

Auxiliary supply 24 V

- Galvanically separated, unregulated auxiliary supply (18 to 32 V), 50 mA.
- Terminal 9.

Serial interface

- RS 485, (RS 232 optional with converter).
- Protocols: USS, P1, and N2.
- Transmission rate: Up to 38.4 kBaud (default 9.6 kBaud).

Power factor

- ≥0.7

VSD degree of efficiency

- 96 to 97%.

Switch-on current

- Less than nominal input current.

Braking

- DC braking, dynamic braking.

CE conformity

- Corresponds to the requirements of the low-voltage guideline 73/23/EEC, supplemented by guideline 98/68/EEC and EMC.
- If installed according to the recommendations issued in this manual, the SED2 satisfies all EMC guideline requirements as defined in the EMC Product Standard for Power Drive Systems EN61800-3.

<table>
<thead>
<tr>
<th>Dimensions and weight (frame sizes A to C IP20 / NEMA 0)</th>
<th>IP20 / NEMA 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame size</td>
<td>Weight (kg)</td>
</tr>
<tr>
<td>A without filter</td>
<td>1.3</td>
</tr>
<tr>
<td>A with filter</td>
<td>2</td>
</tr>
<tr>
<td>B without filter</td>
<td>3.4</td>
</tr>
<tr>
<td>B with filter</td>
<td>4.2</td>
</tr>
<tr>
<td>C without filter</td>
<td>5.5</td>
</tr>
<tr>
<td>C with filter</td>
<td>6.7</td>
</tr>
<tr>
<td>D without filter</td>
<td>16</td>
</tr>
<tr>
<td>D with filter</td>
<td>17</td>
</tr>
<tr>
<td>E without filter</td>
<td>20</td>
</tr>
<tr>
<td>E with filter</td>
<td>22</td>
</tr>
<tr>
<td>F without filter</td>
<td>56</td>
</tr>
<tr>
<td>F with filter</td>
<td>75</td>
</tr>
</tbody>
</table>
Dimensions and weight

<table>
<thead>
<tr>
<th>Frame size</th>
<th>W x H x D (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>with filter</td>
<td>without filter</td>
</tr>
<tr>
<td>B</td>
<td>270 x 385 x 268</td>
<td>11.5</td>
</tr>
<tr>
<td>C</td>
<td>360 x 606 x 284</td>
<td>21</td>
</tr>
<tr>
<td>D</td>
<td>360 x 685 x 353</td>
<td>35</td>
</tr>
<tr>
<td>E</td>
<td>360 x 885 x 453</td>
<td>48</td>
</tr>
<tr>
<td>F</td>
<td>450 x 1150 x 428</td>
<td>99</td>
</tr>
</tbody>
</table>

8.2 Type-specific data

200 V to 240 V, ± 10%, 3 phases

<table>
<thead>
<tr>
<th>Output power (variable torque)</th>
<th>IP code</th>
<th>Filter class</th>
<th>Max. input current 3 phases</th>
<th>Max. output current</th>
<th>Frame size</th>
<th>Type (ASN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>hp</td>
<td>IP</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.37</td>
<td>0.5</td>
<td>20</td>
<td>B 2.4</td>
<td>2.3</td>
<td>A</td>
<td>SED2-0.37/22B</td>
</tr>
<tr>
<td>0.55</td>
<td>0.75</td>
<td>20</td>
<td>B 3.1</td>
<td>3</td>
<td>A</td>
<td>SED2-0.55/22B</td>
</tr>
<tr>
<td>0.75</td>
<td>1</td>
<td>20</td>
<td>B 4.3</td>
<td>3.9</td>
<td>A</td>
<td>SED2-0.75/22B</td>
</tr>
<tr>
<td>1.1</td>
<td>1.5</td>
<td>20</td>
<td>B 6.2</td>
<td>5.5</td>
<td>B</td>
<td>SED2-1.1/22B</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>20</td>
<td>B 8.3</td>
<td>7.4</td>
<td>B</td>
<td>SED2-1.5/22B</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>20</td>
<td>B 11.3</td>
<td>10.4</td>
<td>B</td>
<td>SED2-2.2/22B</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>20</td>
<td>B 15.6</td>
<td>13.6</td>
<td>C</td>
<td>SED2-3/22B</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>B 20.1</td>
<td>17.5</td>
<td>C</td>
<td>SED2-4/22B</td>
</tr>
<tr>
<td>5.5</td>
<td>7.5</td>
<td>20</td>
<td>B 26.3</td>
<td>22</td>
<td>C</td>
<td>SED2-5.5/22B</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>20</td>
<td>B 36.4</td>
<td>28</td>
<td>C</td>
<td>SED2-7.5/22B</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>20</td>
<td>B 46</td>
<td>42</td>
<td>D</td>
<td>SED2-11/22B</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>20</td>
<td>B 60</td>
<td>54</td>
<td>D</td>
<td>SED2-15/22B</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>20</td>
<td>B 75</td>
<td>68</td>
<td>D</td>
<td>SED2-18.5/22B</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>20</td>
<td>B 88</td>
<td>80</td>
<td>E</td>
<td>SED2-22/22B</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>20</td>
<td>B 114</td>
<td>104</td>
<td>E</td>
<td>SED2-30/22B</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>20</td>
<td>B 143</td>
<td>130</td>
<td>F</td>
<td>SED2-37/22B</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>20</td>
<td>B 170</td>
<td>154</td>
<td>F</td>
<td>SED2-45/22B</td>
</tr>
<tr>
<td>0.37</td>
<td>0.5</td>
<td>unfiltered</td>
<td>2.4</td>
<td>2.3</td>
<td>A</td>
<td>SED2-0.37/22X</td>
</tr>
<tr>
<td>0.55</td>
<td>0.75</td>
<td>unfiltered</td>
<td>3.1</td>
<td>3</td>
<td>A</td>
<td>SED2-0.55/22X</td>
</tr>
<tr>
<td>0.75</td>
<td>1</td>
<td>unfiltered</td>
<td>4.3</td>
<td>3.9</td>
<td>A</td>
<td>SED2-0.75/22X</td>
</tr>
<tr>
<td>1.1</td>
<td>1.5</td>
<td>unfiltered</td>
<td>6.2</td>
<td>5.5</td>
<td>B</td>
<td>SED2-1.1/22X</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>unfiltered</td>
<td>8.3</td>
<td>7.4</td>
<td>B</td>
<td>SED2-1.5/22X</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>unfiltered</td>
<td>11.3</td>
<td>10.4</td>
<td>B</td>
<td>SED2-2.2/22X</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>unfiltered</td>
<td>15.6</td>
<td>13.6</td>
<td>C</td>
<td>SED2-3/22X</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>unfiltered</td>
<td>20.1</td>
<td>17.5</td>
<td>C</td>
<td>SED2-4/22X</td>
</tr>
<tr>
<td>5.5</td>
<td>7.5</td>
<td>unfiltered</td>
<td>26.3</td>
<td>22</td>
<td>C</td>
<td>SED2-5.5/22X</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>unfiltered</td>
<td>36.4</td>
<td>28</td>
<td>C</td>
<td>SED2-7.5/22X</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>unfiltered</td>
<td>46</td>
<td>42</td>
<td>D</td>
<td>SED2-11/22X</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>unfiltered</td>
<td>60</td>
<td>54</td>
<td>D</td>
<td>SED2-15/22X</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>unfiltered</td>
<td>75</td>
<td>68</td>
<td>D</td>
<td>SED2-18.5/22X</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>unfiltered</td>
<td>88</td>
<td>80</td>
<td>E</td>
<td>SED2-22/22X</td>
</tr>
</tbody>
</table>
200 V to 240 V, ± 10%, 3 phases

<table>
<thead>
<tr>
<th>Output power (variable torque)</th>
<th>IP code</th>
<th>Filter class</th>
<th>Max. input current 3 phases</th>
<th>Max. output current</th>
<th>Frame size</th>
<th>Type (ASN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>hp</td>
<td>kW</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>20</td>
<td>unfiltered</td>
<td>114</td>
<td>104</td>
<td>E</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>20</td>
<td>unfiltered</td>
<td>143</td>
<td>130</td>
<td>F</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>20</td>
<td>unfiltered</td>
<td>170</td>
<td>154</td>
<td>F</td>
</tr>
</tbody>
</table>

380 V to 480 V, ± 10%, 3 phases

<table>
<thead>
<tr>
<th>Output power (variable torque)</th>
<th>IP code</th>
<th>Filter class</th>
<th>Max. input current 3 phases</th>
<th>Max. output current</th>
<th>Frame size</th>
<th>Type (ASN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>hp</td>
<td>kW</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.37</td>
<td>0.5</td>
<td>20</td>
<td>B</td>
<td>1.6</td>
<td>1.2</td>
<td>A</td>
</tr>
<tr>
<td>0.55</td>
<td>0.75</td>
<td>20</td>
<td>B</td>
<td>2.1</td>
<td>1.6</td>
<td>A</td>
</tr>
<tr>
<td>0.75</td>
<td>1</td>
<td>20</td>
<td>B</td>
<td>2.8</td>
<td>2.1</td>
<td>A</td>
</tr>
<tr>
<td>1.1</td>
<td>1.5</td>
<td>20</td>
<td>B</td>
<td>4.2</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>20</td>
<td>B</td>
<td>5.8</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>20</td>
<td>B</td>
<td>7.5</td>
<td>5.9</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>20</td>
<td>B</td>
<td>10</td>
<td>7.7</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>B</td>
<td>12.8</td>
<td>10.2</td>
<td>B</td>
</tr>
<tr>
<td>5.5</td>
<td>7.5</td>
<td>20</td>
<td>B</td>
<td>16.6</td>
<td>13.2</td>
<td>C</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>20</td>
<td>B</td>
<td>24</td>
<td>18.4</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>20</td>
<td>B</td>
<td>33.8</td>
<td>26</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>20</td>
<td>B</td>
<td>42</td>
<td>32</td>
<td>C</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>20</td>
<td>B</td>
<td>45.7</td>
<td>38</td>
<td>D</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>20</td>
<td>B</td>
<td>50</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>20</td>
<td>B</td>
<td>68</td>
<td>62</td>
<td>D</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>20</td>
<td>B</td>
<td>83</td>
<td>75</td>
<td>E</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>20</td>
<td>B</td>
<td>99</td>
<td>90</td>
<td>E</td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>20</td>
<td>B</td>
<td>121</td>
<td>110</td>
<td>F</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>20</td>
<td>B</td>
<td>160</td>
<td>145</td>
<td>F</td>
</tr>
<tr>
<td>90</td>
<td>125</td>
<td>20</td>
<td>B</td>
<td>196</td>
<td>178</td>
<td>F</td>
</tr>
<tr>
<td>0.37</td>
<td>0.5</td>
<td>20</td>
<td>unfiltered</td>
<td>1.6</td>
<td>1.2</td>
<td>A</td>
</tr>
<tr>
<td>0.55</td>
<td>0.75</td>
<td>20</td>
<td>unfiltered</td>
<td>2.1</td>
<td>1.6</td>
<td>A</td>
</tr>
<tr>
<td>0.75</td>
<td>1</td>
<td>20</td>
<td>unfiltered</td>
<td>2.8</td>
<td>2.1</td>
<td>A</td>
</tr>
<tr>
<td>1.1</td>
<td>1.5</td>
<td>20</td>
<td>unfiltered</td>
<td>4.2</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>20</td>
<td>unfiltered</td>
<td>5.8</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>20</td>
<td>unfiltered</td>
<td>7.5</td>
<td>5.9</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>20</td>
<td>unfiltered</td>
<td>10</td>
<td>7.7</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>unfiltered</td>
<td>12.8</td>
<td>10.2</td>
<td>B</td>
</tr>
<tr>
<td>5.5</td>
<td>7.5</td>
<td>20</td>
<td>unfiltered</td>
<td>16.6</td>
<td>13.2</td>
<td>C</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>20</td>
<td>unfiltered</td>
<td>24</td>
<td>18.4</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>20</td>
<td>unfiltered</td>
<td>33.8</td>
<td>26</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>20</td>
<td>unfiltered</td>
<td>42</td>
<td>32</td>
<td>C</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>20</td>
<td>unfiltered</td>
<td>45.7</td>
<td>38</td>
<td>D</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>20</td>
<td>unfiltered</td>
<td>50</td>
<td>45</td>
<td>D</td>
</tr>
</tbody>
</table>
380 V to 480 V, ± 10%, 3 phases

<table>
<thead>
<tr>
<th>Output power (variable torque)</th>
<th>IP code</th>
<th>Filter class</th>
<th>Max. input current 3 phases</th>
<th>Max. output current</th>
<th>Frame size</th>
<th>Type (ASN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>hp</td>
<td>IP</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>20</td>
<td>unfiltered</td>
<td>68</td>
<td>62</td>
<td>D</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>20</td>
<td>unfiltered</td>
<td>83</td>
<td>75</td>
<td>E</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>20</td>
<td>unfiltered</td>
<td>99</td>
<td>90</td>
<td>E</td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>20</td>
<td>unfiltered</td>
<td>121</td>
<td>110</td>
<td>F</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>20</td>
<td>unfiltered</td>
<td>160</td>
<td>145</td>
<td>F</td>
</tr>
<tr>
<td>90</td>
<td>125</td>
<td>20</td>
<td>unfiltered</td>
<td>196</td>
<td>178</td>
<td>F</td>
</tr>
<tr>
<td>1.1</td>
<td>1.5</td>
<td>54</td>
<td>B</td>
<td>4.2</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>54</td>
<td>B</td>
<td>5.8</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>54</td>
<td>B</td>
<td>7.5</td>
<td>5.9</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>54</td>
<td>B</td>
<td>10</td>
<td>7.7</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>54</td>
<td>B</td>
<td>12.8</td>
<td>10.2</td>
<td>B</td>
</tr>
<tr>
<td>5.5</td>
<td>7.5</td>
<td>54</td>
<td>B</td>
<td>16.6</td>
<td>13.2</td>
<td>C</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>54</td>
<td>B</td>
<td>24</td>
<td>18.4</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>54</td>
<td>B</td>
<td>33.8</td>
<td>26</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>54</td>
<td>B</td>
<td>42</td>
<td>32</td>
<td>C</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>54</td>
<td>B</td>
<td>45.7</td>
<td>38</td>
<td>D</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>54</td>
<td>B</td>
<td>50</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>54</td>
<td>B</td>
<td>68</td>
<td>62</td>
<td>D</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>54</td>
<td>B</td>
<td>83</td>
<td>75</td>
<td>E</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>54</td>
<td>B</td>
<td>99</td>
<td>90</td>
<td>E</td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>54</td>
<td>B</td>
<td>121</td>
<td>110</td>
<td>F</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>54</td>
<td>B</td>
<td>160</td>
<td>145</td>
<td>F</td>
</tr>
<tr>
<td>90</td>
<td>125</td>
<td>54</td>
<td>B</td>
<td>196</td>
<td>178</td>
<td>F</td>
</tr>
<tr>
<td>1.1</td>
<td>1.5</td>
<td>54</td>
<td>unfiltered</td>
<td>4.2</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>54</td>
<td>unfiltered</td>
<td>5.8</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>54</td>
<td>unfiltered</td>
<td>7.5</td>
<td>5.9</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>54</td>
<td>unfiltered</td>
<td>10</td>
<td>7.7</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>54</td>
<td>unfiltered</td>
<td>12.8</td>
<td>10.2</td>
<td>B</td>
</tr>
<tr>
<td>5.5</td>
<td>7.5</td>
<td>54</td>
<td>unfiltered</td>
<td>16.6</td>
<td>13.2</td>
<td>C</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>54</td>
<td>unfiltered</td>
<td>24</td>
<td>18.4</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>54</td>
<td>unfiltered</td>
<td>33.8</td>
<td>26</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>54</td>
<td>unfiltered</td>
<td>42</td>
<td>32</td>
<td>C</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>54</td>
<td>unfiltered</td>
<td>45.7</td>
<td>38</td>
<td>D</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>54</td>
<td>unfiltered</td>
<td>50</td>
<td>45</td>
<td>D</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>54</td>
<td>unfiltered</td>
<td>68</td>
<td>62</td>
<td>D</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>54</td>
<td>unfiltered</td>
<td>83</td>
<td>75</td>
<td>E</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>54</td>
<td>unfiltered</td>
<td>99</td>
<td>90</td>
<td>E</td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>54</td>
<td>unfiltered</td>
<td>121</td>
<td>110</td>
<td>F</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>54</td>
<td>unfiltered</td>
<td>160</td>
<td>145</td>
<td>F</td>
</tr>
<tr>
<td>90</td>
<td>125</td>
<td>54</td>
<td>unfiltered</td>
<td>196</td>
<td>178</td>
<td>F</td>
</tr>
</tbody>
</table>
500 V to 600 V, ± 10%, 3 phases

<table>
<thead>
<tr>
<th>kW</th>
<th>hp</th>
<th>IP</th>
<th>Filter class</th>
<th>Max. input current (3 phases)</th>
<th>Max. output current</th>
<th>Frame size</th>
<th>Type (ASN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>1</td>
<td>20</td>
<td>unfiltered</td>
<td>2</td>
<td>1.4</td>
<td>C</td>
<td>SED2-0.75/42X</td>
</tr>
<tr>
<td>1.1</td>
<td>1.5</td>
<td>20</td>
<td>unfiltered</td>
<td>2.5</td>
<td>2.1</td>
<td>C</td>
<td>SED2-1.1/42X</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>20</td>
<td>unfiltered</td>
<td>3.2</td>
<td>2.7</td>
<td>C</td>
<td>SED2-1.5/42X</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>20</td>
<td>unfiltered</td>
<td>4.4</td>
<td>3.9</td>
<td>C</td>
<td>SED2-2.2/42X</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>20</td>
<td>unfiltered</td>
<td>6.3</td>
<td>5.4</td>
<td>C</td>
<td>SED2-3/42X</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
<td>unfiltered</td>
<td>6.9</td>
<td>6.1</td>
<td>C</td>
<td>SED2-4/42X</td>
</tr>
<tr>
<td>5.5</td>
<td>7.5</td>
<td>20</td>
<td>unfiltered</td>
<td>9.4</td>
<td>9</td>
<td>C</td>
<td>SED2-5.5/42X</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>20</td>
<td>unfiltered</td>
<td>12.6</td>
<td>11</td>
<td>C</td>
<td>SED2-7.5/42X</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>20</td>
<td>unfiltered</td>
<td>18.1</td>
<td>17</td>
<td>C</td>
<td>SED2-11/42X</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>20</td>
<td>unfiltered</td>
<td>24.9</td>
<td>22</td>
<td>C</td>
<td>SED2-15/42X</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>20</td>
<td>unfiltered</td>
<td>30</td>
<td>27</td>
<td>D</td>
<td>SED2-18.5/42X</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>20</td>
<td>unfiltered</td>
<td>35</td>
<td>32</td>
<td>D</td>
<td>SED2-22/42X</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>20</td>
<td>unfiltered</td>
<td>45</td>
<td>41</td>
<td>D</td>
<td>SED2-30/42X</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>20</td>
<td>unfiltered</td>
<td>57</td>
<td>52</td>
<td>E</td>
<td>SED2-37/42X</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>20</td>
<td>unfiltered</td>
<td>68</td>
<td>62</td>
<td>E</td>
<td>SED2-45/42X</td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>20</td>
<td>unfiltered</td>
<td>85</td>
<td>77</td>
<td>F</td>
<td>SED2-55/42X</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>20</td>
<td>unfiltered</td>
<td>109</td>
<td>99</td>
<td>F</td>
<td>SED2-75/42X</td>
</tr>
<tr>
<td>90</td>
<td>125</td>
<td>20</td>
<td>unfiltered</td>
<td>138</td>
<td>125</td>
<td>F</td>
<td>SED2-90/42X</td>
</tr>
<tr>
<td>1.1</td>
<td>1.5</td>
<td>54</td>
<td>unfiltered</td>
<td>2.5</td>
<td>2.1</td>
<td>C</td>
<td>SED2-1.1/45X</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>54</td>
<td>unfiltered</td>
<td>3.2</td>
<td>2.7</td>
<td>C</td>
<td>SED2-1.5/45X</td>
</tr>
<tr>
<td>2.2</td>
<td>3</td>
<td>54</td>
<td>unfiltered</td>
<td>4.4</td>
<td>3.9</td>
<td>C</td>
<td>SED2-2.2/45X</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>54</td>
<td>unfiltered</td>
<td>6.3</td>
<td>5.4</td>
<td>C</td>
<td>SED2-3/45X</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>54</td>
<td>unfiltered</td>
<td>6.9</td>
<td>6.1</td>
<td>C</td>
<td>SED2-4/45X</td>
</tr>
<tr>
<td>5.5</td>
<td>7.5</td>
<td>54</td>
<td>unfiltered</td>
<td>9.4</td>
<td>9</td>
<td>C</td>
<td>SED2-5.5/45X</td>
</tr>
<tr>
<td>7.5</td>
<td>10</td>
<td>54</td>
<td>unfiltered</td>
<td>12.6</td>
<td>11</td>
<td>C</td>
<td>SED2-7.5/45X</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>54</td>
<td>unfiltered</td>
<td>18.1</td>
<td>17</td>
<td>C</td>
<td>SED2-11/45X</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>54</td>
<td>unfiltered</td>
<td>24.9</td>
<td>22</td>
<td>C</td>
<td>SED2-15/45X</td>
</tr>
<tr>
<td>18.5</td>
<td>25</td>
<td>54</td>
<td>unfiltered</td>
<td>30</td>
<td>27</td>
<td>D</td>
<td>SED2-18.5/45X</td>
</tr>
<tr>
<td>22</td>
<td>30</td>
<td>54</td>
<td>unfiltered</td>
<td>35</td>
<td>32</td>
<td>D</td>
<td>SED2-22/45X</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>54</td>
<td>unfiltered</td>
<td>45</td>
<td>41</td>
<td>D</td>
<td>SED2-30/45X</td>
</tr>
<tr>
<td>37</td>
<td>50</td>
<td>54</td>
<td>unfiltered</td>
<td>57</td>
<td>52</td>
<td>E</td>
<td>SED2-37/45X</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>54</td>
<td>unfiltered</td>
<td>68</td>
<td>62</td>
<td>E</td>
<td>SED2-45/45X</td>
</tr>
<tr>
<td>55</td>
<td>75</td>
<td>54</td>
<td>unfiltered</td>
<td>85</td>
<td>77</td>
<td>F</td>
<td>SED2-55/45X</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>54</td>
<td>unfiltered</td>
<td>109</td>
<td>99</td>
<td>F</td>
<td>SED2-75/45X</td>
</tr>
<tr>
<td>90</td>
<td>125</td>
<td>54</td>
<td>unfiltered</td>
<td>138</td>
<td>125</td>
<td>F</td>
<td>SED2-90/45X</td>
</tr>
</tbody>
</table>
9 Appendix

9.1 Options

Depending on the application, various options are available for the SED2 variable speed drive.

Output chokes

Chokes at the VSD output may be required to compensate for leakage capacitance. Refer to the engineering manual for detailed information on this topic.

Gland plate

The gland plate simplifies and improves connection of shielded motor and control cables. It allows for better contact of the shields and thus optimizes the EMC behavior of the variable speed drive.

There are different gland plates depending on the frame size of the VSD.

Advanced operator panel (AOP)

Operator panel with multilingual and multi-line clear-text display that can be used instead of the basic operator panel BOP. The AOP can be inserted on the VSD or integrated in the front plate or the control panel doors by means of a mounting set. For further information, refer to section 5.3.2 Description of the advanced operator panel (AOP) or the AOP user's guide.

BOP/AOP door mounting set for 1 VSD control

Used to mount the BOP or AOP operator panel in the control cabinet door. The set contains an AOP/BOP cable adapter print and an adapter for the VSD which is inserted in the VSD in place of the BOP or AOP. The serial interface RS232 and the power supply are both run to the adapters, which have screwless connection terminals. The 4-core connection cable is not part of the mounting set.

The AOP communicates with several SED2 drives via RS485 (USS protocol). This mounting set allows for controlling several VSDs in a control panel by means of one AOP (mounted in the control cabinet door). Thus, up to 31 VSDs can be controlled from one AOP. The AOP interface print also contains a separate RS232 interface. The VSD uses this interface to communicate with a PC. The cables are not included in the set.

PC – SED2 connection set

This kit helps control or program the SED2 from a PC via the serial interface RS232 by using a commissioning software. The set contains an RS232 adapter card which is snapped on the VSD in place of the AOP or BOP. The RS485 interface is not used.

PC – AOP kit

Allows for programming the AOP independent of the VSD from a PC, or to download or upload complete sets of parameters. The kit consists of a 3 m long modem cable and a power supply unit (to supply power to the AOP). The kit does not include the AOP.

Communication interface module

The LON module is not yet available.

Expect for end of 2002.

Software options

The commissioning software is not yet available.
9.1.1 Retrofitting EMC filters for VSD frame sizes A to C

The SED2 VSDs of frame sizes A to C without filter can be retrofitted with footprint filters as needed. Mounting instructions are included in the filter packing.

Below are the order numbers for the voltage ranges and frame sizes:

<table>
<thead>
<tr>
<th>Frame size</th>
<th>200 V to 240 V, 3 AC</th>
<th>380 V to 480 V, 3 AC</th>
<th>500 V to 575 V, 3 AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SED2-BFLTR-A</td>
<td>SED2-BFLTR-A</td>
<td>No filter available.</td>
</tr>
<tr>
<td>B</td>
<td>SED2-BFLTR-B</td>
<td>SED2-BFLTR-B</td>
<td>No filter available.</td>
</tr>
<tr>
<td>C</td>
<td>SED2-BFLTR-C-L</td>
<td>SED2-BFLTR-C-H</td>
<td>No filter available.</td>
</tr>
</tbody>
</table>

9.2 Applicable standards

European low-voltage guideline

The SED2 product range corresponds to the requirements of the low-voltage guideline 73/23/EEC, supplemented by guideline 98/68/EEC. The devices have been certified to the following standards:

- EN 60146-1-1 Semiconductor inverters – General requirements and line commutated inverters.
- EN 60204-1 Safety of machinery – Electrical equipment of machines.

European guideline for machinery

This guideline does not apply to the SED2 VSD product series. The products were tested comprehensively and evaluated for adherence to important guidelines pertaining to health and safety in a typical application. A declaration of conformity will be provided on request.

European EMC guideline

If installed according to the recommendations issued in this manual, the SED2 satisfies all EMC guideline requirements as defined in the EMC Product Standard for Power Drive Systems EN61800-3.

Underwriters Laboratories

Frequency inverter devices 5B33 approved by UL and CUL for use in pollution class 2 environments.

ISO 9001

Siemens SBT applies a quality management system according to the requirements of ISO 9001.
9.3 List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current.</td>
</tr>
<tr>
<td>A/D</td>
<td>Analog / digital converter (also called ADC).</td>
</tr>
<tr>
<td>AIN</td>
<td>Analog input.</td>
</tr>
<tr>
<td>AOP</td>
<td>Advanced operator panel (AOP).</td>
</tr>
<tr>
<td>AOUT</td>
<td>Analog output.</td>
</tr>
<tr>
<td>BACS</td>
<td>Building automation and control system; do not confuse with building management system BMS.</td>
</tr>
<tr>
<td>BI</td>
<td>Binector input, i.e., the parameter selects the source of the binary signal.</td>
</tr>
<tr>
<td>BO</td>
<td>Binector output, i.e., the parameter connects as a binary signal.</td>
</tr>
<tr>
<td>BOP</td>
<td>Basic operator panel (BOP).</td>
</tr>
<tr>
<td>CB</td>
<td>Communication board.</td>
</tr>
<tr>
<td>CDS</td>
<td>Command data set.</td>
</tr>
<tr>
<td>CI</td>
<td>Plug input, i.e., the parameter selects the source of the analog signal.</td>
</tr>
<tr>
<td>CO</td>
<td>Plug output, i.e., the parameter connects as an analog signal.</td>
</tr>
<tr>
<td>CO/BO</td>
<td>Plug/binector output, i.e., the parameter connects as an analog and/or binary signal.</td>
</tr>
<tr>
<td>D/A</td>
<td>Digital / analog converter (also called DAC).</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current.</td>
</tr>
<tr>
<td>Destaging</td>
<td>For pumps (or fans): The process of stopping an additional motor with constant speed to reduce power.</td>
</tr>
<tr>
<td>DIN</td>
<td>Digital input.</td>
</tr>
<tr>
<td>DOUT</td>
<td>Digital output.</td>
</tr>
<tr>
<td>ELCB</td>
<td>Earth leakage circuit breaker.</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility.</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference.</td>
</tr>
<tr>
<td>FCC</td>
<td>Flux current control.</td>
</tr>
<tr>
<td>FS</td>
<td>Frame size of the SED2 variable speed drives.</td>
</tr>
<tr>
<td>IEC</td>
<td>International electrotechnical commission.</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated gate bipolar transistor.</td>
</tr>
<tr>
<td>IPxx</td>
<td>IP number (ingress protection) for the type of protection afforded to the device.</td>
</tr>
<tr>
<td></td>
<td>IP20 Device protected against intrusion of items greater >12 mm. No protection against water. (Corresponds to the US standard NEMA 1).</td>
</tr>
<tr>
<td></td>
<td>IP54 Device protected against dust and spray from all directions. (Corresponds to the US standard NEMA 12).</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid crystal display.</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional, integral, differential (controller).</td>
</tr>
<tr>
<td>PTC</td>
<td>Positive temperature coefficient.</td>
</tr>
<tr>
<td>RCCB</td>
<td>Residual current circuit breaker.</td>
</tr>
<tr>
<td>Staging</td>
<td>For pumps (or fans): The process of starting an additional motor with constant speed to increase power.</td>
</tr>
<tr>
<td>USS</td>
<td>Universal serial interface protocol.</td>
</tr>
<tr>
<td>VSD</td>
<td>Variable speed drive.</td>
</tr>
<tr>
<td>Y-condensator</td>
<td>Star condensator.</td>
</tr>
</tbody>
</table>
Index

A
abbreviations..118
access to connection terminals
 frame sizes B and C..25
 frame sizes D to F..26
access to connection terminals for frame size A........24
advanced operator panel..41, 116
ambient conditions...11
analog inputs..53
analog outputs..56
applicable standards ..117
authorized personnel...7

B
basic functions of the SED2....................................51
basic operation with the BOP.................................47
belt failure detection with sensor...........................63
belt failure detection without sensor.......................61
block diagram for mains..34
BOP/AOP door mounting set..................................116
bus bar..21
bypass
 VSD..69
bypassing the VSD..69

cable routing for frame size A, with footprint filter ...22
cable routing for frame size F, IP20 with EMC filter ..23
checklist prior to start...40
choke..116
command source selection.....................................58
commissioning...38
 flow chart for quick commissioning.....................44
 overview...43
 quick commissioning...43
 types of commissioning.....................................43
 with BOP or AOP...45
communication...59
connecting several motors.................................35
contactor..21
control terminals..36
 access..36
control types...59
country-specific default settings.........................45

dangerous voltages..10
destaging..65
digital inputs..51
dimensions

D
SED2 drives with IP54/NEMA 12 rating...............14
SED2 footprint filters for frame sizes A to C.........13
SED2 frame sizes A to C...................................12
SED2 frame sizes D to F...................................13
DIP switch setting...39
DIP switch settings..39
direction of rotation...34
disposal..8
document conventions..7
drilling plan
 SED2 IP20/NEMA 0..15
 SED2 IP54/NEMA 12...16

electric installation
 mains and motor connections............................17, 23
electrical installation..17
electromagnetic interference...............................21
EMC-compatible installation...............................21
emergency stop facility.....................................10, 38
EMI...21
environmental compatibility and disposal..............8
error code list..105
error messages...105

F
factory and user settings...................................102
frequency setpoint..58

G
general operation of SED2.................................48
general technical data.......................................110
getting started guide...6
 gland plate..116
 grounding conductor..21
 grounding point...21

H
hibernation mode...71
high voltage insulation test equipment...............23
HVAC functions for SED2....................................60

I
installation after extended storage.......................11

M
mains and motor connections.............................23
mains connection with integrated EMC filter
 frame sizes D to F...29
 mechanical installation....................................11
 motor cable length...17, 21
 motor data for parameterization.......................45

123/126