INSTRUCTION MANUAL

TEC@
 INVERITER

200 V class
IP20 3 Phase 3.7~132KW 5~175HP

400 V class
IP20 3 Phase 3.7~315KW 5~425HP

IP55 3 Phase 3.7~75KW 5~100HP

Table of Contents

Preface 0-1
Chapter 1 Safety Precautions 1-1
1.1 Before Supplying Power to the Inverter 1-1
1.2 Wiring 1-2
1.3 Before Operation 1-3
1.4 Parameters Setting 1-3
1.5 Operation 1-4
1.6 Maintenance, Inspection and Replacement 1-5
1.7 Disposal of the Inverter 1-5
Chapter 2 Model Description 2-1
2.1 Nameplate Data 2-1
2.2 Inverter Models-Motor Power Rating 2-1
Chapter 3 Environment and Installation 3-1
3.1 Environment 3-1
3.2 Installation 3-2
3.2.1 Installation Spaces 3-2
3.2.2 External View 3-3
3.2.2.1 External View (IP00/ IP20) 3-3
3.2.2.2 External View (IP55) 3-6
3.2.3 Warning Labels 3-7
3.2.4 Removing the Front Cover and Keypad 3-8
3.2.4.1 Standard Type (IP00/IP20) 3-9
3.2.4.2 Built-in Filter Type (IP20/IP00) 3-15
3.2.4.3 Built-in Filter Type (IP55) 3-16
3.3 Inverter Wiring 3-18
3.3.1 Wire Gauges and Tightening Torque 3-18
3.3.2 Wiring Peripheral Power Devices 3-19
3.3.3 General Wiring Diagram 3-21
3.3.4 Wiring for Control Circuit Terminals 3-22
3.3.5 Wiring for Main Circuit Terminals 3-25
3.3.6 Wiring Precautions 3-34
3.3.7 Input Power and Cable Length 3-36
3.4 Inverter Specifications 3-37
3.5 Inverter Derating Based on Carrier Frequency 3-41
3.6 Inverter Derating Based on Temperature 3-45
3.7 Inverter Dimensions 3-46
3.7.1 Standard Type (IP00/IP20) 3-46
3.7.2 Models with Built-in Filter (IP00/IP20) 3-54
3.7.3 Models with Built-in Filter (IP55) 3-56
Chapter 4 Keypad and Programming Functions 4-1
4.1 LED Keypad 4-1
4.1.1 Keypad Display and Keys 4-1
4.1.2 Seven Segment Display Description 4-3
4.1.3 LED Indicator Description 4-5
4.1.4 Power-up Monitor 4-7
4.1.5 Modifying Parameters/ Set Frequency Reference 4-8
4.1.6 Operation Control 4-10
4.2 LCD keypad 4-11
4.2.1 Keypad Display and Keys 4-11
4.2.2 Keypad Menu Structure 4-13
4.3 Parameters 4-18
4.4 Description of Parameters 4-59
4.5 Built-in PLC Function 4-225
4.5.1 Basic Command 4-225
4.5.2 Basic Command Function 4-226
4.5.3 Application Functions 4-227
4.6 Modbus Protocol Descriptions 4-234
4.6.1 Communication Connection and Data Frame 4-234
4.6.2 Register and Data Format 4-238
4.7 BacNET Protocol Descriptions 4-257
4.7.1 BACnet Services 4-257
4.7.2 BACnet Protocol Structure 4-258
4.7.3 BACnet Specifications 4-259
4.7.4 BACnet Object Properties 4-260
4.8 MetaSys N2 Communication Protocol 4-263
4.8.1 Instroduction and Setting 4-263
4.8.2 MetaSys N2 Specification 4-263
4.8.3 Definition of MetaSys N2 Communication Protocol 4-264
4.8.4 MetaSys N2 Communication Protocol in F510 Model 4-265
Chapter 5 Check Motor Rotation and Direction 5-1
Chapter 6 Speed Reference Command Configuration 6-1
6.1 Reference from Keypad 6-1
6.2 Reference from External Analog Signal (0-10V / 4-20mA) 6-2
6.3 Reference from Serial Communication RS485 (00-05=3) 6-4
6.4 Reference from two Analog Inputs 6-6
6.5 Change Frequency Unit from Hz to rpm 6-6
Chapter 7 Operation Method Configuration (Run I Stop) 7-1
7.1 Run/Stop from the Keypad (00-02=0) - Default Setting 7-1
7.2 Run/Stop from External Switch / Contact or Pushbutton 7-2
7.3 Run/Stop from Serial Communication RS485 (00-02=3) 7-3
Chapter 8 Motor and Application Specific Settings 8-1
8.1 Set Motor Nameplate Data (02-01, 02-05) 8-1
8.2 Acceleration and Deceleration Time (00-14, 00-15) 8-2
8.3 Torque Compensation Gain (01-10) 8-3
8.4 Automatic Energy Savings Function (11-19) 8-4
8.5 Emergency Stop 8-6
8.6 Direct / Unattended Startup 8-7
8.7 Analog Output Setup 8-8
Chapter 9 Using PID Control for Constant Flow I Pressure Applications 9-1
9.1 What is PID Control? 9-1
9.2 Connect Transducer Feedback Signal (10-01) 9-3
9.3 Engineering Units 9-4
9.4 Sleep / Wakeup Function 9-5
Chapter 10 Troubleshooting and Fault Diagnostics 10-1
10.1 General 10-1
10.2 Fault Detection Function 10-1
10.3 Warning / Self-diagnosis Detection Function 10-5
10.4 Auto-tuning Error 10-11
10.5 PM Motor Auto-tuning Error 10-12
Chapter 11 Inverter Peripheral devices and Options 11-1
11.1 Braking Resistors and Braking Units Environment 11-1
11.2 AC Line Reactors 11-4
11.3 Harmonic Filters 11-6
11.4 Input Noise Filters 11-9
11.5 Output Filters 11-11
11.6 Input Current and Fuse Specifications 11-12
11.7 Other options 11-14
11.8 Communication options 11-18

Preface

- The F510 product is an inverter designed to control a three-phase induction motor. Please read this manual carefully to ensure correct operation, safety and to become familiar with the inverter functions.
- The F510 inverter is an electrical / electronic product and must be installed and handled by qualified service personnel.
- Improper handling may result in incorrect operation, shorter life cycle, or failure of this product as well as the motor.
- All F510 documentation is subject to change without notice. Be sure to obtain the latest editions for use or visit our website at http://globalsa.teco.com.tw.
- Read this instruction manual thoroughly before proceeding with installation, connections (wiring), operation, or maintenance and inspection.
- Ensure you have sound knowledge of the inverter and familiarize yourself with all safety information and precautions before proceeding to operate the inverter.
- Please pay close attention to the safety precautions indicated by the warning and caution \lfloor symbol.

Warning	Failure to ignore the information indicated by the warning symbol may result in death or serious injury.
Λ Caution	Failure to ignore the information indicated by the caution symbol may result in minor or moderate injury and/or substantial property damage.

Chapter 1 Safety Precautions

1.1 Before Supplying Power to the Inverter

Warning

> The main circuit must be correctly wired. For single phase supply use input terminals (R/L1, T/L3) and for three phase supply use input terminals (R/L1, S/L2, T/L3). Terminals U/T1, V/T2, W/T3 must only be used to connect the motor. Connecting the input supply to any of the U/T1, V/T2 or W/T3 terminals will cause damage to the inverter.

Caution

> To avoid the front cover from disengaging or other physical damage, do not carry the inverter by its cover. Support the unit by its heat sink when transporting. Improper handling can damage the inverter or injure personnel, and should be avoided.
> To avoid the risk of fire, do not install the inverter on or near flammable objects. Install on nonflammable objects such as metal surfaces.
> If several inverters are placed inside the same control panel, provide adequate ventilation to maintain the temperature below $40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}\right.$ without a dust cover) to avoid overheating or fire.
> When removing or installing the digital operator, turn off the power first, and then follow the instructions in this manual to avoid operator error or loss of display caused by faulty connections.

Warning

> This product is sold subject to IEC 61800-3. In a domestic environment this product may cause radio interference in which case the user may need to apply corrective measures.

1.2 Wiring

Warning

> Always turn OFF the power supply before attempting inverter installation and wiring of the user terminals.
> Wiring must be performed by a qualified personnel / certified electrician.
> Make sure the inverter is properly grounded. (220V Class: Grounding impedance shall be less than 100Ω. 440 V Class: Grounding impedance shall be less than 10Ω.)
> Please check and test emergency stop circuits after wiring. (Installer is responsible for the correct wiring.)
> Never touch any of the input or output power lines directly or allow any input or output power lines to come in contact with the inverter case.
$>$ Do not perform a dielectric voltage withstand test (megger) on the inverter or this will result in inverter damage to the semiconductor components.

Caution

> The line voltage applied must comply with the inverter's specified input voltage. (See product nameplate section 2.1)
> Connect braking resistor and braking unit to the designated terminals. (See section 3.3.5)
$>$ Do not connect a braking resistor directly to the DC terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$, otherwise fire may result.
> Use wire gauge recommendations and torque specifications. (See Wire Gauge and Torque Specification section 3.3.1) 。
$>$ Never connect input power to the inverter output terminals U/T1, V/T2, W/T3.
> Do not connect a contactor or switch in series with the inverter and the motor.
$>$ Do not connect a power factor correction capacitor or surge suppressor to the inverter output 。
$>$ Ensure the interference generated by the inverter and motor does not affect peripheral devices.

1.3 Before Operation

Warning

> Make sure the inverter capacity matches the parameters $13-00$ before supplying power.
> Reduce the carrier frequency (parameter 11-01) If the cable from the inverter to the motor is greater than $80 \mathrm{ft}(25 \mathrm{~m})$. A high-frequency current can be generated by stray capacitance between the cables and result in an overcurrent trip of the inverter, an increase in leakage current, or an inaccurate current readout.
> Be sure to install all covers before turning on power. Do not remove any of the covers while power to the inverter is on, otherwise electric shock may occur.
> Do not operate switches with wet hands, otherwise electric shock may result.
$>$ Do not touch inverter terminals when energized even if inverter has stopped, otherwise electric shock may result.

1.4 Parameter Setting

Caution

> Do not connect a load to the motor while performing an auto-tune.
> Make sure the motor can freely run and there is sufficient space around the motor when performing a rotational auto-tune.

1.5 Operation

Warning

> Be sure to install all covers before turning on power. Do not remove any of the covers while power to the inverter is on, otherwise electric shock may occur.
> Do not connect or disconnect the motor during operation. This will cause the inverter to trip and may cause damage to the inverter.
> Operations may start suddenly if an alarm or fault is reset with a run command active. Confirm that no run command is active upon resetting the alarm or fault, otherwise accidents may occur.
> Do not operate switches with wet hands, otherwise electric shock may result.
> When using an external stop switch make sure parameter 08-30 is set to decelerate to stop (0) for the safety function.
> It provides an independent external hardware emergency switch, which emergently shuts down the inverter output in the case of danger.
$>$ If automatic restart after power recovery (parameter 07-00) is enabled, the inverter will start automatically after power is restored.
> Make sure it is safe to operate the inverter and motor before performing a rotational auto-tune.
> Do not touch inverter terminals when energized even if inverter has stopped, otherwise electric shock may result.
> Do not check signals on circuit boards while the inverter is running.
After the power is turned off, the cooling fan may continue to run for some time.

Caution

> Do not touch heat-generating components such as heat sinks and braking resistors.
> Carefully check the performance of motor or machine before operating at high speed, otherwise Injury may result.
> Note the parameter settings related to the braking unit when applicable.
> Do not use the inverter braking function for mechanical holding, otherwise injury may result.

Do not check signals on circuit boards while the inverter is running.

1.6 Maintenance, Inspection and Replacement

Caution

> The Inverter can be used in an environment with a temperature range from $14^{\circ}-104^{\circ} \mathrm{F}$ $\left(-10-40^{\circ} \mathrm{C}\right)$ and relative humidity of 95% non-condensing.
$>$ The inverter must be operated in a dust, gas, mist and moisture free environment.

1.7 Disposal of the Inverter

Caution

> Please dispose of this unit with care as an industrial waste and according to your required local regulations.
> The capacitors of inverter main circuit and printed circuit board are considered as hazardous waste and must not be burned.
> The Plastic enclosure and parts of the inverter such as the top cover board will release harmful gases if burned.

Chapter 2 Model Description

2.1 Nameplate Data

It is essential to verify the F510 inverter nameplate and make sure that the F510 inverter has the correct rating so it can be used in your application with the proper sized AC motor.

Unpack the F510 inverter and check the following:
(1) The F510 inverter and quick setting guide are contained in the package.
(2) The F510 inverter has not been damaged during transportation there should be no dents or parts missing.
(3) The F510 inverter is the type you ordered. You can check the type and specifications on the main nameplate.
(4) Check that the input voltage range meets the input power requirements.
(5) Ensure that the motor HP matches the motor rating of the inverter.

2.2 Model Identification

Inverter Models - Motor Power Rating :

220V Class

```Voltage (Vac) & Frequency (Hz)```	F510 Model	Motor Power (Hp)	Applied Motor (kW)	Filter		Operator		Protection Class (IP55)
				with	without	LED	LCD	
$\begin{gathered} 3 p h \\ 200 \sim 240 \mathrm{~V} \\ +10 \% /-15 \% \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	F510-2005-H3	5	3.7		( $)$	( $)$		
	F510-2005-C3	5	3.7		()		( $)$	
	F510-2008-H3	7.5	5.5		(	( $)$		
	F510-2008-C3	7.5	5.5		(		( ${ }^{\text {a }}$	
	F510-2010-H3	10	7.5		(	( $)$		
	F510-2010-C3	10	7.5		( $)$		( $)$	
	F510-2015-H3	15	11		(	( $)$		
	F510-2015-C3	15	11		(		( $)$	
	F510-2020-H3	20	15		()	( $)$		
	F510-2020-C3	20	15		(		(	
	F510-2025-H3	25	18.5		(	( $)$		
	F510-2025-C3	25	18.5		( $)$		( $)$	
	F510-2030-H3	30	22		( $)$	( $)$		
	F510-2030-C3	30	22		(		( $)$	
	F510-2040-H3	40	30		( $)$	( $)$		
	F510-2040-C3	40	30		(		( $)$	
	F510-2050-H3	50	37		()	( $)$		
	F510-2050-C3	50	37		(		( $)$	
	F510-2060-H3	60	45		(	( $)$		
	F510-2060-C3	60	45		(		(	
	F510-2075-H3	75	55		( $)$	( $)$		
	F510-2075-C3	75	55		( ${ }^{\text {a }}$		( $)$	
	F510-2100-H3	100	75		( $)$	( $)$		
	F510-2100-C3	100	75		(		(	
	F510-2125-H3	125	94		(	( $)$		
	F510-2125-C3	125	94		(		(	
	F510-2150-H3	150	112		( $)$	( $)$		
	F510-2150-C3	150	112		(		(	
	F510-2175-H3	175	130		( $)$	(		
	F510-2175-C3	175	130		(		( $)$	

Notes:

- Shaded Section: Models currently under Development.
- Short Circuit Rating: 220 V Class: 5KA.


## 440V Class

$\begin{gathered} \hline \text { Voltage (Vac) } \\ \& \\ \text { Frequency (Hz) } \end{gathered}$	F510 Model	Motor Power (Hp)	Applied Motor (kW)	Filter		Operator		Protection Class (IP55)
				with	without	LED	LCD	
$\begin{gathered} 3 p h \\ 380 \sim 480 \mathrm{~V} \\ +10 \% /-15 \% \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	F510-4005-H3	5	3.7		(	( $)$		
	F510-4005-H3F	5	3.7	( ${ }^{\text {a }}$		( ${ }^{\text {a }}$		
	F510-4005-C3	5	3.7		(		( $)$	
	F510-4005-C3F	5	3.7	( $)$			( $)$	
	F510-4005-C3FN4	5	3.7	( $)$			(	(
	F510-4008-H3	7.5	5.5		( $)$	(		
	F510-4008-H3F	7.5	5.5	( $)$		( $)$		
	F510-4008-C3	7.5	5.5		( $)$		( $)$	
	F510-4008-C3F	7.5	5.5	(			(	
	F510-4008-C3FN4	7.5	5.5	( $)$			(	( $)$
	F510-4010-H3	10	7.5		(	( ${ }^{\text {a }}$		
	F510-4010-H3F	10	7.5	( $)$		( $)$		
	F510-4010-C3	10	7.5		( $)$		( $)$	
	F510-4010-C3F	10	7.5	( $)$			(	
	F510-4010-C3FN4	10	7.5	( $)$			( $)$	( $)$
	F510-4015-H3	15	11		(	( $)$		
	F510-4015-H3F	15	11	( ${ }^{\text {) }}$		( $)$		
	F510-4015-C3	15	11		(		(	
	F510-4015-C3F	15	11	( $)$			( $)$	
	F510-4015-C3FN4	15	11	( $)$			( $)$	( $)$
	F510-4020-H3	20	15		( $)$	( $)$		
	F510-4020-H3F	20	15	( $)$		( $)$		
	F510-4020-C3	20	15		( $)$		( $)$	
	F510-4020-C3F	20	15	( $)$			( $)$	
	F510-4020-C3FN4	20	15	( $)$			( $)$	( $)$
	F510-4025-H3	25	18.5		(	( $)$		
	F510-4025-H3F	25	18.5	( )		( $)$		
	F510-4025-C3	25	18.5		( $)$		( $)$	
	F510-4025-C3F	25	18.5	( $)$			( $)$	
	F510-4025-C3FN4	25	18.5	( $)$			( $)$	(
	F510-4030-H3	30	22		( $)$	( $)$		
	F510-4030-H3F	30	22	( $)$		( $)$		
	F510-4030-C3	30	22		(		( $)$	
	F510-4030-C3F	30	22	( $)$			( $)$	
	F510-4030-C3FN4	30	22	( )			()	( )
	F510-4040-H3	40	30		( $)$	( ${ }^{\text {a }}$		
	F510-4040-H3F	40	30	( $)$		( $)$		
	F510-4040-C3	40	30		( $)$		( $)$	
	F510-4040-C3F	40	30	( $)$			( $)$	
	F510-4040-C3FN4	40	30	( ${ }^{\text {) }}$			( $)$	( ${ }^{\text {) }}$


$\begin{gathered} \hline \text { Voltage (Vac) } \\ \& \\ \text { Frequency (Hz) } \\ \hline \hline \end{gathered}$	F510 Model	Motor Power (Hp)	Applied Motor (kW)	Filter		Operator		Protection Class (IP55)
				with	without	LED	LCD	
$\begin{gathered} 3 p h \\ 380 \sim 480 \mathrm{~V} \\ +10 \% /-15 \% \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	F510-4050-H3	50	37		( $)$	(0)		
	F510-4050-H3F	50	37	( $)$		( $)$		
	F510-4050-C3	50	37		(		( $)$	
	F510-4050-C3F	50	37	( $)$			( $)$	
	F510-4050-C3FN4	50	37	(			(	(
	F510-4060-H3	60	45		(	( $)$		
	F510-4060-H3F	60	45	(		(		
	F510-4060-C3	60	45		( $)$		( $)$	
	F510-4060-C3F	60	45	( $)$			( $)$	
	F510-4060-C3FN4	60	45	( $)$			( $)$	( $)$
	F510-4075-H3	75	55		(	( $)$		
	F510-4075-H3F	75	55	( $)$		( $)$		
	F510-4075-C3	75	55		(		( $)$	
	F510-4075-C3F	75	55	( $)$			( $)$	
	F510-4075-C3N4	75	55		( $)$		( $)$	(
	F510-4100-H3	100	75		( $)$	( $)$		
	F510-4100-C3	100	75		( $)$		( $)$	
	F510-4100-C3N4	100	75		( $)$		( $)$	( $)$
	F510-4125-H3	125	94		(	(		
	F510-4125-C3	125	94		(		( $)$	
	F510-4150-H3	150	112		( $)$	( ${ }^{\text {a }}$		
	F510-4150-C3	150	112		(		( $)$	
	F510-4175-H3	175	130		(	(		
	F510-4175-C3	175	130		( $)$		( $)$	
	F510-4215-H3	215	160		(	( ${ }^{\text {) }}$		
	F510-4215-C3	215	160		(		(	
	F510-4250-H3	250	185		( $)$	( ${ }^{\text {a }}$		
	F510-4250-C3	250	185		(		( $)$	
	F510-4300-H3	300	220		(	( $)$		
	F510-4300-C3	300	220		( $)$		( $)$	
	F510-4375-H3	375	280		(	( $)$		
	F510-4375-C3	375	280		(		(	
	F510-4425-H3	425	317		( $)$	( $)$		
	F510-4425-C3	425	317		(		(	
	F510-4535-H3	535	400		(	(		
	F510-4535-C3	535	400		(		( $)$	
	F510-4670-H3	670	500		(	( $)$		
	F510-4670-C3	670	500		(		(	
	F510-4800-H3	800	600		(	( 0		
	F510-4800-C3	800	600		( $)$		( $)$	

Notes:

- Shaded Section: Models currently under Development.
- Short Circuit Rating: 400V Class: 5KA.


## Chapter 3 Environment and Installation

### 3.1 Environment

The environment will directly affect the proper operation and the life span of the inverter. To ensure that the inverter will give maximum service life, please comply with the following environmental conditions:

Protection	
Protection Class	IP20/ NEMA 1, IP00
	IP55/ NEMA 12
Ambient Environment	
Operating Temperature	Ambient Temperature: $-10^{\circ} \mathrm{C}-+40^{\circ} \mathrm{C}\left(14-104{ }^{\circ} \mathrm{F}\right)$
	Without Cover: $-10^{\circ} \mathrm{C}-+50^{\circ} \mathrm{C}\left(14-122^{\circ} \mathrm{F}\right)$
	If several inverters are placed in the same control panel, provide a heat removal means to maintain ambient temperatures below $40^{\circ} \mathrm{C}$
Storage Temperature	$-20^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$ ( $-4-158^{\circ} \mathrm{F}$ )
Humidity	95\% non-condensing Relative humidity $5 \%$ to $95 \%$, free of moisture. (Follow IEC60068-2-78 standard)
Altitude	< 1000 m ( $3,281 \mathrm{ft}$.)
Installation Site	Avoid direct sunlight.
	Avoid exposure to rain or moisture.
	Avoid oil mist and salinity.
	Avoid corrosive liquid and gas.
	Avoid dust, lint fibers, and small metal filings.
	Avoid electromagnetic interference (soldering machines, power machines).
	Keep away from radioactive and flammable materials.
	Avoid vibration (stamping, punching machines etc.).   Add a vibration-proof pad if the situation cannot be avoided.
Shock	Maximum acceleration: 1.2G ( $12 \mathrm{~m} / \mathrm{s}^{2}$ ), from 49.84 to 150 Hz Displacement amplitude : 0.3 mm (peak value), from 10 to 49.84 Hz (Follow IEC60068-2-6 standard)

### 3.2 Installation

### 3.2.1 Installation Spaces

■ When installing the inverter, ensure that inverter is installed in upright position (vertical direction) and there is adequate space around the unit to allow normal heat dissipation as per the following Fig. 3.2.1


Fig 3.2.1: F510 Installation space
$X=1.182$ " $(30 \mathrm{~mm})$ for inverter ratings up to 18.5 kW
$X=1.182$ " $(30 \mathrm{~mm})$ for inverter ratings 22 kW or higher

- Important Note: The inverter heatsink temperature can reach up to $90^{\circ} \mathrm{C} / 194^{\circ} \mathrm{F}$ during operation; make sure to use insulation material rated for this temperature.


### 3.2.2 External View

### 3.2.2.1 External View (IP00/ IP20)

(a) 220V 5-7.5HP/ 440V 5-10HP

(Wall-mounted type, IEC IP00)

(Wall-mounted type, IEC IP20, NEMA1)
(b) $220 \mathrm{~V} 10-30 \mathrm{HP} / 440 \mathrm{~V} 15-40 \mathrm{HP}$

(Wall-mounted type, IEC IP00)

(Wall-mounted type, IEC IP20, NEMA1)
(c) $220 \mathrm{~V} 40-50 \mathrm{HP} / 440 \mathrm{~V} 50-75 \mathrm{HP}$

(Wall-mounted type, IEC IP20, NEMA1)
(d) $220 \mathrm{~V} 60-125 \mathrm{HP} / 440 \mathrm{~V}$ 100-250HP

(Wall-mounted type, IEC IP00)

(Wall-mounted type, IEC IP20, NEMA1)

(Wall-mounted type, IEC IP00)

(Wall-mounted type, IEC IP20)
(f) $440 \mathrm{~V} 535-800 \mathrm{HP}$

(Wall-mounted type, IEC IP00)

(Wall-mounted type, IEC IP20)
(a) $440 \mathrm{~V} 5-25 \mathrm{HP}$

(Wall-mounted type, IEC IP55)
(b) $440 \mathrm{~V} 30-100 \mathrm{HP}$

(Wall-mounted type, IEC IP55)

### 3.2.3 Warning Labels

## Important:

Warning information located on the front cover must be read upon installation of the inverter.
(a) $220 \mathrm{~V}: 5-7.5 \mathrm{HP} / 440 \mathrm{~V}: 5-10 \mathrm{HP}$ (IP20)

## WARNING

Risk of electrical shock. Shut off main power and wait for 5 minutes before servicing.
CAUTION
See manual before operation.
(b) 220V: $10-15 \mathrm{HP} / 440 \mathrm{~V}: 15-20 \mathrm{HP}$ (IP20)

## WARNING

Risk of electrical shock. Shut off main power
and wait for 15 minutes before servicing.
CAUTION
See manual before operation.
(c) $220 \mathrm{~V}: 20-175 \mathrm{HP} / 440 \mathrm{~V}: 25-800 \mathrm{HP}(\mathrm{IP} 20)$

## WARNING

Risk of electrical shock. Shut off main power and wait for 5 minutes before servicing.
CAUTION
See manual before operation.
(d) 440V : 5-100HP (IP55)

### 3.2.4 Removing the Front Cover and Keypad

- Before making any wiring connections to the inverter, the front cover needs to be removed.


## IP00/ IP20 Type

## Caution

- It is not required to remove the digital operator before making any wiring connections.
- Models 220V, $5-30 \mathrm{HP}$ and 440V, $5-40 \mathrm{HP}$ have a plastic cover. Loosen the screws and remove the cover to gain access to the terminals and make wiring connections. Place the plastic cover back and fasten screws when wiring connections have been made.
- Models 220V, 40-175HP and 440V, 50-800HP have a metal cover. Loosen the screws and remove the cover to gain access to the terminals and make wiring connections. Place the metal cover back and fasten screws when wiring connections have been made.


## IP55 Type



- It is essential to remove the digital operator before making any wiring connections.
- Model 440V, 5-25 HP has a plastic cover. Loosen the screws and remove the cover to gain access to the terminals and make wiring connections. Place the plastic cover back and fasten screws when wiring connections have been made.
- Models 440V, 30-100HP has a metal cover. Loosen the screws and remove the cover to gain access to the terminals and make wiring connections. Place the metal cover back and fasten screws when wiring connections have been made.


### 3.2.4.1 Standard Type (IP00/ IP20)

(a) $220 \mathrm{~V} 5-7.5 \mathrm{HP} / 440 \mathrm{~V} 5-10 \mathrm{HP}$


Step 1: Unscrew


Step 3: Make wire connections and place cover back


Step 2: Remove cover


Step 4: Fasten screw
(b) 220 V 10-30HP/ $440 \mathrm{~V} 15-40 \mathrm{HP}$


Step 1: Unscrew


Step 2: Remove cover


Step 3: Make wire connections and place cover back


Step 4: Fasten screw
(c) $220 \mathrm{~V} 40-50 \mathrm{HP} / 440 \mathrm{~V} 50-75 \mathrm{HP}$


Step 1: Unscrew cover


Step 3: Make wire connections and place cover back


Step 2: Remove cover


Step 4: Fasten screw
(d) 220 V 60-125HP/ 440V 100-250HP


Step 1: Unscrew cover


Step 3: Make wire connections and place cover back


Step 2: Remove cover


Step 4: Fasten screw


Step 1: Unscrew cover


Step 3: Make wire connections and place cover b


Step 2: Remove cover


Step 4: Fasten screw

## (f) $440 \mathrm{~V} 535-800 \mathrm{HP}$



Step 1: Unscrew cover



Step 2: Remove cover


### 3.2.4.2 Built-in Filter Type (IP20/ IP00)

## $440 \mathrm{~V} 5-75 \mathrm{HP}$



Step 1: Unscrew cover


Step 3: Unscrew filter section


Step 5: Make connections and place filter cover back


Step 2: Remove cover


Step 4: Remove filter cover


Step 6: Fasten screw

### 3.2.4.3 Built-in Filter Type (IP55)

(a) $440 \mathrm{~V} 5-25 \mathrm{HP}$


Step 1: Unscrew operator


Step 2: Remove operator


Step 3: Pull out operator and remove power line


Step 4: Unscrew cover


Step 5: Check the inside waterproof gasket is not pulled away from cover while opening the cover


Step 1: Unscrew operator


Step 3: Pull out operator and remove power line


Step 2: Remove operator


Step4: Unscrew cover and remove it

### 3.3 Inverter Wiring

### 3.3.1 Wire Gauges and Tightening Torque

To comply with UL standards, use UL approved copper wires (rated $75^{\circ} \mathrm{C}$ ) and round crimp terminals (UL Listed products) as shown in table below when connecting to the main circuit terminals. Teco recommends using crimp terminals manufactured by NICHIFU Terminal Industry Co., Ltd and the terminal crimping tool recommended by the manufacturer for crimping terminals and the insulating sleeve.

Table 3.3.1.1 Wire gauges and tightening torque terminal screw size

$\begin{gathered} \text { Wire size } \\ \mathrm{mm}^{2} \text { (AWG) } \end{gathered}$	Terminal Screw size	Model of round crimp terminal	Tightening torque kgf.cm (in.lbs)	Model of insulating sleeve	Model of crimp tool
0.75 (18)	M3.5	R1.25-3.5	8.2 to 10 (7.1 to 8.7)	TIC 1.25	NH 1
	M4	R1.25-4	12.2 to 14 (10.4 to 12.1)	TIC 1.25	NH 1
1.25 (16)	M3.5	R1.25-3.5	8.2 to 10 (7.1 to 8.7)	TIC 1.25	NH 1
	M4	R1.25-4	12.2 to 14 (10.4 to 12.1)	TIC 1.25	NH 1
2 (14)	M3.5	R2-3.5	8.2 to 10 (7.1 to 8.7)	TIC 2	NH 1 / 9
	M4	R2-4	12.2 to 14 (10.4 to 12.1)	TIC 2	NH $1 / 9$
	M5	R2-5	22.1 to 24 (17.7 to 20.8)	TIC 2	NH $1 / 9$
	M6	R2-6	25.5 to 30.0 (22.1 to 26.0)	TIC 2	NH $1 / 9$
3.5/5.5 (12/10)	M4	R5.5-4	12.2 to 14 (10.4 to 12.1)	TIC 3.5/5.5	NH 1 / 9
	M5	R5.5-5	20.4 to 24 (17.7 to 20.8)	TIC 3.5/5.5	NH 1 / 9
	M6	R5.5-6	25.5 to 30.0 (22.1 to 26.0)	TIC 3.5/5.5	NH $1 / 9$
	M8	R5.5-8	61.2 to 66.0 (53.0 to 57.2)	TIC 3.5/5.5	NH $1 / 9$
8 (8)	M4	R8-4	12.2 to 14 (10.4 to 12.1)	TIC 8	NOP 60
	M5	R8-5	20.4 to 24 (17.7 to 20.8)	TIC 8	NOP 60
	M6	R8-6	25.5 to 30.0 (22.1 to 26.0)	TIC 8	NOP 60
	M8	R8-8	61.2 to 66.0 (53.0 to 57.2)	TIC 8	NOP 60
14 (6)	M4	R14-4	12.2 to 14 (10.4 to 12.1)	TIC 14	NH $1 / 9$
	M5	R14-5	20.4 to 24 (17.7 to 20.8)	TIC 14	NH 1 / 9
	M6	R14-6	25.5 to 30.0 (22.1 to 26.0)	TIC 14	NH $1 / 9$
	M8	R14-8	61.2 to 66.0 (53.0 to 57.2)	TIC 14	NH $1 / 9$
22 (4)	M6	R22-6	25.5 to 30.0 (22.1 to 26.0)	TIC 22	NOP 60/ 150H
	M8	R22-8	61.2 to 66.0 (53.0 to 57.2)	TIC 22	NOP 60/150H
30/38 (3/2)	M6	R38-6	25.5 to 30.0 (22.1 to 26.0)	TIC 38	NOP 60/150H
	M8	R38-8	61.2 to 66.0 (53.0 to 57.2)	TIC 38	NOP 60/150H
50/60 (1/1/0)	M8	R60-8	61.2 to 66.0 (53.0 to 57.2)	TIC 60	NOP 60/ 150H
	M10	R60-10	102 to 120 (88.5 to 104)	TIC 60	NOP 150H
70 (2/0)	M8	R70-8	61.2 to 66.0 (53.0 to 57.2)	TIC 60	NOP 150H
	M10	R70-10	102 to 120 (88.5 to 104)	TIC 60	NOP 150H
80 (3/0)	M10	R80-10	102 to 120 (88.5 to 104)	TIC 80	NOP 150H
	M16	R80-16	255 to 280 (221 to 243)	TIC 80	NOP 150H
100 (4/0)	M10	R100-10	102 to 120 (88.5 to 104)	TIC 100	NOP 150H
	M12	R100-12	143 to 157 (124 to 136)	TIC 100	NOP 150H
	M16	R80-16	255 to 280 (221 to 243)	TIC 80	NOP 150H

### 3.3.2 Wiring Peripheral Power Devices

## Caution

- After power is shut off to the inverter, the capacitors will slowly discharge. Do NOT touch the inverter circuitry or replace any components until the "CHARGE" indicator is off.
- Do NOT wire or connect/disconnect internal connectors of the inverter when the inverter is powered up or when powered off and the "CHARGE"" indicator is on.
- Do NOT connect inverter output $\mathrm{U}, \mathrm{V}$ and W to the supply power. This will result in damage to the inverter.
- The inverter must be by properly grounded. Use terminal $E$ to connect earth ground and comply with local standards.
- Do NOT perform a dielectric voltage withstand test (megger) on the inverter this will result in inverter damage to the semiconductor components.

Do NOT touch any of the components on the inverter control board to prevent damage to the inverter by static electricity.

- Refer to the recommended wire size table for the appropriate wire to use. The voltage between the power supply and the input of the inverter may not exceed $2 \%$.

Phase-to-phase voltage $\operatorname{drop}(\mathrm{V})=\sqrt{3} \times$ resistance of wire $(\Omega / \mathrm{km}) \times$ length of line m$) \times$ current $\times 10^{-3}$. ( $k m=3280 \times$ feet $) /(m=3.28 \times$ feet $)$

- Reduce the carrier frequency (parameter 11-01) If the cable from the inverter to the motor is greater than 25 m ( 82 ft ). A high-frequency current can be generated by stray capacitance between the cables and result in an overcurrent trip of the inverter, an increase in leakage current, or an inaccurate current readout.
- To protect peripheral equipment, install fast acting fuses on the input side of the inverter. Refer to section 11.6 for additional information.



### 3.3.3 General Wiring Diagram

The following is the standard wiring diagram for the F510 inverter (©) indicates main circuit terminals andindicates control circuit terminals ). Locations and symbols of the wiring terminal block might be different due to different models of F510. The description of control circuit terminals and main circuit terminals can be referred to Table 3.3.4.1, 3.3.5.1 and 3.3.5.2


Remark:
*1: Models IP20 200V 5~30HP, 400V 5~40HP and IP55 400V 5~25HP have a built-in braking transistor so that the braking resistor can be connected between terminal B1 and B2.
*2: The multi-function digital input terminals S1~ S6 can be set to Source (PNP) or Sink (NPN) mode via SW3.
*3: The multi-function analog input 2 (AI2) can be set to the voltage command input ( $0 \sim 10 \mathrm{v}$ ) or the current command input ( $4 \sim 20 \mathrm{~mA}$ ) via SW2.
*4: Safety input F1 and F2 is a normally closed input. This input should be closed to enable the inverter output. To activate this input, open the link between F1 and F2.

### 3.3.4 Wiring for Control Circuit Terminals

- Control circuit terminals identification
- IP20 type
- 200V:5HP~50HP, 400V:5HP~75HP

| $\mathrm{S}(+)$ | $\mathrm{S}(-)$ | S 1 | S 3 | S 5 | 24 V | +10 V | MT | GND | GND | Al 1 | Al 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | E


R1A		R1B	R1C	
	R2A	R2C	R3A	R3C

- 200V:60HP~125HP , 400V:100HP~800HP

| $\mathrm{S}(+)$ | $\mathrm{S}(-)$ | S 1 | S 3 |  | S 5 | 24 V | +10 V | MT | GND | GND | Al 1 | Al 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | E


R1A	R1B	R1C	R2A	R2C	R3A	R3C

## - IP55 type

- 400V:5HP~100HP


R1A		R1B		R1C			
	R2A	R2C	R3A	R3C			

Table 3.3.4.1 Description of control circuit terminals

Type	Terminal	Terminal function	Signal level/ information
Digital input signal	S1	Forward rotation-stop command (default), multi-function input terminals * 1	Signal Level 24 VDC (opto-isolated) Maximum current: 8 mA Maximum voltage: 30 Vdc Input impedance: $4.22 \mathrm{k} \Omega$
	S2	Reversal rotation- stop command (default), multi-function input terminals * 1	
	S3	UP command(default), multi-function input terminals * 1	
	S4	DOWN command(default), multi-function input terminals * 1	
	S5	Multi-step speed frequency command 1, multi-function input terminal* 1	
	S6	Fault reset input, multi-function input terminal * 1	
24V   Power supply	24V	Digital signal SOURCE point (SW3 switched to SOURCE )	$\pm 15 \%$,   Max. output current: 250mA   (The sum of all loads connected)
	24VG	Common terminal of Digital signals Common point of digital signal SINK ( SW3 switched to SINK )	
Analog input signal	+10V	Power for external speed potentiometer	$\begin{array}{\|l\|} \hline \pm 5 \% \\ \text { (Max. current: } 20 \mathrm{~mA} \text { ) } \\ \hline \end{array}$
	MT	Motor temperature detector of externally connecting PTC	$1330 \Omega$ movement, $550 \Omega$ return
	Al1	Multi-function analog input for speed reference (0-10V input)	From 0 to +10 V Input impedance: $20 \mathrm{~K} \Omega$ Resolution: 12bit
	Al2	Multi-function analog input terminals *2, can use SW2 to switch voltage or current input $(0 \sim 10 \mathrm{~V}) /(4-20 \mathrm{~mA})$	From 0 to +10 V Input impedance: $20 \mathrm{~K} \Omega$ From 4 to 20 mA Input impedance: $250 \Omega$ Resolution: 12bit
	GND	Analog signal ground terminal	----
	E	Shielding wire's connecting terminal (Ground)	---
Analog output signal	AO1	Multi-function analog output terminals *3 ( $0 \sim 10 \mathrm{~V} / 4-20 \mathrm{~mA}$ output)	From 0 to 10 V   Max. current: 2mA   From 4 to 20 mA
	AO2	Multi-function analog output terminals *3 ( $0 \sim 10 \mathrm{~V} / 4-20 \mathrm{~mA}$ output)	
	GND	Analog signals ground terminal	
Pulse output signal	PO	Pulse output, Band width 32 KHz	Max. Frequency: 32KHz Open Collector output
	GND	Analog signals ground terminal	---
Pulse input signal	PI	Pulse command input, frequency width of 32 KHz	L: from 0.0 to 0.5 V H : from 4.0 to 13.2 V Max. Frequency: $0-32 \mathrm{KHz}$ Impedance: $3.89 \mathrm{~K} \Omega$
	GND	Analog signals ground terminal	----

Table 3.3.4.1 Description of control circuit terminals (Continued)

Type	Terminal	Terminal function	Signal level/ information
Relay output	$\begin{aligned} & \text { R1A- } \\ & \text { R1B- } \\ & \text { R1C } \end{aligned}$	Relay A contact (multi-function output terminal) Relay B contact (multi-function output terminal) Relay contact common terminal, please refer to parameter group 03 in this manual for more functional descriptions.	Rating:   250Vac: 10 mA ~ 1A   $30 \mathrm{Vdc}: 10 \mathrm{~mA} \sim 1 \mathrm{~A}$
	R2A-R2C	With the same functions as R1A/R1B/R1C	Rating: 250Vac: $10 \mathrm{~mA} \sim 1 \mathrm{~A}$   $30 \mathrm{Vdc}: 10 \mathrm{~mA} \sim 1 \mathrm{~A}$
	R3A-R3C	With the same functions as R1A/R1B/R1C	
Safety input	F1	On: normal operation.   Off: emergency stop.   (Jumper wired has to be removed to use external safety function to stop.)	24Vdc, 8mA, pull-high
	F2	Safety command common terminal	24V Ground
$\begin{gathered} \text { RS-485 } \\ \text { port } \end{gathered}$	S (+)	RS485/MODBUS	differential input and output
Grounding	E (G)	Grounding to earth Shield the connecting terminal	--

## Notes:

*1: Multi-function digital input can be referred to in this manual.

- Group 03: External Terminals Digital Input / Output Function Group.
*2: Multi-function analog input can be referred to in this manual.
- Group 04 - External Terminal Analog Signal Input (Output) Function Group.
*3: Multi-function analog output can be referred to in this manual.
- Group 04 - External Terminal Analog Signal Input (Output) Function Group.



## Caution

- Maximum output current capacity for terminal 10 V is 20 mA .
- Multi-function analog output AO1 and AO2 are for use for an analog output meter. Do not use these output for feedback control.
- Control board's 24 V and 10 V are to be used for internal control only. Do not use the internal power-supply to power external devices.


### 3.3.5 Wiring for Main Circuit Terminals

Table 3.3.5.1 Description of main circuit terminals (IP00/IP20 Type)

Terminal	$\begin{aligned} & 200 \mathrm{~V}: 5 \sim 30 \mathrm{HP} \\ & 400 \mathrm{~V}: 5 \sim 40 \mathrm{HP} \end{aligned}$	$\begin{aligned} & \text { 200V: } 40 \sim 175 \mathrm{HP} \\ & 400 \mathrm{~V}: 50 \sim 800 \mathrm{HP} \end{aligned}$	
R/L1	Input Power Supply		
S/L2			
T/L3			
B1/P	- $\mathrm{B} 1 / \mathrm{P}-\ominus$ : DC power supply   - B1 / P-B2 : external braking resistor		
B2			
$\ominus$		$\bullet \oplus-\ominus$ : DC power supply or connect braking module	
$\oplus$	-		
U/T1	Inverter output		
V/T2			
W/T3			
E	Ground terminal		

*1. The model of 400 V 535 HP or above is under development.

Table 3.3.5.2 Description of main circuit terminals (IP55 Type)

Terminal	400V
	$\mathbf{5 - 1 0 0 H P}$
R/L1,S/L2, T/L3	Input Power Supply
U/T1,V/T2, W/T3	Inverter output
B1, B2	Braking resistor connecting terminal ${ }^{* 2}$
$\oplus 1, \oplus 2$	DC reactor connecting terminal ${ }^{* 3}$
$\mathrm{~B} 1, \mathrm{~B} 2, \ominus$	DC power supply (DC+, DC-)   Braking module connecting terminal
$\doteq(\mathrm{PE})$	Ground terminal

*2. The model of 400 V 25 HP ( 18.5 KW ) or below is built-in braking transistor.
*3. Before connecting DC reactor, please remove short circuit between terminal $\oplus 1$ and $\oplus 2$.

## - Main circuit terminals identification and screw size

## - IP20 Type

- 200V: 5-7.5HP/ 400V: 5-10HP


Terminal screw size	
T	$\Theta$
M 4	M 4

- 200V: 10-15HP/ 400V: 15-20HP

- 200V: 20-30HP/ 400V: 25-40HP


Terminal screw size	
T	$\Theta$
M 6	O 6

- 200V: 40-50HP/ 400V: 50-75HP


- 200V: $100-125 \mathrm{HP} / 400 \mathrm{~V}: 150-250 \mathrm{HP}$

- 200V: 150-175HP/ 400V: 300-425HP

- 400V: 530-800HP

The model of $400 \mathrm{~V} 530-800 \mathrm{HP}$ is under development.


- 400V: 10-15HP


Terminal screw size	
T	$\ominus$
M 4	M 4

- 400V: 20-25HP


Terminal screw size	
T	$\ominus$
M 6	M 6

- 400V: 30-50HP

- 400V: 60-100HP



## - Input / Output Power Section Block Diagram

The following diagrams show the basic configuration of the power sections for the range of horsepower and input voltages. This is shown for reference only and is not a detailed depiction.

- IP00/IP20 Type


7. IP20 400V: 300~425HP	8. IP20 400V: 535~800HP   The model of 440V 535~800HP is under development.

## - IP55 Type



## - Cooling Fan Supply Voltage Selection (400V class)

The inverter input voltage range of the F510 400V class models ranges from 380 to 460 Vac . In these models the cooling fan is directly powered from the power supply. Inverter models F510-4125/4150/4175/4215/4250/4300/4375/4425/4535/4670/4800-H3 requires the user to select the correct jumper position based on the inverter input voltage (" 440 V " is the default position for these models). Please select the correct position according to the input voltage. If the voltage setting is too low, the cooling fan will not provide adequate cooling for the inverter resulting in an over-heat error. If the input voltage is greater than 460 Vac , select the " 460 V " position.
(1) $400 \mathrm{~V}: 150 \mathrm{HP} \sim 250 \mathrm{HP}$

(2) $400 \mathrm{~V}: 300 \mathrm{HP} \sim 800 \mathrm{HP}$


## - Power Input Wire Size, NFB and MCB Part Numbers

The following table shows the recommended wire size, molded case circuit breakers and magnetic contactors for each of the F510 models. It depends on the application whether or not to install a circuit breaker. The NFB must be installed between the input power supply and the inverter input (R/L1, S/L2, T/L3).
Note: When using a ground protection, make sure the current setting is above 200 mA and trip delay time is 0.1 sec of higher.

Table 3.3.5.3 Wiring Instrument for 200V/400V class (IP00/IP20 type)

F510 Model				Wire size ( $\mathrm{mm}^{2}$ )			NFB ${ }^{* 3}$	MC* ${ }^{*}$
Power supply	Horse power (HP)	Rated KVA	Rated current (A)	$\begin{gathered} \text { Main }^{\text {Mircuit }} \\ \hline \end{gathered}$	Grounding $E(G)$	Control line ${ }^{*}{ }^{2}$		
$\begin{gathered} 200 \mathrm{~V} \\ 3 \varnothing \end{gathered}$	5HP	5.5	14.5	5.5	5.5	$0.5 \sim 2$	TO-50EC(30A)	CU-16
	7.5HP	8.0	21	5.5	5.5	$0.5 \sim 2$	TO-50EC(30A)	CU-16
	10HP	11.4	30	8	$5.5 \sim 8$	$0.5 \sim 2$	TO-100S(50A)	CU-25
	15HP	15	40	14	8	0.5~2	TO-100S(50A)	CU-25
	20HP	21	56	22	8	$0.5 \sim 2$	TO-100S(100A)	CU-65
	25HP	26	69	22	14	$0.5 \sim 2$	TO-225S(100A)	CU-80
	30HP	30	79	38	14	$0.5 \sim 2$	TO-225S(150A)	CN-100
	40HP	42	110	60	22	$0.5 \sim 2$	TO-225S(175A)	CN-125
	50HP	53	138	80	22	$0.5 \sim 2$	TO-225S(200A)	CN-150
	60HP	64	169	100	22	$0.5 \sim 2$	TO-225S(225A)	CN-180
	75HP	76	200	150	22	$0.5 \sim 2$	TO-400S(300A)	CN-300
	100HP	95	250	200	38	$0.5 \sim 2$	TO-400S(400A)	CN-300
	125HP	119	312	300	38	$0.5 \sim 2$	TO-400S(400A)	SK-400
	150HP	137	400	250*2P	50	$0.5 \sim 2$	TO-800S(800A)	SK-600
	175HP	172	450	250*2P	50	$0.5 \sim 2$	TO-800S(800A)	SK-600
$\begin{gathered} 400 \mathrm{~V} \\ 3 \varnothing \end{gathered}$	5HP	7.0	9.2	2~5.5	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CU-18
	7.5HP	8.5	11.1	2~5.5	$3.5 \sim 5.5$	$0.5 \sim 2$	TO-50EC(15A)	CU-18
	10HP	13.3	17.5	5.5	5.5	$0.5 \sim 2$	TO-50EC(30A)	CU-25
	15HP	18	23	8	8	$0.5 \sim 2$	TO-100S(50A)	CU-25
	20HP	24	31	8	8	$0.5 \sim 2$	TO-100S(50A)	CU-35
	25HP	29	38	8	8	$0.5 \sim 2$	TO-100S(50A)	CU-50
	30HP	34	44	14	8	$0.5 \sim 2$	TO-100S(75A)	CU-50
	40HP	41	54	22	8	$0.5 \sim 2$	TO-100S(100A)	CU-65
	50HP	55	72	22	14	$0.5 \sim 2$	TO-100S(100A)	CU-80
	60HP	67	88	38	14	$0.5 \sim 2$	TO-225S(150A)	CN-100
	75HP	79	103	60	22	$0.5 \sim 2$	TO-225S(175A)	CN-125
	100HP	111	145	80	22	$0.5 \sim 2$	TO-225S(225A)	CN-150
	125HP	126	165	150	22	$0.5 \sim 2$	TO-400S(300A)	CN-300
	150HP	159	208	150	22	$0.5 \sim 2$	TO-400S(300A)	CN-300
	175HP	191	250	200	38	$0.5 \sim 2$	TO-400S(400A)	CN-300
	215HP	226	296	250	38	$0.5 \sim 2$	TO-400S(400A)	CN-300
	250HP	250	328	300	38	0.5~2	TO-400S(400A)	
	300HP	332	435	250*2P	50	0.5~2	TO-800S(800A)	$\begin{aligned} & \text { SK-600 } \\ & (800 A) \end{aligned}$
	375HP	393	515	250*2P	50	$0.5 \sim 2$	TE-1000(1000A)	$\begin{aligned} & \text { SK-600 } \\ & (800 A) \\ & \hline \end{aligned}$
	425HP	457	585	250*2P	50	$0.5 \sim 2$	TE-1000(1000A)	$\begin{aligned} & \text { SK-600 } \\ & (800 A) \end{aligned}$
	$535 \mathrm{HP}^{*}{ }^{4}$	526	690					
	670HP	640	840					
	800HP	732	960					

*1. The main circuit terminals: R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, B1/P, B2, $\ominus, \oplus$.
*2. Control line is the terminal wire on the control board.
*3. The NFB and MCB listed in the table are of TECO product numbers, products with same rated specification of other brands may be used. To reduce electrical noise interference, ensure that a RC surge absorber ( $\mathrm{R}: 10 \Omega / 5 \mathrm{~W}, \mathrm{C}: 0.1 \mu \mathrm{f} / 1000 \mathrm{VDC}$ ) is added to both sides of MCB coil.
*4. The model of above 440V 535HP is under development.

Table 3.3.5.4 Wiring Instrument for 400V class (IP55 type)

F510 Model				Wire size( $\mathrm{mm}^{2}$ )			NFB ${ }^{\text {* }}$	MC ${ }^{\text {* }}$
Power supply	Horse power (HP)	Rated KVA	Rated current (A)	Main circuit ${ }^{* 1}$	Grounding E(G)	Control line ${ }^{*}$		
$\begin{gathered} 440 \mathrm{~V} \\ 3 \varnothing \end{gathered}$	5HP	7.0	9.2	2~5.5	3.5~5.5	0.5~2	TO-50EC(15A)	CU-18
	7.5HP	8.5	11.1	2~5.5	$3.5 \sim 5.5$	0.5~2	TO-50EC(15A)	CU-18
	10HP	13.3	17.5	5.5	5.5	0.5~2	TO-50EC(30A)	CU-25
	15HP	18	23	8	8	0.5~2	TO-100S(50A)	CU-25
	20HP	24	31	8	8	0.5~2	TO-100S(50A)	CU-35
	25HP	29	38	8	8	0.5~2	TO-100S(50A)	CU-50
	30HP	34	44	14	8	0.5~2	TO-100S(75A)	CU-50
	40HP	41	54	22	8	0.5~2	TO-100S(100A)	CU-65
	50HP	55	72	22	14	0.5~2	TO-100S(100A)	CU-80
	60HP	67	88	38	14	0.5~2	TO-225S(150A)	CN-100
	75HP	79	103	60	22	0.5~2	TO-225S(175A)	CN-125
	100HP	111	145	80	22	0.5~2	TO-225S(225A)	CN-150

*1. The main circuit terminals: $R(L 1), S(L 2), T(L 3), ~ \ominus, \oplus 1, \oplus 2, \mathrm{U}(\mathrm{T} 1), \mathrm{V}(\mathrm{T} 2), \mathrm{W}(\mathrm{T} 3), \mathrm{B} 1, \mathrm{~B} 2$ (Polyethylene power line of 600 V is recommended to be used.)
*2. Control line is the terminal wire on the control board.
*3. The NFB and MCB listed in the table are of TECO product numbers, products with same rated specification of other brands may be used. To reduce electrical noise interference, ensure that a RC surge absorber ( $\mathrm{R}: 10 \Omega / 5 \mathrm{~W}, \mathrm{C}: 0.1 \mu \mathrm{f} / 1000 \mathrm{VDC}$ ) is added to both sides of MCB coil.

### 3.3.6 Wiring Precautions

| - Do NOT remove any protective covers or attempt any wiring while input power is |
| :---: | :--- |
| applied. Connect all wiring before applying input power. When making wiring |
| changes after power up, remove input power and wait a minimum of five |
| minutes after power has been turned off before starting. Also confirm that the |
| charge lamp is off and that DC voltage between terminals B1/P or (+) and (-) |
| does not exceed 25 V , otherwise electric shock may result. |
| - Only authorized personnel should work on the equipment. (Take off metal |
| jewelry such as watches and rings and use insulated tools.), otherwise electric |
| shock or injury may result. |

## (A) Wiring for control circuit:

(1) Separate the wiring for control circuit terminals from main circuit wiring for terminals (R/L1, S/L2, T/L3, U/T1, V/T2, and W/T3).
(2) Separate the wiring for control circuit terminals (R1A, R1B, R1C / R2A, R2C /R3A, R3C) from wiring for terminals $\mathrm{S} 1 \sim \mathrm{~S} 6, \mathrm{~A} 01, \mathrm{~A} 02, \mathrm{GND},+10 \mathrm{~V}-$, $\mathrm{Al} 1, \mathrm{Al} 2$, and GND wiring.
(3) Use shielded twisted-pair cables (\#24-\#14 AWG / 0.5-2 mm²) shown in Fig. 3.3.6.1 for control circuits to minimize noise problems. The maximum wiring distance should not exceed 50 m ( 165 ft ).


Figure 3.3.6.1 Shielded Twisted-Pair
(B) Wiring for main circuit:
(1) The Input power supply voltage can be connected in any phase sequence to power input terminals R/L1, S/L2, or T/L3 on the terminal block.
(2) DO NOT connect the AC input power source to the output terminals U/T1, V/T2 and. W/T3.
(3) Connect the output terminals U/T1, V/T2, W/T3 to motor lead wires U/T1, V/T2, and W/T3, respectively.
(4) Check that the motor rotates forward with the forward run source. If it does not, swap any 2 of the output cables to change motor direction.
(5) DO NOT connect phase correcting capacitors or LC/RC noise filter to the output circuit.

## (C) Grounding:

(1) Connect the ground terminal (E) to ground having a resistance of less than $100 \Omega$.
(2) Do not share the ground wire with other devices, such as welding machines or power tools.
(3) Always use a ground wire that complies with the local codes and standards for electrical equipment and minimize the length of ground wire.
(4) When using more than one inverter, be careful not to loop the ground wire, as shown below in Fig. 3.3.6.2.


Figure 3.3.6.2 F510 Inverter Grounding

### 3.3.7 Input Power and Cable Length

## - Cable size

The length of the cables between the input power source and /or the motor and inverter can cause a significant phase to phase voltage reduction due to the voltage drop across the cables. The wire size shown in Tables 3.3.5.3 \& 3.3.5.4 is based on a maximum voltage drop of 2\%. If this value is exceeded, a wire size having larger diameter may be needed. To calculate phase tot phase voltage drop, apply the following formula:

Phase-to-phase voltage drop $(V)=\sqrt{3} \times$ resistance of wire $(\Omega / k m) \times$ length of line $m) \times$ current $\times 10^{-3}$.

```
(km=3280 x feet)
```

```
(m=3.28 x feet)
```


## - Cable length vs. Carrier frequency

The allowable setting of the PWM carrier frequency is also determined by motor cable length and is specified in the following Table 3.3.7.1.

Table 3.3.7.1 Cable Length vs. Carrier Frequency

Cable length between   the inverter and   Motor in m (ft.).	$<30$	$30-50$	$50-100$	$\geq 100$
$(100)$	$(100-165)$	$(166-328)$	$(329)$	
Recommended carrier   frequency allowed   Parameter 11-01	16 kHz   $(\max )$	10 kHz   $(\max )$	5 kHz   $(\max )$	2 kHz   $(\mathrm{max})$

## - Installing an AC line reactor

If the inverter is connected to a large-capacity power source ( 600 kVA or more), install an optional AC reactor on the input side of the inverter. This also improves the power factor on the power supply side.

### 3.4 Inverter Specifications

## Basic Specifications

(a) 200 V class

Inverter capacity (HP)		5	7.5	10	15	20	25	30	40	50	60	75	100	125	150	175
	Rated Output Capacity (KVA)	5.5	8	11.4	15.2	21.3	26.2	30	41.9	52.5	64.3	76.2	95.2	118.8	152.4	171.4
	Rated Output Current (A)	14.5	21	30	40	56	69	79	110	138	169	200	250	312	400	450
	Maximum Applicable Motor ${ }^{11} \mathrm{HP}$ (KW)	$\begin{gathered} \hline 5 \\ (3.7) \end{gathered}$	$\begin{gathered} \hline 7.5 \\ (5.5) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (7.5) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ (11) \end{array}$	$\begin{gathered} 20 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ (18.5) \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ (22) \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ (30) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 50 \\ (37) \end{array}$	$\begin{array}{\|c\|} \hline 60 \\ (45) \end{array}$	$\begin{array}{\|c\|} \hline 75 \\ (55) \end{array}$	$\begin{aligned} & 100 \\ & (75) \end{aligned}$	$\begin{array}{r} 125 \\ (90) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 150 \\ (110) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 175 \\ (130) \\ \hline \end{array}$
	Maximum Output Voltage (V)	3-phase 200V~240V														
	Maximum Output Frequency (Hz)	Based on parameter setting $0.1 \sim 400.0 \mathrm{~Hz}$														
	Rated Voltage, Frequency	3-phase $200 \mathrm{~V} \sim 240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$														
	Allowable Voltage Fluctuation	-15\% ~ + $10 \%$														
	Allowable Frequency Fluctuation	$\pm 5 \%$														

(b) 400 V class

	Inverter capacity (HP)	5	7.5	10	15	20	25	30	40	50	60	75	100	125	150	175	215	250	300	375
	Rated Output Capacity (KVA)	7.0	8.4	13.3	17.5	23.6	28.9	33.5	41.1	54.8	67	78.4	110	125	158	190	225	250	331	392
	Rated Output Current (A)	9.2	11.1	17.5	23	31	38	44	54	72	88	103	145	165	208	250	296	328	435	515
	Maximum Applicable Motor ${ }^{* 1} \mathrm{HP}$ (KW)	$\begin{gathered} \hline 5 \\ (4) \end{gathered}$	$\begin{array}{r} 7.5 \\ (5.5 \end{array}$	$\begin{gathered} 10 \\ (7.5) \end{gathered}$	$\begin{gathered} 15 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ (15) \end{gathered}$	$\begin{gathered} \hline 25 \\ (18.5) \end{gathered}$	$\begin{gathered} \hline 30 \\ (22) \end{gathered}$	$\begin{gathered} \hline 40 \\ (30) \end{gathered}$	$\begin{gathered} \hline 50 \\ (37) \end{gathered}$	$\begin{gathered} 60 \\ \hline(45) \end{gathered}$	$\begin{gathered} \hline 75 \\ (55) \end{gathered}$	$\begin{aligned} & 100 \\ & (75) \end{aligned}$	$\begin{aligned} & 125 \\ & (90) \end{aligned}$	$\begin{gathered} \hline 150 \\ (110) \end{gathered}$	$\begin{gathered} \hline 175 \\ (132) \end{gathered}$	$\begin{gathered} \hline 215 \\ (160) \end{gathered}$	$\begin{gathered} \hline 250 \\ (185) \end{gathered}$	$\begin{gathered} \hline 300 \\ (220) \end{gathered}$	$\begin{gathered} \hline 375 \\ (280) \end{gathered}$
	Maximum Output Voltage (V)	3-phase 380V~480V																		
	Maximum Output Frequency ( Hz )	Based on parameter setting $0.1 \sim 400.0 \mathrm{~Hz}$																		
	Rated Voltage, Frequency	3 -phase $380 \mathrm{~V} \sim 480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$																		
	Allowable Voltage Fluctuation	-15\% ~+10\%																		
	Allowable Frequency Fluctuation	$\pm 5 \%$																		


	Inverter capacity (HP)	425	535	670	800
	Rated Output Capacity (KVA)	445	525	640	731
	Rated Output Current (A)	585	690	840	960
	Maximum Applicable Motor ${ }^{* 1} \mathrm{HP}$ (KW)	$\begin{gathered} 425 \\ (315) \\ \hline \end{gathered}$	$\begin{gathered} 535 \\ (400) \end{gathered}$	$\begin{gathered} 670 \\ (500) \end{gathered}$	$\begin{gathered} 800 \\ (600) \end{gathered}$
	Maximum Output Voltage (V)	3-phase 380V~480V			
	Maximum Output Frequency (Hz)	Based on parameter setting $0.1 \sim 400.0 \mathrm{~Hz}$			
	Rated Voltage, Frequency	3-phase $380 \mathrm{~V} \sim 480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$			
	Allowable Voltage Fluctuation	$-15 \% \sim+10 \%$			
	Allowable Frequency Fluctuation	$\pm 5 \%$			

*1: Take standard 4-pole induction motor as the base.
*2: F510 model is designed to be used in normal duty (ND), whose overload capability is $120 \%$ for 1 min .
*3: Model of 440 V 535 HP or above is under development.
*4: If it is greater than default carrier frequency, you need to adjust the load current based on the de-rating curve.

220V class	Carrier freq.   default setting	Carrier freq.   range	440 V class	Carrier freq.   default setting	Carrier freq.   range
$5 \sim 25 \mathrm{HP}$	2 KHz	$2 \sim 16 \mathrm{KHz}$	$5 \sim 30 \mathrm{HP}$	4 KHz	$2 \sim 16 \mathrm{KHz}$
30 HP	2 KHz	$2 \sim 12 \mathrm{KHz}$	40 HP	2 KHz	$2 \sim 16 \mathrm{KHz}$
$40 \sim 50 \mathrm{HP}$	2 KHz	$2 \sim 12 \mathrm{KHz}\left({ }^{*} 5\right)$	$50 \sim 60 \mathrm{HP}$	4 KHz	$2 \sim 12 \mathrm{KHz}(* 5)$
$60 \sim 125 \mathrm{HP}$	2 KHz	$2 \sim 10 \mathrm{KHz}\left({ }^{*} 5\right)$	$75 \sim 215 \mathrm{HP}$	4 KHz	$2 \sim 10 \mathrm{KHz}(* 5)$
-	-	-	250 HP	2 KHz	$2 \sim 8 \mathrm{KHz}$
$150 \sim 175 \mathrm{HP}$	2 KHz	$2 \sim 5 \mathrm{KHz}$	$300 \sim 375 \mathrm{HP}$	4 KHz	$2 \sim 5 \mathrm{KHz}$
-	-	-	425 HP	2 KHz	$2 \sim 5 \mathrm{KHz}$
-	-	-	$535 \sim 800 \mathrm{HP}$	4 KHz	$2 \sim 5 \mathrm{KHz}$

*5: If control mode is set to SLV mode and maximum frequency (01-02) is larger than 80 Hz , the carrier frequency range is $2 \sim 8 \mathrm{~Hz}$.

The following table shows the maximum output frequency for each control mode.

Control mode	Other settings	Maximum output frequency
V/F	Unlimited	400 Hz
SLV	220 V 5~15HP, 440V 5~20HP	150 Hz
	220V 20~30HP, 440V 25HP	110Hz
	$440 \mathrm{~V} 30 \sim 40 \mathrm{HP}$	100 Hz
	220V 40~125HP, 440V 50~215HP, carrier (11-01) is set as 8 K or below 8 K .	100Hz
	220V 40~125HP, 440V 50~215HP, carrier (11-01) is set as above 8K.	80 Hz
	220V 150~175HP, 440V 250~800HP	100 Hz
PMSLV	Unlimited	400 Hz

## General Specifications

Control Characteristics	Operation Modes		LED keypad with seven-segment display *5 and LCD keypad (Optional HOA LCD keypad); all LCD keypad with parameter copy function
	Control Modes		V/F, SLV, PMSLV with space vector PWM mode
	Frequency Control Range		$0.1 \mathrm{~Hz} \sim 400.0 \mathrm{~Hz}$
	Frequency Accuracy (Temperature change)		Digital references: $\pm 0.01 \%\left(-10\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$, Analog references: $\pm 0.1 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$
	Speed Control Accuracy		$\pm 0.5 \%$ (Sensorless Vector Control Mode) ${ }^{* 1}$
	Frequency Setting Resolution		Digital references: 0.01 Hz , Analog references: $0.06 \mathrm{~Hz} / 60 \mathrm{~Hz}$
	Output Frequency Resolution		0.01 Hz
	Inverter Overload		120\%/1 min
	Frequency Setting Signal		DC 0~+10V /-10V~+10V or 4~20mA
	Acceleration/ Deceleration Time		0.0 $\sim 6000.0$ seconds ( separately set acceleration and deceleration time )
	Voltage, Frequency Characteristics		Custom V/F curve based on parameters
	Braking Torque		About 20\%
	Main Control Functions		Auto tuning, Soft-PWM, Over voltage protection, Dynamic braking, Speed search, Restart upon momentary power loss, 2 sets of PID control, Slip Compensation, RS-485 communication standard, Simple PLC function, 2 sets of analog outputs, Safety switch
	Other Functions		Accumulated power-on/ run time, 4 sets of fault history records and latest fault record state, Energy-saving function setting, Phase loss protection, Smart braking, DC braking, Dwell, S curve acceleration and deceleration, Up/Down operation, Modbus, BACnet MS/TP and Metasys N2 communication protocol, Display of multi-engineering unit, Local/ Remote switch, SINK/SOURCE input interface selection, User parameter settings
	Stall Prevention		Current level can be setting (It can be set separately in acceleration or constant speed; it can be set with or without protection in deceleration)
	Instantaneous Over Current (OC) and Output ShortCircuit (SC) Protection		Inverter stops when the output current exceeds $160 \%$ of the inverter rated current
	Inverter Overload Protection (OL2)		If inverter rated current $120 \% / 1 \mathrm{~min}$ is exceeded, inverter stops. The factory default carrier frequency is $2 \sim 4 \mathrm{KHZ}{ }^{*}$
	Motor Overload Protection (OL1)		Electrical overload protection curve
	Over voltage (OV) Protection		If the main circuit DC voltage rises over 410 V ( 200 V class)/ 820 V ( 400 V class), the motor stops running.
	Under voltage (UV) Protection		If the main circuit DC voltage falls below 190 V ( 200 V class)/380V ( 400 V class), the motor stops running.
	Auto-Restart after Momentary Power Loss		Power loss exceeds 15 ms .   Auto-restart function available after momentary power loss in 2 sec.
	Overheat(OH) Protection		Use temperature sensor for protection.
	Ground Fault (GF) Protection		Use current sensor for protection.
	DC Bus Charge Indicator		When main circuit DC voltage $\geqq 50 \mathrm{~V}$, the CHARGE LED turns on.
	Output Protect	se Loss (OPL)	If the OPL is detected, the motor stops automatically.
	Installation Location		Indoor (protected from corrosive gases and dust)
	Ambient Temperature		$-10 \sim+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \sim 104^{\circ} \mathrm{F}\right)$ (IP20/NEMA1 or IP55/NEMA12), $-10 \sim+50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}\right)$ (IP00) without de-rating; with de-rating, its maximum operation temperature is $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.
	Storage Temperature		$-20 \sim+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \sim+158^{\circ} \mathrm{F}\right)$
	Humidity		95\%RH or less (no condensation)
	Altitude and Vibration		Altitude of 1000 m (3181ft) or below, below $5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G})$
Communication Function			Built-in RS-485 as standard (Modbus protocol with RJ45/ BACnet/ Metasys N2)
PLC Function			Built-in
EMI Protection			The built-in noise filter complies with EN61800-3 available for inverters 400V 75HP or below (IP20) / 400V 60HP or below (IP55)
EMS Protection			in compliance with EN61800-3
Safety Certification		CE Declaration	in compliance with EN61800-3 (CE \& RE) and EN61800-5-1 (LVD, Low-Voltage Directive)
		UL Certification	UL508C
Accessories			1 to 8 Pump card, HOA LCD keypad, Profibus card

## Notes:

*1: Speed control accuracy will be different from the installation conditions and motor types.
*2: The factory default carrier frequency is different from models.

### 3.5 Inverter Derating Based on Carrier Frequency

## (a) 200V Models




(b) 400V Models


Rated Current
Ratio




Rated Current
Ratio




### 3.6 Inverter Derating Based on Temperature



### 3.7 Inverter Dimensions

### 3.7.1 Standard Type (IP00/IP20)

(a) $200 \mathrm{~V}: 5-7.5 \mathrm{HP} / 400 \mathrm{~V}: 5-10 \mathrm{HP}$


Inverter Model	Dimensions in mm (inch)							H1
	W	H	D	W1	d	NW in kg(lbs)		
F510-2005-H3	140	279	177	122	267	7	M6	3.8
	$(5.51)$	$(10.98)$	$(6.97)$	$(4.80)$	$(10.51)$	$(0.28)$		$(8.38)$
F510-2008-H3	140	279	177	122	267	7	M6	3.8
	$(5.51)$	$(10.98)$	$(6.97)$	$(4.80)$	$(10.51)$	$(0.28)$		$(8.38)$
F510-4005-H3	140	279	177	122	267	7	M6	3.8
	$(5.51)$	$(10.98)$	$(6.97)$	$(4.80)$	$(10.51)$	$(0.28)$		$(8.38)$
F510-4008-H3	140	279	177	122	267	7	M6	3.8
	$(5.51)$	$(10.98)$	$(6.97)$	$(4.80)$	$(10.51)$	$(0.28)$		$(8.38)$
F510-4010-H3	140	279	177	122	267	7	M6	3.8
	$(5.51)$	$(10.98)$	$(6.97)$	$(4.80)$	$(10.51)$	$(0.28)$		$(8.38)$

(b) 200V: $10-30 \mathrm{HP} / 400 \mathrm{~V}: 15-40 \mathrm{HP}$


Inverter Model	Dimensions in mm (inch)						d	NW in kg(lbs)
	W	H	D	W1	H1	t		
F510-2010-H3	$\begin{gathered} \hline 210 \\ (8.27) \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 215 \\ (8.46) \\ \hline \end{gathered}$	$\begin{gathered} 192 \\ (7.56) \end{gathered}$	$\begin{gathered} 286 \\ (11.26) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.6 \\ (0.06) \\ \hline \end{gathered}$	M6	$\begin{gathered} 6.2 \\ (13.67) \end{gathered}$
F510-2015-H3	$\begin{gathered} 210 \\ (8.27) \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 215 \\ (8.46) \end{gathered}$	$\begin{gathered} 192 \\ (7.56) \end{gathered}$	$\begin{gathered} 286 \\ (11.26) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \end{gathered}$	M6	$\begin{gathered} 6.2 \\ (13.67) \end{gathered}$
F510-2020-H3	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \\ \hline \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \\ \hline \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \\ \hline \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M8	$\begin{gathered} 10 \\ (22.05) \\ \hline \end{gathered}$
F510-2025-H3	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \\ \hline \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \\ \hline \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M8	$\begin{gathered} 10 \\ (22.05) \\ \hline \end{gathered}$
F510-2030-H3	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \end{gathered}$	M8	$\begin{gathered} 10 \\ (22.05) \end{gathered}$
F510-4015-H3	$\begin{gathered} 210 \\ (8.27) \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \\ \hline \end{gathered}$	$\begin{gathered} 215 \\ (8.46) \\ \hline \end{gathered}$	$\begin{gathered} 192 \\ (7.56) \\ \hline \end{gathered}$	$\begin{gathered} 286 \\ (11.26) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M6	$\begin{gathered} 6.2 \\ (13.67) \\ \hline \end{gathered}$
F510-4020-H3	$\begin{gathered} 210 \\ (8.27) \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 215 \\ (8.46) \\ \hline \end{gathered}$	$\begin{gathered} 192 \\ (7.56) \\ \hline \end{gathered}$	$\begin{gathered} 286 \\ (11.26) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M6	$\begin{gathered} 6.2 \\ (13.67) \\ \hline \end{gathered}$
F510-4025-H3	$\begin{gathered} 265 \\ (10.43) \\ \hline \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \\ \hline \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \\ \hline \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \\ \hline \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M8	$\begin{gathered} 10 \\ (22.05) \\ \hline \end{gathered}$
F510-4030-H3	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \\ \hline \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \\ \hline \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M8	$\begin{gathered} 10 \\ (22.05) \\ \hline \end{gathered}$
F510-4040-H3	$\begin{gathered} 265 \\ (10.43) \\ \hline \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \\ \hline \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \\ \hline \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M8	$\begin{gathered} 10 \\ (22.05) \\ \hline \end{gathered}$

(c) $200 \mathrm{~V}: 40-50 \mathrm{HP} / 400 \mathrm{~V}: 50-75 \mathrm{HP}$


Inverter Model	Dimensions in mm (inch)							H1
	W	H	D	W1	t	d	NW in kg(Ibs)	
F510-2040-H3	284	525	252	220	505	1.6	M8	30
	$(11.18)$	$(20.67)$	$(9.92)$	$(8.66)$	$(19.88)$	$(0.06)$		$(66.14)$
F510-2050-H3	284	525	252	220	505	1.6	M8	30
	$(11.18)$	$(20.67)$	$(9.92)$	$(8.66)$	$(19.88)$	$(0.06)$		
F510-4050-H3	284	525	252	220	505	1.6		M8
	$(11.18)$	$(20.67)$	$(9.92)$	$(8.66)$	$(19.88)$	$(0.06)$	M8	$(66.14)$
F510-4060-H3	284	525	252	220	505	1.6	M8	30
	$(11.18)$	$(20.67)$	$(9.92)$	$(8.66)$	$(19.88)$	$(0.06)$		$(66.14)$
F510-4075-H3	284	525	252	220	505	1.6	M8	30
	$(11.18)$	$(20.67)$	$(9.92)$	$(8.66)$	$(19.88)$	$(0.06)$		



Inverter Model	Dimensions in mm (inch)						d	NW in kg(lbs)
	W	H	D	W1	H1	t		
F510-2060-H3	$\begin{gathered} 344 \\ (13.54) \end{gathered}$	$\begin{gathered} 580 \\ (22.83) \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 250 \\ \hline(9.84) \end{gathered}$	$\begin{gathered} 560 \\ (22.05) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \end{gathered}$	M10	$\begin{gathered} 40.5 \\ (89.29) \\ \hline \end{gathered}$
F510-2075-H3	$\begin{gathered} 344 \\ (13.54) \end{gathered}$	$\begin{gathered} 580 \\ (22.83) \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 250 \\ (9.84) \end{gathered}$	$\begin{gathered} 560 \\ (22.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 40.5 \\ (89.29) \\ \hline \end{gathered}$
F510-2100-H3	$\begin{gathered} 459 \\ (18.07) \\ \hline \end{gathered}$	$\begin{gathered} 790 \\ (31.10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 324.5 \\ (12.78) \\ \hline \end{gathered}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 74 \\ (163.14) \\ \hline \end{gathered}$
F510-2125-H3	$\begin{gathered} 459 \\ (18.07) \\ \hline \end{gathered}$	$\begin{gathered} 790 \\ (31.10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 324.5 \\ (12.78) \\ \hline \end{gathered}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 74 \\ (163.14) \\ \hline \end{gathered}$
F510-4100-H3	$\begin{gathered} 344 \\ (13.54) \\ \hline \end{gathered}$	$\begin{gathered} 580 \\ (22.83) \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ (9.84) \\ \hline \end{gathered}$	$\begin{gathered} 560 \\ (22.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 40.5 \\ (89.29) \\ \hline \end{gathered}$
F510-4125-H3	$\begin{gathered} 344 \\ (13.54) \\ \hline \end{gathered}$	$\begin{gathered} 580 \\ (22.83) \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ (9.84) \\ \hline \end{gathered}$	$\begin{gathered} 560 \\ (22.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 40.5 \\ (89.29) \\ \hline \end{gathered}$
F510-4150-H3	$\begin{gathered} 459 \\ (18.07) \\ \hline \end{gathered}$	$\begin{gathered} 790 \\ (31.10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 324.5 \\ (12.78) \\ \hline \end{gathered}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 74 \\ (163.14) \\ \hline \end{gathered}$
F510-4175-H3	$\begin{gathered} 459 \\ (18.07) \\ \hline \end{gathered}$	$\begin{gathered} 790 \\ (31.10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 324.5 \\ (12.78) \\ \hline \end{gathered}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 74 \\ (163.14) \\ \hline \end{gathered}$
F510-4215-H3	$\begin{gathered} 459 \\ (18.07) \\ \hline \end{gathered}$	$\begin{gathered} 790 \\ (31.10) \\ \hline \end{gathered}$	$\begin{gathered} 324.5 \\ (12.78) \\ \hline \end{gathered}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 74 \\ (163.14) \\ \hline \end{gathered}$
F510-4250-H3	$\begin{gathered} 459 \\ (18.07) \\ \hline \end{gathered}$	$\begin{gathered} 790 \\ (31.10) \\ \hline \end{gathered}$	$\begin{gathered} 324.5 \\ (12.78) \end{gathered}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 74 \\ (163.14) \\ \hline \end{gathered}$



Inverter Model	Dimensions in mm (inch)						d	NW in kg (lbs)
	W	H	D	W1	H1	t		
F510-2060-H3	$\begin{gathered} 348.5 \\ (13.72) \end{gathered}$	$\begin{gathered} 740 \\ (29.13) \end{gathered}$	$\begin{array}{\|c\|} \hline 300 \\ (11.81) \end{array}$	$\begin{gathered} 250 \\ (9.84) \end{gathered}$	$\begin{gathered} 560 \\ (22.05) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \end{gathered}$	M10	$\begin{gathered} 44 \\ (97.00) \\ \hline \end{gathered}$
F510-2075-H3	$\begin{gathered} 348.5 \\ (13.72) \\ \hline \end{gathered}$	$\begin{gathered} 740 \\ (29.13) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 300 \\ (11.81) \\ \hline \end{array}$	$\begin{gathered} 250 \\ (9.84) \\ \hline \end{gathered}$	$\begin{gathered} 560 \\ (22.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 44 \\ (97.00) \\ \hline \end{gathered}$
F510-2100-H3	$\begin{gathered} \hline 463.5 \\ (18.25) \\ \hline \end{gathered}$	$\begin{gathered} 1105 \\ (43.50) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 324.5 \\ (12.78) \\ \hline \end{array}$	$\begin{gathered} 320 \\ (12.60) \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 81 \\ (178.57) \\ \hline \end{gathered}$
F510-2125-H3	$\begin{gathered} 463.5 \\ (18.25) \end{gathered}$	$\begin{gathered} 1105 \\ (43.50) \end{gathered}$	$\begin{array}{\|c} \hline 324.5 \\ (12.78) \\ \hline \end{array}$	$\begin{gathered} 320 \\ (12.60) \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \end{gathered}$	M10	$\begin{gathered} 81 \\ (178.57) \\ \hline \end{gathered}$
F510-4100-H3	$\begin{gathered} 348.5 \\ (13.72) \\ \hline \end{gathered}$	$\begin{gathered} 740 \\ (29.13) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 300 \\ (11.81) \\ \hline \end{array}$	$\begin{gathered} 250 \\ (9.84) \\ \hline \end{gathered}$	$\begin{gathered} 560 \\ (22.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 44 \\ (97.00) \\ \hline \end{gathered}$
F510-4125-H3	$\begin{gathered} 348.5 \\ (13.72) \\ \hline \end{gathered}$	$\begin{gathered} 740 \\ (29.13) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 300 \\ (11.81) \\ \hline \end{array}$	$\begin{gathered} 250 \\ (9.84) \\ \hline \end{gathered}$	$\begin{gathered} 560 \\ (22.05) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 44 \\ (97.00) \\ \hline \end{gathered}$
F510-4150-H3	$\begin{gathered} 463.5 \\ (18.25) \\ \hline \end{gathered}$	$\begin{gathered} 1105 \\ (43.50) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 324.5 \\ (12.78) \\ \hline \end{array}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 81 \\ (178.57) \\ \hline \end{gathered}$
F510-4175-H3	$\begin{gathered} 463.5 \\ (18.25) \\ \hline \end{gathered}$	$\begin{gathered} 1105 \\ (43.50) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 324.5 \\ (12.78) \\ \hline \end{array}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 81 \\ (178.57) \\ \hline \end{gathered}$
F510-4215-H3	$\begin{gathered} 463.5 \\ (18.25) \\ \hline \end{gathered}$	$\begin{gathered} 1105 \\ (43.50) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 324.5 \\ (12.78) \\ \hline \end{array}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 81 \\ (178.57) \\ \hline \end{gathered}$
F510-4250-H3	$\begin{gathered} 463.5 \\ (18.25) \\ \hline \end{gathered}$	$\begin{gathered} 1105 \\ (43.50) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 324.5 \\ (12.78) \\ \hline \end{array}$	$\begin{gathered} 320 \\ (12.60) \\ \hline \end{gathered}$	$\begin{gathered} 760 \\ (29.92) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M10	$\begin{gathered} 81 \\ (178.57) \\ \hline \end{gathered}$

(f) 200V: 150-175HP/ 400V: 300-425HP (IP00)


Inverter Model	Dimensions in mm (inch)								
	W	H	D	W 1	W 2	H 1	t	d	NW in kg(lbs)
F510-2150-H3	690	1000	410	530	265	960	1.6	M12	184
	$(27.17)$	$(39.37)$	$(16.14)$	$(20.87)$	$(10.43)$	$(37.80)$	$(0.06)$		$(405.65)$
F510-2175-H3	690	1000	410	530	265	960	1.6	M12	184
	$(27.17)$	$(39.37)$	$(16.14)$	$(20.87)$	$(10.43)$	$(37.80)$	$(0.06)$		$(405.65)$
F510-4300-H3	690	1000	410	530	265	960	1.6	M12	184
	$(27.17)$	$(39.37)$	$(16.14)$	$(20.87)$	$(10.43)$	$(37.80)$	$(0.06)$		$(405.65)$
F510-4375-H3	690	1000	410	530	265	960	1.6	M12	184
	$(27.17)$	$(39.37)$	$(16.14)$	$(20.87)$	$(10.43)$	$(37.80)$	$(0.06)$		$(405.65)$
F510-4425-H3	690	1000	410	530	265	960	1.6	M12	184
	$(27.17)$	$(39.37)$	$(16.14)$	$(20.87)$	$(10.43)$	$(37.80)$	$(0.06)$		$(405.65)$

(g) 200V: 150-175HP/ 400V: 300-425HP (IP20)


Inverter Model	Dimensions in mm (inch)								
	W	H	D	W1	W2	H1	t	d	NW in kg(lbs)
F510-2150-H3	$\begin{gathered} 690 \\ (27.17) \end{gathered}$	$\begin{array}{\|c\|} \hline 1313 \\ (51.69) \end{array}$	$\begin{gathered} \hline 410 \\ (16.14) \end{gathered}$	$\begin{array}{\|c\|} \hline 530 \\ (20.87) \end{array}$	$\begin{array}{\|c\|} \hline 265 \\ (10.43) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 960 \\ (37.80) \end{array}$	$\begin{gathered} 1.6 \\ (0.06) \end{gathered}$	M12	$\begin{gathered} 194 \\ (427.70) \end{gathered}$
F510-2175-H3	$\begin{gathered} 690 \\ (27.17) \end{gathered}$	$\begin{array}{\|c\|} \hline 1313 \\ (51.69) \\ \hline \end{array}$	$\begin{gathered} \hline 410 \\ (16.14) \end{gathered}$	$\begin{array}{c\|} \hline 530 \\ (20.87) \end{array}$	$\begin{array}{\|c\|} \hline 265 \\ (10.43) \end{array}$	$\begin{gathered} 960 \\ (37.80) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.6 \\ (0.06) \end{array}$	M12	$\begin{gathered} 194 \\ (427.70) \end{gathered}$
F510-4300-H3	$\begin{gathered} 690 \\ (27.17) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1313 \\ (51.69) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 410 \\ (16.14) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 530 \\ (20.87) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 265 \\ (10.43) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 960 \\ (37.80) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.6 \\ (0.06) \\ \hline \end{array}$	M12	$\begin{gathered} 194 \\ (427.70) \\ \hline \end{gathered}$
F510-4375-H3	$\begin{gathered} 690 \\ (27.17) \end{gathered}$	$\begin{array}{\|c\|} \hline 1313 \\ (51.69) \\ \hline \end{array}$	$\begin{gathered} 410 \\ (16.14) \end{gathered}$	$\begin{gathered} 530 \\ (20.87) \end{gathered}$	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	$\begin{gathered} 960 \\ (37.80) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M12	$\begin{gathered} 194 \\ (427.70) \\ \hline \end{gathered}$
F510-4425-H3	$\begin{gathered} 690 \\ (27.17) \end{gathered}$	$\begin{array}{\|c\|} \hline 1313 \\ (51.69) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 410 \\ (16.14) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 530 \\ (20.87) \end{array}$	$\begin{array}{\|c\|} \hline 265 \\ (10.43) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 960 \\ (37.80) \end{array}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M12	$\begin{gathered} 194 \\ (427.70) \\ \hline \end{gathered}$

(h) 400V: 535-800HP (IP00)


Inverter Model	Dimensions in mm (inch)								
	W	H	D	W1	H1	H2	t	d	NW in kg(lbs)
F510-4535-H3	$\begin{gathered} 958 \\ (37.72) \end{gathered}$	$\begin{array}{\|c\|} \hline 1356 \\ (53.38) \end{array}$	$\begin{gathered} 507 \\ (19.96) \end{gathered}$	$\begin{gathered} 916 \\ (36.06) \end{gathered}$	$\begin{gathered} 1200 \\ (47.24) \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 3 \\ (0.12) \\ \hline \end{gathered}$	M12	$\begin{gathered} \hline 330 \\ (726) \\ \hline \end{gathered}$
F510-4670-H3	$\begin{gathered} 958 \\ (37.72) \end{gathered}$	$\begin{array}{\|c\|} \hline 1356 \\ (53.38) \end{array}$	$\begin{gathered} 507 \\ (19.96) \end{gathered}$	$\begin{array}{c\|} \hline 916 \\ (36.06) \\ \hline \end{array}$	$\begin{gathered} 1200 \\ (47.24) \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 3 \\ (0.12) \\ \hline \end{gathered}$	M12	$\begin{gathered} 340 \\ (748) \end{gathered}$
F510-4800-H3	$\begin{array}{\|c\|} \hline 958 \\ (37.72) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1356 \\ (53.38) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 507 \\ (19.96) \\ \hline \end{array}$	$\begin{gathered} 916 \\ (36.06) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1200 \\ (47.24) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 300 \\ (11.81) \end{array}$	$\begin{gathered} 3 \\ (0.12) \\ \hline \end{gathered}$	M12	$\begin{gathered} 340 \\ (748) \\ \hline \end{gathered}$

(i) $400 \mathrm{~V}: 535-800 \mathrm{HP}$ (IP20)


Inverter Model	Dimensions in mm (inch)							d	NW in kg(lbs)
	W	H	D	W1	H1	H2	t		
F510-4535-H3	$\begin{gathered} 960 \\ (37.80) \\ \hline \end{gathered}$	$\begin{gathered} 1556 \\ (61.26) \\ \hline \end{gathered}$	$\begin{gathered} 632 \\ (24.88) \end{gathered}$	$\begin{gathered} 920 \\ (36.22) \end{gathered}$	$\begin{gathered} 1050 \\ (41.34) \\ \hline \end{gathered}$	$\begin{gathered} 350 \\ (13.78) \end{gathered}$	$\begin{gathered} 3 \\ (0.12) \\ \hline \end{gathered}$	M12	$\begin{gathered} 300 \\ (661.39) \\ \hline \end{gathered}$
F510-4670-H3	$\begin{gathered} 960 \\ (37.80) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1556 \\ (61.26) \\ \hline \end{array}$	$\begin{gathered} 632 \\ (24.88) \end{gathered}$	$\begin{gathered} 920 \\ (36.22) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1050 \\ (41.34) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 350 \\ (13.78) \\ \hline \end{array}$	$\begin{gathered} 3 \\ (0.12) \\ \hline \end{gathered}$	M12	$\begin{gathered} 300 \\ (661.39) \\ \hline \end{gathered}$
F510-4800-H3	$\begin{gathered} 960 \\ (37.80) \end{gathered}$	$\begin{gathered} 1556 \\ (61.26) \end{gathered}$	$\begin{gathered} \hline 632 \\ (24.88) \end{gathered}$	$\begin{gathered} 920 \\ (36.22) \end{gathered}$	$\begin{gathered} 1050 \\ (41.34) \end{gathered}$	$\begin{array}{\|c\|} \hline 350 \\ (13.78) \end{array}$	$\begin{gathered} 3 \\ (0.12) \end{gathered}$	M12	$\begin{gathered} 300 \\ (661.39) \end{gathered}$

### 3.7.2 Models with Built-in Filter (IP00/IP20)

(a) $400 \mathrm{~V}: 5-10 \mathrm{HP}$


Inverter Model	Dimensions in mm (inch)							d	NW in kg(lbs)
	W	H	D	W1	H1	H2	t		
F510-4005-H3F	$\begin{gathered} 140 \\ (5.51) \end{gathered}$	$\begin{gathered} 385 \\ (15.16) \end{gathered}$	$\begin{gathered} 177 \\ (6.97) \end{gathered}$	$\begin{gathered} 122 \\ (4.80) \end{gathered}$	$\begin{gathered} 267 \\ (10.51) \end{gathered}$	$\begin{gathered} 279 \\ (10.98) \end{gathered}$	$\begin{gathered} 7 \\ (0.28) \end{gathered}$	M6	$\begin{gathered} 5.5 \\ (12.13) \end{gathered}$
F510-4008-H3F	$\begin{gathered} 140 \\ (5.51) \end{gathered}$	$\begin{gathered} 385 \\ (15.16) \end{gathered}$	$\begin{gathered} 177 \\ (6.97) \\ \hline \end{gathered}$	$\begin{gathered} 122 \\ (4.80) \\ \hline \end{gathered}$	$\begin{gathered} 267 \\ (10.51) \\ \hline \end{gathered}$	$\begin{gathered} 279 \\ (10.98) \end{gathered}$	$\begin{gathered} 7 \\ (0.28) \end{gathered}$	M6	$\begin{gathered} 5.5 \\ (12.13) \end{gathered}$
F510-4010-H3F	$\begin{gathered} 140 \\ (5.51) \\ \hline \end{gathered}$	$\begin{gathered} 385 \\ (15.16) \\ \hline \end{gathered}$	$\begin{gathered} 177 \\ (6.97) \\ \hline \end{gathered}$	$\begin{gathered} 122 \\ (4.80) \\ \hline \end{gathered}$	$\begin{gathered} 267 \\ (10.51) \end{gathered}$	$\begin{gathered} 279 \\ (10.98) \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ (0.28) \\ \hline \end{gathered}$	M6	$\begin{gathered} 5.5 \\ (12.13) \\ \hline \end{gathered}$

(b) $400 \mathrm{~V}: 15-40 \mathrm{HP}$


Inverter Model	Dimensions in mm (inch)							d	NW in kg(lbs)
	W	H	D	W1	H1	H2	t		
F510-4015-H3F	$\begin{gathered} \hline 210 \\ (8.27) \end{gathered}$	$\begin{gathered} \hline 416.5 \\ (16.40) \end{gathered}$	$\begin{gathered} 215 \\ (8.46) \end{gathered}$	$\begin{gathered} 192 \\ (7.56) \end{gathered}$	$\begin{array}{\|c\|} \hline 286 \\ (11.26) \end{array}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} \hline 1.6 \\ (0.06) \\ \hline \end{gathered}$	M6	$\begin{gathered} 8.0 \\ (17.64) \end{gathered}$
F510-4020-H3F	$\begin{gathered} 210 \\ (8.27) \end{gathered}$	$\begin{gathered} 416.5 \\ (16.40) \end{gathered}$	$\begin{gathered} 215 \\ (8.46) \end{gathered}$	$\begin{gathered} 192 \\ (7.56) \end{gathered}$	$\begin{array}{\|c\|} \hline 286 \\ (11.26) \\ \hline \end{array}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \end{gathered}$	M6	$\begin{gathered} 8.0 \\ (17.64) \end{gathered}$
F510-4025-H3F	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	$\begin{gathered} 500 \\ (19.69) \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \\ \hline \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M8	$\begin{gathered} 12.5 \\ (27.56) \end{gathered}$
F510-4030-H3F	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	$\begin{gathered} 500 \\ (19.69) \\ \hline \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \\ \hline \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \\ \hline \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \\ \hline \end{gathered}$	M8	$\begin{gathered} 12.5 \\ (27.56) \\ \hline \end{gathered}$
F510-4040-H3F	$\begin{gathered} 265 \\ (10.43) \end{gathered}$	$\begin{gathered} 500 \\ (19.69) \end{gathered}$	$\begin{gathered} 225 \\ (8.86) \end{gathered}$	$\begin{gathered} 245 \\ (9.65) \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \end{gathered}$	$\begin{gathered} 360 \\ (14.17) \end{gathered}$	$\begin{gathered} 1.6 \\ (0.06) \end{gathered}$	M8	$\begin{gathered} 12.5 \\ (27.56) \\ \hline \end{gathered}$

(c) $400 \mathrm{~V}: 50-75 \mathrm{HP}$


Inverter Model	Dimensions in mm (inch)								
	W	H	D	W1	H1	H2	t	d	NW in kg(lbs)
F510-4050-H3F	284	679	252	220	505	525	1.6	M8	32.5
	$(11.18)$	$(26.73)$	$(9.92)$	$(8.66)$	$(19.88)$	$(20.67)$	$(0.06)$		$(71.65)$
F510-4060-H3F	284	679	252	220	505	525	1.6	M8	32.5
	$(11.18)$	$(26.73)$	$(9.92)$	$(8.66)$	$(19.88)$	$(20.67)$	$(0.06)$		$(71.65)$
F510-4075-H3F	284	679	252	220	505	525	1.6	M8	32.5
	$(11.18)$	$(26.73)$	$(9.92)$	$(8.66)$	$(19.88)$	$(20.67)$	$(0.06)$		$(71.65)$

### 3.7.3 Models with Built-in Filter (IP55)

(a) $400 \mathrm{~V}: 5-25 \mathrm{HP}$


Inverter Model	Dimensions in mm (inch)							H1
	W	H	D	W 1	t	d	NW in kg(Ibs)	
F510-4005-C3FN4	189	284	186	171	266	1.2	M5	7
	$(7.44)$	$(11.18)$	$(7.32)$	$(6.73)$	$(10.47)$	$(0.05)$		$(15.43)$
F510-4008-C3FN4	189	284	186	171	266	1.2	M5	7
	$(7.44)$	$(11.18)$	$(7.32)$	$(6.73)$	$(10.47)$	$(0.05)$		$(15.43)$
F510-4010-C3FN4	230	320	210	210	305	2	M5	10.5
	$(9.06)$	$(12.60)$	$(8.27)$	$(8.27)$	$(12.01)$	$(0.08)$		$(23.15)$
F510-4015-C3FN4	230	320	210	210	305	2	M5	10.5
	$(9.06)$	$(12.60)$	$(8.27)$	$(8.27)$	$(12.01)$	$(0.08)$		$(23.15)$
F510-4020-C3FN4	265	396	227	249	380	2	M5	17
	$(10.43)$	$(15.59)$	$(8.94)$	$(9.80)$	$(14.96)$	$(0.08)$		$(37.48)$
F510-4025-C3FN4	265	396	227	249	380	2	M5	17
	$(10.43)$	$(15.59)$	$(8.94)$	$(9.80)$	$(14.96)$	$(0.08)$		$(37.48)$

(b) 400V: 30-60HP (Models of 75~100HP without built-in filter)


Inverter Model	Dimensions in mm (inch)						d	NW in kg(lbs)
	W	H	D	W1	H1	t		
F510-4030-C3FN4	$\begin{gathered} \hline 224 \\ (8.82) \end{gathered}$	$\begin{gathered} 527 \\ (20.75) \end{gathered}$	$\begin{gathered} 311 \\ (12.24) \end{gathered}$	$\begin{gathered} 180 \\ (7.09) \end{gathered}$	$\begin{gathered} 505 \\ (19.88) \end{gathered}$	$\begin{gathered} 2 \\ (0.08) \end{gathered}$	M10	$\begin{gathered} 32.5 \\ (71.65) \end{gathered}$
F510-4040-C3FN4	$\begin{gathered} 224 \\ (8.82) \\ \hline \end{gathered}$	$\begin{gathered} 527 \\ (20.75) \\ \hline \end{gathered}$	$\begin{gathered} 311 \\ (12.24) \end{gathered}$	$\begin{gathered} 180 \\ (7.09) \end{gathered}$	$\begin{gathered} 505 \\ (19.88) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (0.08) \\ \hline \end{gathered}$	M10	$\begin{gathered} 32.5 \\ (71.65) \\ \hline \end{gathered}$
F510-4050-C3FN4	$\begin{gathered} 224 \\ (8.82) \\ \hline \end{gathered}$	$\begin{gathered} 527 \\ (20.75) \\ \hline \end{gathered}$	$\begin{gathered} 311 \\ (12.24) \end{gathered}$	$\begin{gathered} 180 \\ (7.09) \end{gathered}$	$\begin{gathered} 505 \\ (19.88) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (0.08) \\ \hline \end{gathered}$	M10	$\begin{gathered} 32.5 \\ (71.65) \\ \hline \end{gathered}$
F510-4060-C3FN4	$\begin{gathered} 326 \\ (12.83) \\ \hline \end{gathered}$	$\begin{gathered} 695 \\ (27.36) \\ \hline \end{gathered}$	$\begin{gathered} 343 \\ (13.50) \\ \hline \end{gathered}$	$\begin{gathered} 276 \\ (10.87) \\ \hline \end{gathered}$	$\begin{gathered} 671 \\ (26.42) \\ \hline \end{gathered}$	$\begin{gathered} 2.3 \\ (0.09) \\ \hline \end{gathered}$	M10	$\begin{gathered} 55 \\ (121.25) \\ \hline \end{gathered}$
F510-4075-C3N4	$\begin{gathered} 326 \\ (12.83) \end{gathered}$	$\begin{gathered} 695 \\ (27.36) \\ \hline \end{gathered}$	$\begin{gathered} 343 \\ (13.50) \\ \hline \end{gathered}$	$\begin{gathered} 276 \\ (10.87) \\ \hline \end{gathered}$	$\begin{gathered} 671 \\ (26.42) \\ \hline \end{gathered}$	$\begin{gathered} 2.3 \\ (0.09) \\ \hline \end{gathered}$	M10	$\begin{gathered} 55 \\ (121.25) \\ \hline \end{gathered}$
F510-4100-C3N4	$\begin{gathered} 326 \\ (12.83) \\ \hline \end{gathered}$	$\begin{gathered} 695 \\ (27.36) \\ \hline \end{gathered}$	$\begin{gathered} 343 \\ (13.50) \\ \hline \end{gathered}$	$\begin{gathered} 276 \\ (10.87) \\ \hline \end{gathered}$	$\begin{gathered} 671 \\ (26.42) \end{gathered}$	$\begin{gathered} 2.3 \\ (0.09) \end{gathered}$	M10	$\begin{gathered} 55 \\ (121.25) \\ \hline \end{gathered}$

## Chapter 4 Keypad and Programming Functions

### 4.1 LED Keypad

### 4.1.1 Keypad Display and Keys



DISPLAY	Description
5 Digit LED Display	Monitor inverter signals, view / edit parameters, fault / alarm display.
LED INDICATORS	
FAULT	LED ON when a fault or alarm is active.
FWD	LED ON when inverter is running in forward direction, flashing when stopping.
REV	LED On when inverter is running in reverse direction, flashing when stopping.
SEQ	LED ON when RUN command is from the external control terminals or from   serial communication.
REF	LED ON when Frequency Reference command is from the external control   terminals or from serial communication.


KEYS (8)	Description
RUN	RUN inverter
STOP	STOP inverter
$\boldsymbol{\nabla}$	Parameter navigation Up, Increase parameter or reference value
LOC/REM	Parameter navigation down, decrease parameter or reference value
DSP/FUN	Used to switch between Local Mode and Remote Mode   REMOTE Mode: Set by parameters, controlled by control circuit terminals,   communication or other ways.   LOCAL Mode: Controlled by operator.   It displays REMOTE Mode at power-up. Users can switch between LOCAL   and REMOTE Mode if they press LOC/ REM keys when the inverter stops.   Parameter of 23-41 can determine if LOC/REM keys are enabled or not.
$\boldsymbol{\operatorname { L } / \text { RESET }}$	Used to scroll to next screen   Frequence screen $\rightarrow$ Function selection $\rightarrow$ Monitor parameter
READ / ENTER	Selects active seven segment digit for editing with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys   Used to reset fault condition.
Used to read and save the value of the active parameter.	

## Auto-Repeat Keys

Holding the $\triangle U P$ or $\nabla D O W N$ key for a longer period of time will initiate the auto-repeat function resulting in the value of the selected digit to automatically increase or decrease.

### 4.1.2 Seven Segment Display Description

Actual	LED Display						
0		A	$18$	L	$\begin{aligned} & 1 \\ & \mathbf{L} \end{aligned}$	Y	$18$
1	$1$	B	$1$	$n$	17	-	-
2		C	$\begin{aligned} & \overline{1} \\ & \mathbf{L} \end{aligned}$	0	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	-	17
3	$1$	D	$1$	P			-
4	$18$	E	$E$	q	$17$	.	
5	$E$	F	$E$	r	$1{ }^{-}$		
6	$E$	G	$\begin{aligned} & 1 \\ & 10 \end{aligned}$	S	$E$		
7	$7$	H	$11$	t	$E$		
8	$8$	1	$1$	$u$	18		
9	$18$	J	$1$	V	$\begin{aligned} & 11 \\ & 18 \end{aligned}$		

Display output frequency
LED lights on
17175177 10120.1110

Frequency Reference
LED flashes


Set Frequency Reference
Flashing digit

171517710151101	

- At power-up, the display will show the frequency reference setting and all LEDs are flashing. Press the $\boldsymbol{\Delta}$ (UP) or $\boldsymbol{\nabla}(D O W N)$ key to enter the frequency reference edit mode, use the $\boldsymbol{4} /$ RESET key to select which digit to edit (flashing). Use the $\boldsymbol{\Delta}$ (UP) or $\boldsymbol{\nabla}$ (DOWN) key to modify the value and press the READ / ENTER key to save the frequency reference and switch back to the frequency reference display mode.
- During run operation, the display will show the output frequency.

Note: When in edit mode and the READ / ENTER is not pressed within 5 sec, the inverter will switch back to the frequency reference display mode.

LED Display Examples

| Seven Segment Display | Description |
| :--- | :--- | :--- | :--- | :--- |

### 4.1.3 LED Indicator Description

- Fault LED

State	Description	FAULT LED
Off	No Fault Active	
Illuminated	Fault Active	

- Forward LED

State	Description	FWD LED
Off	Inverter in reverse direction	
Illuminated	Inverter is running in forward direction	
Flashing	Forward direction active, no run command	

- Reverse LED

State	Description	REV LED
Off	Inverter in forward direction	
Illuminated	Inverter is running in reverse direction	
Flashing	Reverse direction active, no run command	

- RUN LED

State	Description	RUN LED
Off	Inverter stopped	
Illuminated	Inverter running	
Flashing	Inverter stopped or stopping	

- SEQ LED

State	Description	SEQ LED
Off	Sequence controlled from keypad	
Illuminated	Sequence set from external source	

REF LED

State	Description	REF LED
Off	Frequency reference set from keypad	
Illuminated	Frequency reference set from external source	

## Run / Stop Status Indicators



ON
-
Flashing

OFF

### 4.1.4 Power-up Monitor

## - Power-up



- Changing Monitor at Power-up

12-00		Disp
Range	Highest bit -> $\underline{0} \underline{0} \underline{0} \underline{0} \underline{0}$ <- Lowest bit   The setting range for each bit is $\mathbf{0} \sim \mathbf{7}$ from the highest bit to the lowest bit.	
	0 : No display   1: Output current   2: Output voltage   3: DC voltage	4: Temperature   5: PID feedback   6: Al1 value   7: Al2 value

Example: 12-00=【10000】



### 4.1.5 Modifying Parameters/ Set Frequency Reference

Example: Modifying Parameters


Inverter stopped:


Note: When upper or lower limit is reached during editing of the frequency reference, the edit value will automatically rollover from the lower limit to the upper limit or from the upper limit to the lower limit.

### 4.1.6 Operation Control



### 4.2 LCD keypad

### 4.2.1 Keypad Display and Keys



DISPLAY	Description
LCD Display	Monitor inverter signals, view / edit parameters, fault / alarm display.
LED INDICATORS	
FAULT	LED ON when a fault or alarm is active.
FWD	LED ON when inverter is running in forward direction, flashing when stopping.
REV	LED On when inverter is running in reverse direction, flashing when stopping.
SEQ	LED ON when RUN command is from the external control terminals or from   serial communication.
REF	LED ON when Frequency Reference command is from the external control   terminals or from serial communication.


KEYS (8)	Description
RUN	RUN inverter
STOP	STOP inverter
-	Parameter navigation Up, Increase parameter or reference value
$\nabla$	Parameter navigation down, decrease parameter or reference value
LOC/REM	Used to switch between Local Mode and Remote Mode   REMOTE Mode: Set by parameters, controlled by control circuit terminals, communication or other ways.   LOCAL Mode: Controlled by operator.   It displays REMOTE Mode at power-up. Users can switch between LOCAL and REMOTE Mode if they press LOC/ REM keys when the inverter stops. Parameter of 23-41 can determine if LOC/REM keys are enabled or not.
DSP/FUN	Used to scroll to next screen Frequence screen $\rightarrow$ Function selection $\rightarrow$ Monitor parameter
4 / RESET	Selects active seven segment digit for editing with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys Used to reset fault condition.
READ / ENTER	Used to read and save the value of the active parameter.

## Auto-Repeat Keys

Holding the $\triangle U P$ or $\nabla D O W N$ key for a longer period of time will initiate the auto-repeat function resulting in the value of the selected digit to automatically increase or decrease.

Note: HOA LCD keypad is available with an optional accessory.

### 4.2.2 Keypad Menu Structure

## - Main Menu

The F510 inverter main menu consists of two main groups (modes). The DSP/FUN key is used to switch between the monitor mode and the parameter group mode. Refer to Figure 4.2.2.1.


Mode	Description
Monitor Mode	View inverter status, signals and fault data.
Parameter Group Mode	Access to available parameter groups.

All the available parameter groups are listed in the Parameter Group Mode. Use the up and down keys to select a group and press READ/ ENTER to access its parameters.


Fig. 4.2.2.1 Parameter Group Structure

## Notes:

- Always perform auto-tune on the motor before operating the inverter in vector control (sensorless vector or flux vector). Auto-tuning mode will not be displayed when the inverter is running or when a fault is active.
- To scroll through the available modes, parameter groups or parameter list press and hold the up or down key.


## - Monitor Mode

In monitor mode inverter signals can be monitored such as output frequency, output current and output voltage, etc...) as well as fault information and fault trace. See Fig 4.2.2.2 for keypad navigation.


Fig 4.2.2.2 Monitor Mode

## - Programming Mode

In programming mode inverter parameters can be read or changed. See Fig 4.2.2.3 for keypad navigation.

## Monitor Mode



Fig 4.2.2.3 Programming Mode

## Notes:

- The parameters values can be changed from the data set/read screen with the up or down and </RESET shift key.
- To save a parameter press the READ/ENTER key.
- Refer to section 4.3 for parameter details.
- Press the $\boldsymbol{\Delta}$ (up) or $\boldsymbol{\nabla}$ (down) key to scroll parameter groups or parameter list.


## - Auto-tuning Mode

In the auto-tuning mode motor parameters can be calculated and set automatically based on the selected control mode. See Fig 4.2.2.4 for keypad navigation


Fig 4.2.2.4 Auto-tuning Mode

## Notes:

- Set correct motor parameters by referring to motor nameplate.
- Refer to section 4.3 for parameter details.


### 4.2.2 Notes:

1. Use the up and down keys to scroll though the auto-tuning parameter list. Depending on the selected control mode in parameter 00-00, part of auto-tuning parameters will not be accessible. (Refer to the Auto-tuning Group 17 parameters).
2. After entering the motor nameplate rated output power (17-01), rated current (17-02), rated voltage (17-03), rated frequency (17-04), rated speed (17-05) and number of motor poles (17-06), select the automatic tuning mode and press the RUN key to perform the auto-tuning operation. When auto-tuning is successful the calculated motor parameters will be saved into parameter group 02 (motor parameter).
3. (a) "Rotational" will be displayed during rotational auto-tuning (17-00 $=0$ ) and the motor will rotate during auto-tuning. Ensure that it is safe to operate the motor before pressing the RUN key.
(b) "Stationary" will be displayed during stationary auto-tuning (17-00=1), the motor shaft does not rotate.
(c) The RUN LED (in the upper left corner of the RUN key) will be lit during auto-tuning.
(d) The LCD display shows ">>>" or "Atund" during the auto-tuning process.
4. Press the STOP key on the keypad to abort the auto-tuning operation.
5. In case of an auto-tuning fault, a fault message and the uncompleted message are displayed on the keypad. The RUN LED will be flashing and the motor will coast to stop. (Refer to section 10.4 for the Auto-tuning Faults.) The auto-tuning fault can be cleared by pressing the RESET key after which the keypad displays the auto-tuning mode again.

All motor parameters (group 02 through group 17 parameters) will revert back to their factory settings if a fault occurs. The motor data must be entered again before re-starting auto-tuning. The keypad shows ">>>" during an auto-tuning fault.
6. Upon successful completion of an auto-tune, the RUN LED will turn off. Press the DSP/FUN key to return to the main menu to select the next operation. The auto-tuning procedure takes approximately 50 seconds.

### 4.3 Parameters

Parameter Group	
Group 00	Basic Parameters
Group 01	V/F Control Parameters
Group 02	IM Motor Parameters
Group 03	External Digital Input and Output Parameters
Group 04	External Analog Input and Output Parameters
Group 05	Multi-Speed Parameters
Group 06	Automatic Program Operation Parameters
Group 07	Start/ Stop Parameters
Group 08	Protection Parameters
Group 09	Communication Parameters
Group 10	PID Parameters
Group 11	Auxiliary Parameters
Group 12	Monitoring Parameters
Group 13	Maintenance Parameters
Group 14	PLC Setting Parameters
Group 15	PLC Monitoring Parameters
Group 16	LCD Parameters
Group 17	IM Motor Automatic Tuning Parameters
Group 18	Slip Compensation Parameters
Group 19	Reserved
Group 20	Speed Control Parameters
Group 21	Torque Control Parameters
Group 22	PM Motor Parameters
Group 23	Pump \& HVAC
Group 24	1 to 8 Pump Card Function Group


Parameter Attribute	
$* 1$	Parameters can be changed during run operation.
$* 2$	Read-only parameters for communication.
$* 3$	Parameter will not reset to default during a factory reset
$* 4$	Read-only parameter
$* 5$	Only displayed in using LED keypad



Group 00 Basic Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
00-12	Upper Limit Frequency	0.1~109.0	100.0	\%	0	0	0	
00-13	Lower Limit Frequency	0.0~109.0	0.0	\%	0	0	0	
00-14	Acceleration Time 1	0.1~6000.0	-	s	0	0	0	*1
00-15	Deceleration Time 1	0.1~6000.0	-	s	0	0	0	*1
00-16	Acceleration Time 2	0.1~6000.0	-	s	0	0	0	*1
00-17	Deceleration Time 2	0.1~6000.0	-	s	0	0	0	*1
00-18	Jog Frequency	0.00~400.00	6.00	Hz	0	0	0	*1
00-19	Jog Acceleration Time	0.1~0600.0	-	s	0	0	0	*1
00-20	Jog Deceleration Time	0.1~0600.0	-	s	0	0	0	*1
00-21	Acceleration Time 3	0.1~6000.0	-	s	0	0	0	*1
00-22	Deceleration Time 3	$0.1 \sim 6000.0$	-	s	0	0	0	*1
00-23	Acceleration Time 4	$0.1 \sim 6000.0$	-	s	0	0	0	*1
00-24	Deceleration Time 4	0.1~6000.0	-	s	0	0	0	*1
00-25	Switch-Over Frequency of Acc/Dec Time 1 and Time 4	0.0~400.0	0.0	Hz	O	0	0	
00-26	Emergency Stop Time	0.1~6000.0	5.0	s	O	0	O	
00-27	Reserved							
00-28	Main Frequency Command Characteristic Selection	```0: Positive Characteristic ( \(0 \sim 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}\) is corresponding to 0~100\%) 1: Negative Characteristic ( \(0 \sim 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}\) is corresponding to \(100 \sim 0 \%\) )```	0	-	0	0	0	
$\begin{array}{\|c} \hline 00-29 \\ \sim \\ 00-31 \\ \hline \end{array}$	Reserved							
00-32	Application Selection Presets	0: Disable   1: Water supply pump   2: Reserved   3: Exhaust fan   4: HVAC   5: Reserved   6: Reserved   7: Reserved	0	-	0	0	0	
00-33	Parameter Correction List	$\begin{array}{\|l\|} \hline 0 \text { : Enable } \\ \hline 1 \text { : Disable } \\ \hline \end{array}$						
$\begin{array}{\|c} \hline 00-34 \\ \sim \\ 00-40 \end{array}$	Reserved							
00-41	User Parameter 0	Set $13-06=1$, and enable user parameter.   Setting Range: 01-00 ~24-06 (only used in LCD keypad)	-		0	0	0	
00-42	User Parameter 1		-		0	0	0	
00-43	User Parameter 2		-		0	0	0	
00-44	User Parameter 3		-		0	0	0	
00-45	User Parameter 4		-		0	0	0	
00-46	User Parameter 5		-		0	0	0	


Group 00 Basic Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
00-47	User Parameter 6		-		0	0	0	
00-48	User Parameter 7		-		O	0	0	
00-49	User Parameter 8	Set 13-06 = 1, and enable user parameter.   Setting Range: 01-00~24-06 (only used in LCD)	-		O	0	0	
00-50	User Parameter 9		-		0	0	0	
00-51	User Parameter 10		-		0	0	0	
00-52	User Parameter 11		-		0	0	0	
00-53	User Parameter 12		-		0	0	0	
00-54	User Parameter 13		-		0	0	0	
00-55	User Parameter 14		-		0	0	0	
00-56	User Parameter 15		-		O	0	0	

*note1: Default value is 1 in software V1.1 or the previous (external control); Default value is 0 in software V1.2 or the following (keypad).


Group 02 IM Motor Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SIV } \end{aligned}$	
02-00	No-Load Current	0.01~600.00	KVA	A	0	X	X	
02-01	Rated Current	V/F mode is $10 \% \sim 200 \%$ of inverter's rated current;   SLV mode is $25 \% \sim 200 \%$ of inverter's rated current.	KVA	A	0	0	X	
02-02	Reserved							
02-03	Rated Rotation Speed	0~60000	KVA	Rpm	0	0	X	
02-04	Rated Voltage	200V: 50.0~240.0	220.0	V	O	0	X	
		400V: 100.0~480.0	440.0					
02-05	Rated Power	0.01~600.00	KVA	kW	0	0	X	
02-06	Rated Frequency	10.0~400.0	60.0	Hz	0	0	X	
02-07	Poles	2,4,6,8	4	-	0	0	X	
02-08	Reserved							
02-09	Excitation Current	15.0~70.0	KVA	\%	X	0	X	
02-10	Core Saturation Coefficient 1	0~100	KVA	\%	X	0	X	
02-11	Core Saturation Coefficient 2	0~100	KVA	\%	X	0	X	
02-12	Core Saturation Coefficient 3	80~300	KVA	\%	X	0	X	
02-13	Core Loss	0.0~15.0	KVA	\%	0	X	X	
02-14	Reserved							
02-15	Resistance between Wires	0.001~60.000	KVA	$\Omega$	0	0	X	
02-16	Rotor Resistance	0.001~60.000	KVA	$\Omega$	X	0	X	
02-17	Leakage Inductance	0.01~200.00	KVA	mH	X	0	X	
02-18	Mutual Inductance	0.1~6553.5	KVA	mH	X	0	X	
02-19	No-Load Voltage	200V: 50~240	KVA	V	X	0	X	
		400V: 100~480						
$\begin{gathered} 02-20 \\ \sim \\ 02-32 \end{gathered}$	Reserved							
02-33	Leakage Inductance Ratio	0.1~15.0	KVA	\%	X	0	X	
02-34	Slip Frequency	0.10~20.00	KVA	Hz	X	0	X	


Group 03 External Digital Input and Output Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
03-00	Multi-function Terminal Function Setting-S1	0: 2-Wire Sequence (ON: Forward Run Command)	0	-	O	O	0	
03-01	Multi-function Terminal Function Setting-S2	1: 2-Wire Sequence (ON: Reverse Run Command)	1	-	O	0	0	
03-02	Multi-function Terminal Function Setting-S3	2: Multi-Speed Setting Command 1 3: Multi-Speed Setting Command 2	8	-	O	0	0	
03-03	Multi-function Terminal Function Setting-S4	4: Multi-Speed Setting Command 3   5: Multi-Speed Setting Command 4	9	-	O	O	0	



Group 03 External Digital Input and Output Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
		43: Reserved   44: Reserved   45: Reserved   46: Reserved   47: Fire Mode (Forced to Run Mode)   48: KEB Acceleration   49: Parameters Writing Allowable   50: Unattended Start Protection (USP)   51: Reserved   52: Reserved   53: 2-Wire Self Holding Mode (Stop Command)   54: Switch PID1 and PID2   55: RTC Time Enable   56: RTC Offset Enable   57: Forced Frequency Run   58: Safety Function						
$\begin{array}{\|c} \hline 03-06 \\ 03-07 \end{array}$	Reserved							
03-08	(S1~S6) DI Scan Time	0: Scan Time 4ms   1: Scan Time 8ms	1	-	O	0	0	
03-09	Multi-Function Terminal (S1-S4 Selection)	xxx0b:S1 A Contact   xxx1b:S1 B Contact   xx0xb:S2 A Contact   xx1xb:S2 B Contact   x0xxb:S3 A Contact   x1xxb:S3 B Contact   0xxxb:S4 A Contact   1xxxb:S4 B Contact	0000b	-	0	0	0	
03-10	Multi-Function Terminal (S5-S6 Selection)	xxx0b:S5 A Contact   xxx1b:S5 B Contact   xx0xb:S6 A Contact   xx1xb:S6 B Contact   x0xxb: Reserved   x1xxb: Reserved   0xxxb: Reserved   1xxxb: Reserved	0000b		O	0	0	
03-11	Relay(R1A-R1C) Output	0: During Running	1	-	0	0	0	
03-12	Relay(R2A-R2C) Output	1: Fault Contact Output   2: Frequency Agree   3: Setting Frequency Agree $\text { (03-13 } \pm 03-14)$   4: Frequency Detection 1 (> 03-13)   5: Frequency Detection 2 (<03-13)   6: Automatic Restart   7: Reserved   8: Reserved	20	-	O	0	0	


Group 03 External Digital Input and Output Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \hline \text { PM } \\ & \text { SLV } \\ & \hline \end{aligned}$	
		9: Baseblock   10: Reserved   11: Reserved   12: Over-Torque Detection   13: Reserved   14: Reserved   15: Reserved   16: Reserved   17: Reserved   18: PLC Status   19: PLC Control   20: Zero Speed   21: Inverter Ready   22: Undervoltage Detection   23: Source of Operation Command   24: Source of Frequency Command   25: Low Torque Detection   26: Frequency Reference Missing   27: Timing Function Output   28: Reserved   29: Reserved   30: Reserved   31: Reserved   32: Communication Control Contacts   33: RTC Timer 1   34: RTC Timer 2   35: RTC Timer 3   36: RTC Timer 4						
03-13	Frequency Detection Level	0.0~400.0	0.0	Hz	0	0	0	
03-14	Frequency Detection Width	0.1~25.5	2.0	Hz	0	0	0	
$\begin{array}{\|c} \hline 03-15 \\ \tilde{03-18} \\ \hline \end{array}$	Reserved							
03-19	Relay(R1A-R3C)Type	xxx0b: R1 A Contact xxx1b: R1 B Contact	0000b	-	0	0	0	
		xx0xb: R2 A Contact   xx1xb: R2 B Contact   x0xxb: R3 A Contact   x1xxb: R3 B Contact						
$\begin{array}{\|c\|} \hline 03-20 \\ \text { 03-26 } \\ \hline \end{array}$	Reserved							
03-27	UP/DOWN Frequency Hold/ Adjust Selection	0 : Hold last set frequency when stopped   1: Set frequency to 0 when stopped   2: Allow speed changes from last set frequency when stopped	0	-	O	0	0	
$\begin{array}{\|c\|} \hline 03-28 \\ \text { ~3-30 } \\ \hline \end{array}$		Reserved						


Group 03 External Digital Input and Output Parameters								
	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
Code					V/F	SLV	PM SLV	
03-31	Pulse Input Scaling	50~32000	1000	Hz	0	0	0	*1
03-32	Pulse input gain	0.0~1000.0	100	\%	0	0	0	*1
03-33	Pulse input bias	-100.0~100.0	0.0	\%	0	0	0	*1
03-34	Pulse input filter time	0.00~2.00	0.1	Sec	0	0	0	*1
$\begin{array}{\|c} \hline 03-35 \\ \sim \\ 03-36 \\ \hline \end{array}$		Reserved						
03-37	Timer ON Delay (DI/DO)	0.0~6000.0	0.0	S	0	0	0	
03-38	Timer OFF Delay (DI/DO)	0.0~6000.0	0.0	S	0	0	0	
03-39	Relay (R3A-R3C) Output	Setting range and definition are the same as those of 03-11 and 03-12.	0	-	0	0	0	


Group 04 External Analog Input and Output Parameters								
					Con	trol M	ode	
Code	Parameter Name	Setting Range	Default	Unit	V/F	SLV	$\begin{array}{\|c\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	Attribute
04-00	Al Input Signal Type	$\begin{array}{\|l} \text { 0: Al2: 0~10V } \\ \text { (SW2 switch to V position) } \\ \hline \text { 1: AI2: } 4 \sim 20 \mathrm{~mA} \\ \text { (SW2 switch to I position) } \\ \hline \end{array}$	1	-	0	0	0	
04-01	Al1 Signal Scanning and Filtering Time	0.00~2.00	0.03	s	0	0	0	
04-02	Al1 Gain Value	0.0~1000.0	100.0	\%	0	0	0	*1
04-03	Al1 Bias Value	-100.0~100.0	0	\%	0	0	0	*1
04-04	Reserved							
04-05	AI2 Function Setting	0: Auxiliary Frequency	10	-	0	0	0	
		1: Frequency Reference Gain						
		2. Frequency Reference Bias						
		3. Output Voltage Bias						
		4: Coefficient of Acceleration and						
		Deceleration Reduction						
		5: DC Braking Current						
		6: Over-Torque Detection Level						
		7: Stall Prevention Level During Running						
		8: Frequency Lower Limit						
		9: Jump Frequency 4						
		10: Added to Al1						
		11: Positive Torque Limit						
		12: Negative Torque Limit						
		13: Regenerative Torque Limit						
		14: Positive / Negative Torque Limit						
		15: Reserved						
		16: Torque Compensation						
		17: Reserved						
04-06	Al2 Signal Scanning and	0.00~2.00	0.03	s	0	0	0	


Group 04 External Analog Input and Output Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
	Filtering Time							
04-07	Al2 Gain Value	0.0~1000.0	100.0	\%	0	0	0	*1
04-08	AI2 Bias Voltage Value	-100.0~100.0	0	\%	0	0	0	*1
04-09	Reserved							
04-10	Reserved							
04-11	AO1 Function Setting	0: Output Frequency	0	-	0	0	0	
		1. Frequency Command						
		2: Output Voltage						
		3: DC Voltage						
		4: Output Current						
		5: Output Power						
		6: Motor Speed						
		7: Output Power Factor						
		8: Al1 Input						
		9: Al2 Input						
		10: Torque Command						
		11: $q$-axis Current						
		12: d-axis Current						
		13: Speed deviation						
		14: Reserved						
		15: ASR Output						
		16: Reserved						
		17: q-axis Voltage						
		18: d-axis Voltage						
		19: Reserved						
		20: Reserved						
		21: PID Input						
		22: PID Output						
		23: PID Target Value						
		24: PID Feedback Value						
		25: Output Frequency of the Soft Starter						
		26: PG feedback						
		27: PG compesation						
04-12	AO1 Gain Value	0.0~1000.0	100.0	\%	0	0	0	*1
04-13	AO1 Bias Value	-100.0~100.0	0	\%	0	0	0	*1
$\begin{array}{\|c} \hline 04-14 \\ \sim \\ 04-15 \\ \hline \end{array}$		Reserved						
04-16	AO2 Function Setting	Range and definition are the same as 04-11	3	-	0	0	0	
04-17	AO2 Gain Value	0.0~1000.0	100.0	\%	0	0	0	*1
04-18	AO2 Bias Value	-100.0~100.0	0	\%	0	0	0	*1
04-19	AO Output Signal Type	0: AO1:0~10V AO2:0~10V   1: AO1:0~10V AO2:4~20mA   2: AO1:4~20mA AO2:0~10V   3: AO1:4~20mA AO2: 4~20mA	0		0	0	0	


Group 05 Multi-Speed Function Group								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \hline \text { PM } \\ & \text { SLV } \\ & \hline \end{aligned}$	
05-00	Acceleration and Deceleration Selection of Multi-Speed	0 : Acceleration and deceleration time are set by 00-14~00-24   1: Acceleration and Deceleration Time are set by 05-17 $\sim 05-48$	0	-	0	0	0	
05-01	Frequency Setting of Speed-Stage 0	0.00~400.00	5.00	Hz	0	0	0	*1
$\begin{gathered} 05-02 \\ \tilde{05-16} \end{gathered}$	Reserved							
05-17	Acceleration Time Setting of Multi Speed 0	0.1~6000.0	10.0	s	0	0	O	
05-18	Deceleration Time Setting of Multi Speed 0	0.1~6000.0	10.0	s	0	0	0	
05-19	Acceleration Time Setting of Multi Speed 1	0.1~6000.0	10.0	s	0	0	0	
05-20	Deceleration Time Setting of Multi Speed 1	0.1~6000.0	10.0	s	0	0	0	
05-21	Acceleration Time Setting of Multi Speed 2	0.1~6000.0	10.0	s	0	0	0	
05-22	Deceleration Time Setting of Multi Speed 2	0.1~6000.0	10.0	s	0	0	0	
05-23	Acceleration Time Setting of Multi Speed 3	0.1~6000.0	10.0	s	0	0	0	
05-24	Deceleration Time Setting of Multi Speed 3	0.1~6000.0	10.0	s	0	O	0	
05-25	Acceleration Time Setting of Multi Speed 4	0.1~6000.0	10.0	s	0	0	0	
05-26	Deceleration Time Setting of Multi Speed 4	0.1~6000.0	10.0	s	0	0	0	
05-27	Acceleration Time Setting of Multi Speed 5	0.1~6000.0	10.0	s	0	0	0	
05-28	Deceleration Time Setting of Multi Speed 5	0.1~6000.0	10.0	s	0	0	0	
05-29	Acceleration Time Setting of Multi Speed 6	0.1~6000.0	10.0	s	0	0	0	
05-30	Deceleration Time Setting of Multi Speed 6	0.1~6000.0	10.0	s	O	0	0	
05-31	Acceleration Time Setting of Multi Speed 7	0.1~6000.0	10.0	s	0	0	0	
05-32	Deceleration Time Setting of Multi Speed 7	0.1~6000.0	10.0	s	0	0	0	
05-33	Acceleration Time Setting of Multi Speed 8	0.1~6000.0	10.0	s	0	0	0	
05-34	Deceleration Time Setting of Multi Speed 8	0.1~6000.0	10.0	s	0	0	0	
05-35	Acceleration Time Setting of	0.1~6000.0	10.0	s	0	0	0	


Group 05 Multi-Speed Function Group								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \hline \text { PM } \\ & \text { SLV } \\ & \hline \end{aligned}$	
	Multi Speed 9							
05-36	Deceleration Time Setting of Multi Speed 9	0.1~6000.0	10.0	s	0	0	0	
05-37	Acceleration Time Setting of Multi Speed 10	0.1~6000.0	10.0	s	0	0	0	
05-38	Deceleration Time Setting of Multi Speed 10	0.1~6000.0	10.0	s	0	0	0	
05-39	Acceleration Time Setting of Multi Speed 11	0.1~6000.0	10.0	s	0	0	0	
05-40	Deceleration Time Setting of Multi Speed 11	0.1~6000.0	10.0	s	0	0	0	
05-41	Acceleration Time Setting of Multi Speed 12	0.1~6000.0	10.0	s	0	0	0	
05-42	Deceleration Time Setting of Multi Speed 12	0.1~6000.0	10.0	s	0	0	0	
05-43	Acceleration Time Setting of Multi Speed 13	0.1~6000.0	10.0	s	0	0	0	
05-44	Deceleration Time Setting of Multi Speed 13	0.1~6000.0	10.0	s	0	0	0	
05-45	Acceleration Time Setting of Multi Speed 14	0.1~6000.0	10.0	s	0	0	0	
05-46	Deceleration Time Setting of Multi Speed 14	0.1~6000.0	10.0	s	0	0	0	
05-47	Acceleration Time Setting of Multi Speed 15	0.1~6000.0	10.0	s	0	0	0	
05-48	Deceleration Time Setting of Multi Speed 15	0.1~6000.0	10.0	s	0	0	0	



Group 06 Automatic Program Operation Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
06-11	Frequency Setting of Speed-Stage 11	0.00~400.00	5.00	Hz	0	O	O	*1
06-12	Frequency Setting of Speed-Stage 12	0.00~400.00	5.00	Hz	0	O	0	*1
06-13	Frequency Setting of Speed-Stage 13	0.00~400.00	5.00	Hz	0	O	O	*1
06-14	Frequency Setting of Speed-Stage 14	0.00~400.00	5.00	Hz	0	O	O	*1
06-15	Frequency Setting of Speed-Stage 15	0.00~400.00	5.00	Hz	0	O	0	*1
06-16	Operation Time Setting of Speed-Stage 0	0.0~6000.0	0.0	s	0	O	X	*1
06-17	Operation Time Setting of Speed-Stage 1	0.0~6000.0	0.0	s	0	O	X	*1
06-18	Operation Time Setting of Speed-Stage 2	0.0~6000.0	0.0	s	0	O	X	*1
06-19	Operation Time Setting of Speed-Stage 3	0.0~6000.0	0.0	s	0	O	X	*1
06-20	Operation Time Setting of Speed-Stage 4	0.0~6000.0	0.0	s	0	O	X	*1
06-21	Operation Time Setting of Speed-Stage 5	0.0~6000.0	0.0	s	0	O	X	*1
06-22	Operation Time Setting of Speed-Stage 6	0.0~6000.0	0.0	s	0	O	X	*1
06-23	Operation Time Setting of Speed-Stage 7	0.0~6000.0	0.0	s	0	0	X	*1
06-24	Operation Time Setting of Speed-Stage 8	0.0~6000.0	0.0	s	0	O	X	*1
06-25	Operation Time Setting of Speed-Stage 9	0.0~6000.0	0.0	s	0	O	X	*1
06-26	Operation Time Setting of Speed-Stage 10	0.0~6000.0	0.0	s	0	O	X	*1
06-27	Operation Time Setting of Speed-Stage 11	0.0~6000.0	0.0	s	0	O	X	*1
06-28	Operation Time Setting of Speed-Stage 12	0.0~6000.0	0.0	s	0	O	X	*1
06-29	Operation Time Setting of Speed-Stage 13	0.0~6000.0	0.0	s	0	O	X	*1
06-30	Operation Time Setting of Speed-Stage 14	0.0~6000.0	0.0	s	0	O	X	*1
06-31	Operation Time Setting of Speed-Stage 15	0.0~6000.0	0.0	s	0	O	x	*1
06-32	Operation Direction Selection of Speed-Stage 0	0: Stop 1: Forward 2: Reverse	0	-	0	0	X	
06-33	Operation Direction Selection of Speed-Stage 1	0: Stop 1: Forward 2: Reverse	0	-	0	O	x	
06-34	Operation Direction Selection	0: Stop 1: Forward 2: Reverse	0	-	0	0	X	


Group 06 Automatic Program Operation Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|c\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
	of Speed-Stage 2							
06-35	Operation Direction Selection of Speed-Stage 3	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-36	Operation Direction Selection of Speed-Stage 4	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-37	Operation Direction Selection of Speed-Stage 5	0: Stop 1: Forward 2: Reverse	0	-	0	0	X	
06-38	Operation Direction Selection of Speed-Stage 6	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-39	Operation Direction Selection of Speed-Stage 7	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-40	Operation Direction Selection of Speed-Stage 8	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-41	Operation Direction Selection of Speed-Stage 9	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-42	Operation Direction Selection of Speed-Stage 10	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-43	Operation Direction Selection of Speed-Stage 11	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-44	Operation Direction Selection of Speed-Stage 12	0: Stop 1: Forward 2: Reverse	0	-	0	0	X	
06-45	Operation Direction Selection of Speed-Stage 13	0: Stop 1: Forward 2: Reverse	0	-	0	0	X	
06-46	Operation Direction Selection of Speed-Stage 14	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	
06-47	Operation Direction Selection of Speed-Stage 15	0: Stop 1: Forward 2: Reverse	0	-	0	O	X	


Group 07: Start /Stop Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
07-00	Momentary Power Loss/Fault Restart Selection	$\begin{array}{\|l\|} \hline \text { 0: Disable } \\ \hline \text { 1: Enable } \\ \hline \end{array}$	0	-	0	0	0	
07-01	Fault Auto-Restart Time	0~7200	0	s	0	0	0	
07-02	Number of Fault Auto-Restart Attempts	0~10	0	-	0	0	0	
07-03	Reserved							
07-04	DC injection braking starting frequency	$0:$   : DC injection braking is enable at   power up when external run   command issues.   1 : DC injection braking is disable at   power up when external run   command issues.						
07-05	Automatic start delay at power up	1.0~300.0	1.0	Sec	0	0	0	


Group 07: Start /Stop Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$	
07-06	DC Injection Braking Start Frequency	0.0~10.0	0.5	Hz	0	0	X	
07-07	DC Injection Braking Current	0~100	50	\%	0	0	X	
07-08	DC Injection Braking Time at Stop	0.00~10.00	0.50	s	0	0	X	
07-09	Stop Mode Selection	0: Deceleration to Stop   1: Coast to Stop   2: DC Braking Stop   3: Coast to Stop with Timer	0	-	0	0	0	
$\begin{gathered} 07-10 \\ \tilde{\sim}-12 \\ \hline \end{gathered}$	Reserved							
07-13	Low Voltage Detection Level	$\begin{aligned} & \text { 200V: 150~300 } \\ & \hline 400 \mathrm{~V}: 300 \sim 600 \end{aligned}$	$\frac{190}{380}$	V	0	0	0	
07-14	Pre-excitation Time	0.00~10.00	2.00	s	X	0	X	
07-15	Pre-excitation Level	100~200	100	\%	X	0	X	
07-16	DC Injection Braking Time at Start	0.00~100.00	0.00	s	0	0	X	
07-17	Reserved							
07-18	Minimum Base block Time	0.1~5.0	-	Sec	0	0	0	
07-19	Direction-Detection Speed Search Operating Current	0~100	50	\%	0	0	0	
07-20	Speed Search Operating Current	0~100	20	\%	0	0	0	
07-21	Integral Time of Speed Searching	0.1~10.0	2.0	Sec	0	0	0	
07-22	Delay Time of Speed Searching	0.0~20.0	0.2	Sec	0	0	0	
07-23	Voltage Recovery Time	0.1~5.0	2.0	Sec	0	0	0	
07-24	Bidirectional Speed Search Selection	0: Disable   1: Enable	0	-	0	0	0	
07-25	Low voltage Detection Time	0.00~1.00	0.00	Sec	0	0	0	
07-26	Mechanical braking selection	0: Disable   1: Enable	0	-	X	0	0	
07-27	Start Selection after Fault during SLV Mode	$\begin{array}{\|l\|} \hline \text { 0: Speed search start } \\ \hline \text { 1: Normal Start } \\ \hline \end{array}$	0	-	X	0	0	
07-28	Start after External Base Block	$\begin{array}{\|l\|} \hline \text { 0: Speed search start } \\ \hline \text { 1: Normal Start } \\ \hline \end{array}$	0	-	0	0	X	


Group 08 Protection Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
08-00	Stall Prevention Function	xxx0b: Stall prevention is enabled in acceleration.	0000b	-	0	0	0	
		xxx1b: Stall prevention is disabled in acceleration.						
		$\mathrm{xx0xb}$ : Stall prevention is enabled in deceleration.						
		xx 1 xb : Stall prevention is disabled in deceleration.						
		x0xxb: Stall prevention is enabled in operation						
		x1xxb: Stall prevention is disabled in operation						
		0xxxb: Stall prevention in operation decelerates based on deceleration time 1						
		1xxxb: Stall prevention in operation decelerates based on deceleration time 2						
08-01	Stall Prevention Level in Acceleration	30~200	120	\%	0	0	0	
08-02	Stall Prevention Level in Deceleration	200V: 330~410	395	V	0	0	0	
		400V: 660~820	790					
08-03	Stall Prevention Level in Operation	30~200	120	\%	0	0	0	
08-04		Reserved						
08-05	Selection for Motor Overload Protection (OL1)	xxx0b: Motor Overload Protection is disabled	0001b	-	0	0	0	
		xxx1b: Motor Overload Protection is enabled						
		xx0xb: Cold Start of Motor Overload						
		xx1xb: Hot Start of Motor Overload						
		x0xxb: Standard Motor						
		x1xxb: Special motor						
		Oxxxb: Reserved						
		1xxxb: Reserved						
08-06	Start-up Mode of Overload Protection Operation (OL1)	0: Stop Output after Overload Protection	0	-	0	0	0	
		1: Continuous Operation after Overload Protection.						
08-07	Reserved							
08-08	Automatic Voltage Regulation (AVR)	0: Enable	0	-	0	0	0	
		1: Disable						
08-09	Selection of Input Phase Loss Protection	0 : Disable	0	-	O	0	0	
		1: Enable						
08-10	Selection of Output Phase Loss Protection	0 : Disable	0	-	0	0	0	
		1: Enable						


Group 08 Protection Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \\ & \hline \end{aligned}$	
$\begin{gathered} \hline 08-11 \\ \sim \\ 08-12 \end{gathered}$	Reserved							
08-13	Selection of Over-Torque Detection	0: Over-Torque Detection is Disabled.   1: Start to Detect when Reaching the Set Frequency.   2: Start to Detect when the Operation is Begun.	0	-	0	0	0	
08-14	Selection of Over-Torque Operation	0: Deceleration to Stop when OverTorque is Detected.   1: Display Warning when OverTorque is Detected. Go on Operation.   2: Coast to Stop when Over Torque is Detected	0	-	0	0	0	
08-15	Level of Over-Torque Detection	0~300	150	\%	0	0	0	
08-16	Time of Over-Torque Detection	0.0~10.0	0.1	Sec	0	0	0	
08-17	Selection of Low-Torque Detection	0: Low-Torque Detection is   Disabled.   1: Start to Detect when Reaching   the Set Frequency.   2: Start to Detect when the   Operation is Begun.	0	-	0	0	0	
08-18	Selection of Low-Torque Operation	0: Deceleration to Stop when LowTorque is Detected.   1: Display Warning when LowTorque is Detected. Go on Operation.   2: Coast to Stop when Low-Torque is Detected	0	-	0	0	0	
08-19	Level of Low-Torque Detection	0~300	30	\%	0	0	0	
08-20	Time of Low-Torque Detection	0.0~10.0	0.1	Sec	0	0	0	
08-21	Limit of Stall Prevention in Acc over Base Speed	0~100	50	\%	0	0	0	
08-22	Stall Prevention Detection Time in Operation	2~100	100	ms	0	0	0	
08-23	Ground Fault (GF) Selection	$\begin{aligned} & \text { 0: Disable } \\ & \hline \text { 1: Enable } \\ & \hline \end{aligned}$	0	-	0	0	0	
08-24	Operation Selection of External Fault	0: Deceleration to Stop   1: Coast to Stop   2: Continuous Operation	0	-	0	0	0	
08-25	Detection selection of Externa Fault	$\begin{aligned} & \text { 0: Immediately Detect when the } \\ & \text { Power is Supplied. } \\ & \hline \text { 1: Start to Detect during Operation } \\ & \hline \end{aligned}$	0	-	0	0	0	


Group 08 Protection Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$	
$\begin{gathered} 08-26 \\ \tilde{08-29} \end{gathered}$	Reserved							
08-30	Selection of Safety Function	$\begin{array}{\|l\|} \hline \text { 0: Deceleration to Stop } \\ \hline \text { 1: Coast to Stop } \\ \hline \end{array}$	0	-	0	0	0	
$\begin{array}{\|c\|} \hline 08-31 \\ \tilde{\sim}-34 \\ \hline \end{array}$	Reserved							
08-35	Fault Selection of Motor Overheat	0: Disable   1: Deceleration to Stop   2: Coast to Stop	0	-	0	0	0	
08-36	Time Coefficient of PTC Input Filter	$0.00 \sim 5.00$	0.20	Sec	0	0	0	
08-37	Fan Control Function	$\begin{array}{\|l\|} \hline \text { 0: Start at Operation } \\ \hline \text { 1: Permanent Start } \\ \hline \text { 2: Start at High Temperature } \\ \hline \end{array}$	0	-	0	0	0	
08-38	Delay Time of Fan Off	0~600	60	Sec	0	0	0	
08-39	Delay Time of Motor Overheat Protection	1~300	60	Sec	0	0	0	


Group 09: Communication Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|c\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
09-00	INV Communication Station Address	1~31	1	-	0	0	0	*2
09-01	Communication Mode Selection	0: MODBUS	0	-	0	0	0	
		1: BACNET						
		2: METASYS						
		3: PUMP in Parallel Connection						
		4: PROFIBUS						
09-02	Baud Rate Setting (bps)	0:1200	3	-	0	0	0	*2
		1:2400						
		2:4800						
		3:9600						
		4:19200						
		5:38400						
09-03	Stop Bit Selection	0: 1 Stop Bit	0	-	0	0	0	*2
		1:2 Stop Bit						
09-04	Parity Selection	0: No Parity	0	-	0	0	0	*2
		1: Even Bit						
		2: Odd Bit						
09-05	Reserved							
09-06	Communication Error Detection Time	0.0~25.5	0.0	S	O	0	0	
09-07	Fault Stop Selection	0: Deceleration to Stop Based on	3	-	O	0	0	

Deceleration Tin 3 e 1 when

Group 09: Communication Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
		Communication Fault Occurs.						
		1: Coast to Stop when Communication Fault Occurs.						
		2: Deceleration to Stop Based on Deceleration Time 2 when Communication Fault Occurs.						
		3: Keep Operating when Communication Fault Occurs.						
09-08	Comm. Fault Tolerance C	1~20	1	-	0	0	0	
09-09	Waiting Time	5~65	5	ms	0	0	0	
09-10	Device Instance Number	1 ~ 254	1	-	0	0	0	


Group 10: PID Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	PM SLV	
10-00	PID Target Value Source Setting	0: Keypad   (for PUMP or HVAC mode)$\|$1: Al1Given   2: AI2 Given   3: Reserved   4:10-02 Given   5: Reserved	1	-	0	0	0	
10-01	PID Feedback Value Source Setting	$\begin{array}{\|l\|} \hline \text { 1:Al1 Given } \\ \hline \text { 2:AI2 Given } \\ \hline \text { 3: Reserved } \\ \hline \end{array}$	2	-	0	0	0	
10-02	PID Target Value	0.0~100.0	0.0	\%	0	0	0	
10-03	PID Control Mode		0000b	-	0	0	0	
10-04	Feedback Gain	0.01~10.00	1.00	-	0	0	0	*1
10-05	Proportional Gain (P)	0.00~10.00	3.00	-	0	0	0	*1
10-06	Integral Time (I)	0.00~100.00	0.50	S	0	0	0	*1
10-07	Differential Time (D)	0.00~10.00	0.00	S	0	0	0	*1
10-08		Reserved						
10-09	PID Bias	-100.0~100.0	0	\%	0	0	0	*1
10-10	PID Primary Delay Time	0.00~10.00	0.00	S	0	0	0	*1
10-11	PID Feedback Loss Detection	0: Disable	0	-	0	0	0	


Group 10: PID Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
	Selection	1: Warning						
		2: Fault						
10-12	PID Feedback Loss Detection Level	0~100	0	\%	0	0	O	
10-13	PID Feedback Loss Detection Time	0.0~10.0	1.0	s	0	0	O	
10-14	PID Integral Limit	0.0~100.0	100.0	\%	0	0	0	*1
$\begin{array}{\|c\|} \hline \text { 10-15 } \\ \tilde{10-16} \end{array}$	Reserved							
10-17	Start Frequency of PID Sleep	0.00~180.00	30.00	Hz	0	0	0	
10-18	Delay Time of PID Sleep	0.0~255.5	0.0	s	0	0	0	
10-19	Frequency of PID Waking up	0.00~180.00	0.00	Hz	0	0	0	
10-20	Delay Time of PID Waking up	0.0~255.5	0.0	s	0	0	0	
$\begin{array}{\|c\|} \hline 10-21 \\ \tilde{10-22} \\ \hline \end{array}$	Reserved							
10-23	PID Limit	0.00~100.0	100.0	\%	0	0	0	*1
10-24	PID Output Gain	0.0~25.0	1.0	-	0	0	0	
10-25	PID Reversal Output Selection	0: Do not Allow Reversal Output   1: Allow Reversal Output	0	-	O	0	0	
10-26	PID Target Acceleration/ Deceleration Time	0.0~25.5	0.0	s	0	0	O	
10-27	PID Feedback Display Bias	-99.99~99.99	0.00	-	0	0	0	
10-28	PID Feedback Display Gain	0.00~100.00	100.00	-	0	0	0	
10-29	PID Sleep Selection	0 : Disable	1	-	O	0	O	
		1: Enable						
		2: Set by DI						
10-30	Upper Limit of PID Target	$0.0 \sim 100.0$	100.0	\%	0	0	0	
10-31	Lower Limit of PID Target	$0.0 \sim 100.0$	0.0	\%	0	0	0	
10-32	PID Switching Function	0: PID1	0		O	0	0	
		1: PID2						
		2: Set by DI						
		3: Switch to PID2 when RTC Timer Enables						
10-33	PID Maximum Feedback Value	1~10000	999	-	0	0	O	
10-34	PID Decimal Width	0~4	1	-	0	0	0	
10-35	PID Unit	0:\%	0	-	0	0	0	
		1: FPM						
		2: CFM						
		3 : SPI						
		4 : GPH						
		5 : GPM						
		6: IN						
		7 : FT						
		8:/s						
		9:/m						


Group 10: PID Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
		10:/h						
		11: ${ }^{\circ} \mathrm{F}$						
		12: inW						
		13: HP						
		14 : m/s						
		15 : MPM						
		16: CMM						
		17:W						
		18 : KW						
		19:m						
		20: ${ }^{\circ} \mathrm{C}$						
		21 : RPM						
10-36	PID2 Proportional Gain (P)	0.00~10.00						*1
10-37	PID2 Integral Time (I)	0.0~100.0						*1
10-38	PID2 Differential Time (D)	0.00~10.00	0.00	s	0	0	0	*1


Group 11: Auxiliary Parameters								
		Setting Range	Default	Unit	Control Mode			Attribute
Code	Parameter Name				V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
11-00	Direction Lock Selection	0: Allow Forward and Reverse   Rotation   1: Only Allow Forward Rotation   2: Only Allow Reverse Rotation	1	-	O	O	0	
11-01	Carrier Frequency	$\begin{array}{\|l\|} \hline \text { 0: Carrier Output Frequency Tuning } \\ \hline \text { 1: Reserved } \\ \hline 2 \sim 16: 2 \sim 16 \mathrm{KHz} \\ \hline \end{array}$	Inverter   $K_{V A}{ }^{*}$	-	O	O	X	
11-02	Soft PWM Function Selection	$\begin{array}{\|l\|} \hline \text { 0: Disable } \\ \hline \text { 1: Enable } \\ \hline \end{array}$	$1^{\text {b }}$	-	O	O	O	
11-03	Automatic carrier lowering selection	$\begin{array}{\|l\|} \hline \text { 0: Disable } \\ \hline \text { 1: Enable } \\ \hline \end{array}$	0	-	0	X	X	
11-04	S-curve Time Setting at the Start of Acceleration	0.00~2.50	0.20	S	O	O	0	
11-05	S-curve Time Setting at the End of Acceleration	0.00~2.50	0.20	S	O	O	O	
11-06	S-curve Time Setting at the Start of Deceleration	0.00~2.50	0.20	S	O	O	O	
11-07	S-curve Time Setting at the End of Deceleration	0.00~2.50	0.20	S	O	O	0	
11-08	Jump Frequency 1	0.0~400.0	0.0	Hz	0	0	0	
11-09	Jump Frequency 2	0.0~400.0	0.0	Hz	0	0	0	
11-10	Jump Frequency 3	0.0~400.0	0.0	Hz	0	0	0	
11-11	Jump Frequency Width	0.0~25.5	1.0	Hz	0	0	0	
11-12	Manual Energy Saving Gain	0~100	80	\%	0	X	X	



Group 11: Auxiliary Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \hline \text { PM } \\ & \text { SLV } \end{aligned}$	
11-51	Braking Selection of Zero Speed	0: Disable	0	-	0	X	X	
		1: Enable						
$\underset{11-53}{\sim}$	Reserved							
11-54	Output kWhr Initialization	0: Don't Clear Output kWhr	0	-	O	0	O	*1
		1: Clear Output kWhr						
11-55	STOP Key Selection	0: Stop Key is Disabled when the Operation Command is not Provided by Keypad.	1	-	0	0	0	
		1: Stop Key is Enabled when the Operation Command is not Provided by Keypad.						
11-56	UP/DOWN Selection	0: When UP/DOWN in Keypad is Disabled, it will be Enabled if Press ENTER after Frequency Modification.	0	-	0	0	0	
		1: When UP/DOWN in Keypad is Enabled, it will be Enabled after Frequency Modification.						
11-57	Reserved							
11-58	Record Reference Frequency	0: Disable	0	-	0	0	0	*1
		1: Enable						

*a: KVA means the default value of this parameter will be changed by different capacities of inverter.
*b: Default value is 1 only for V/F mode.

Group 12: Monitoring Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \\ & \hline \end{aligned}$	
12-00	Display Screen Selection	00000~77777   From the leftmost bit, it displays the screen when press DSP key in order.   0: No display   1: Output Current   2: Output Voltage   3: DC Bus Voltage   4: Heatsink Temperature   5: PID Feedback   6: Al1 Value   7: Al2 Value	00000	-	0	O	O	*5
12-01	PID Feedback Display Mode	0: Display the Feedback Value by   Integer ( xxx )   1: Display the Feedback Value by   the Value with First Decimal Place   ( $\mathrm{xx} . \mathrm{x}$ )   2: Display the Feedback Value by   the Value with Second Decimal   Place (x. xx$)$	0		0	0	0	*5
12-02	PID Feedback Display Unit Setting	$0: \mathrm{xxxxx}$ (no unit)   1: xxxPb (pressure)   2: xxxFL (flow)	0		0	O	O	*5
12-03	Custom Units (Line Speed) Value	0~65535	0		0	O	O	*5
12-04	Custom Units (Line Speed) Display Mode	0: Inverter Output Frequency is   Displayed   1: Line Speed.Integer.( xxxxx )   2: Line Speed. One Decimal Place.   ( $\mathrm{xxxx} . \mathrm{x})$   3: Line Speed. Two Decimal Places.   ( $\mathrm{xxx.xx}$ )   4: Line Speed. Three Decimal   Places. ( $\mathrm{xx} . \mathrm{xxx}$ )			O	O	0	*5
12-05	Status display of digital input terminal (LED / LCD)	LED display is shown as below no input   correspondences to input and output	-	-	O	O	O	


Group 12: Monitoring Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { Siv } \end{aligned}$	
$\begin{gathered} 12-06 \\ \tilde{12-10} \end{gathered}$	Reserved							
12-11	Output Current of Current Fault	Display the output current of current fault	-	A	0	0	0	
12-12	Output Voltage of Current Fault	Display the output voltage of current fault	-	V	0	0	0	
12-13	Output Frequency of Current Fault	Display the output frequency of current fault	-	Hz	0	0	0	
12-14	DC Voltage of Current Fault	Display the DC voltage of current fault	-	V	0	0	0	
12-15	Frequency Command of Current Fault	Display the frequency command of current fault	-	Hz	0	0	0	
12-16	Frequency Command	If LED enters this parameter, it only allows monitoring frequency command.	-	Hz	0	0	0	
12-17	Output Frequency	Display the current output frequency	-	Hz	0	0	0	
12-18	Output Current	Display the current output current	-	A	0	0	0	
12-19	Output Voltage	Display the current output voltage	-	V	0	0	0	
12-20	DC Voltage	Display the current DC voltage	-	V	0	0	0	
12-21	Output Power	Display the current output power	-	kW	0	0	0	
12-22	Motor's Rotation Speed	Display motor's current rotation speed   in VF/SLV mode   Motor's rotation speed =output power $\times$ ( $120 /$ motor's pole number) In PG/SV mode, motor's rotation speed is calculated by feedback frequency.   Max limit is 65535	-	rpm	0	0	0	
12-23	Output Power Factor	Display the current output power factor	-	-	0	0	0	


Group 12: Monitoring Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
12-24	Control Mode	Display control mode $0: V F$   2 : SLV   5 : PM SLV	-	-	O	0	0	
12-25	Al1 Input	Display the current Al1 input ( 0 V corresponds to $0 \%, 10 \mathrm{~V}$ corresponds to $100 \%$,)	-	\%	0	0	0	
12-26	Al2 Input	Display the current Al2 input ( 0 V or 4 mA corresponds to $0 \%, 10 \mathrm{~V}$ or 20 mA corresponds to $100 \%$ )	-	\%	O	0	0	
12-27	Torque Command	Display the current torque command (100\% corresponds to motor torque )	-	\%	X	0	0	
12-28	Motor Torque Current (Iq)	Display the current q-axis current	-	\%	X	0	0	
12-29	Motor Excitation Current (Id)	Display the current d-axis current	-	\%	X	0	0	
$\begin{array}{\|c} 12-30 \\ 12-35 \end{array}$	Reserved							
12-36	PID Input	Display input error of the PID controller (PID target value - PID feedback) ( $100 \%$ corresponds to the maximum frequency set by 01-02 or 01-16)	0.01	\%	O	0	0	
12-37	PID Output	Display output of the PID controller (100\% corresponds to the maximum frequency set by 01-02 or 01-16)	-	\%	0	0	0	
12-38	PID Setting	Display the target value of the PID controller (100\% corresponds to the maximum frequency set by 01-02 or 01-16)	-	\%	O	0	0	
12-39	PID Feedback	Display the feedback value of the PID controller (100\% corresponds to the maximum frequency set by 01-02 or 01-16)	-	\%	0	0	0	
12-40	Reserved							
12-41	Heatsink Temperature	Display the heatsink temperature of IGBT temperature.	-	${ }^{\circ} \mathrm{C}$	0	0	O	
12-42	Reserved							
12-43	Inverter Status		101B	-	O	0	0	
12-44	Reserved							
12-45	Recent Fault Message	Display current fault message	-	-	0	0	0	
12-46	Previous Fault Message	Display previous fault message	-	-	0	0	0	
12-47	Previous Two Fault Messages	Display previous two fault messages	-	-	0	0	0	


Group 12: Monitoring Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
12-48	Previous Three Fault Messages	Display previous three fault messages	-	-	O	0	0	
12-49	Previous Four Fault Messages	Display previous four fault messages	-	-	O	0	0	
12-50	DIO Status of Current Fault	Display the DI/DO status of current fault   Description is similar to 12-05	-	-	O	0	0	
12-51	Inverter Status of Current Faultfí	Display the inverter status of current tfault   Description is similar to 12-43	-	-	0	0	0	
12-52	Trip Time 1 of Current Fault	Display the operation time of current fault, 12-53 is the days, while 12-52 is the ahemeral hours.	-	Hr	0	0	0	
12-53	Trip Time 2 of Current Fault		-	day	O	0	0	
12-54	Frequency Command of Previous Fault	Display frequency command of previous fault	-	Hz	O	0	0	
12-55	Output Frequency of Previous Fault	Display output frequency of previous fault	-	Hz	O	0	0	
12-56	Output Current of Previous Fault	Display output current of previous fault	-	A	O	0	0	
12-57	Output Voltage of Previous Fault	Display output voltage of previous fault	-	V	O	0	0	
12-58	DC Voltage of Previous Fault	Display DC voltage of previous fault	-	V	0	0	0	
12-59	DIO Status of Previous Fault	Display DI/DO status of previous fault   Description is similar to 12-05	-	-	0	0	0	
12-60	Inverter Status of Previous Fault	Display inverter status of previous fault   Description is similar to 12-43	-	-	O	0	0	
12-61	Trip time 1 of last fault	Display the operation time of last time's fault, 12-62 is the days, while $12-61$ is the ahemeral hours .	-	Hr	0	0	0	
12-62	Trip time 2 of last fault		-	day	O	0	0	
12-63	Recent warning messages	Display the recent warning messages	-	-	O	0	0	
12-64	Previous warning message	Display the previous warning message	-	-	O	0	0	
$\begin{array}{\|c} \hline 12-65 \\ \underset{12-66}{ } \\ \hline \end{array}$	Reserved							
12-67	Accumulative Energy (kWHr)	$0.0 \sim 999.9$		$\begin{array}{\|c\|} \hline \mathrm{kWH} \\ \mathrm{r} \\ \hline \end{array}$	O	0	O	
12-68	Accumulative Energy (MWHr)	$0 \sim 60000$		$\begin{array}{\|c\|} \hline \mathrm{MW} \\ \mathrm{Hr} \\ \hline \end{array}$	O	0	0	
12-69	Accumulative Electricity Price (\$)	$0 \sim 9999$		\$	0	0	O	
12-70	$\begin{aligned} & \text { Accumulative Electricity Price } \\ & (10000 \$) \end{aligned}$	$0 \sim 60000$		\$	O	0	0	
12-71	Flow Meter	$1 \sim 50000$		$\begin{array}{\|c\|} \hline \text { GP } \\ \hline \end{array}$	O	0	0	


Group 12: Monitoring Parameters								
	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
Code					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
12-72	RTC Date	12.01.01 ~ 99.12.31	$\begin{gathered} 12.01 .0 \\ 1 \end{gathered}$		0	0	O	
12-73	RTC Time	00:00 ~ 23:59	00:00		0	0	0	
12-74	Operating Pressure Setting	$0.01 \sim 25.50$	2.00	PSI	0	X	X	
12-75	Pressure Feedback Value	0.01~25.50	-	PSI	0	X	X	
12-76	Non-Load Voltage	$0.0 \sim 600.0$	-	V	X	0	X	


Group 13 Maintenance Function Group								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{gathered} \text { PM } \\ \text { SLV } \\ \hline \end{gathered}$	
13-00	Inverter Rating Selection	OOH F FFH	-	-	0	0	O	*4
13-01	Software Version	0.0-9.9	-	-	0	0	0	*4
13-02	Reserved							
13-03	Cumulative Operation Hours 1	0~23	-	hr	0	0	0	*4
13-04	Cumulative Operation Hours 2	0~65535	-	day	0	0	0	*4
13-05	Selection of Accumulative Operation Time	0: Accumulative time in power on   1: Accumulative time in operation						
13-06	Parameters Locked	$\begin{aligned} & \text { 0: Parameters out of } 13-06 \text { are } \\ & \text { read-only. } \\ & \text { 1: Only user parameter is enabled. } \\ & \text { 2: All parameters are writable. } \end{aligned}$						
13-07	Parameter Password Function	0~9999	0	-	0	0	0	
13-08	Restore Factory Setting	0: No Initialization   2: 2 wire Initialization   (200/400V, 60Hz)   $3: 3$ wire Initialization (200/400V, 60 Hz )   4:2 wire Initialization (200/400V, 50Hz)   5: 3 wire Initialization (200/400V, 50Hz)   $6: 2$ wire Initialization (200/400V, 50Hz)   7: 3 wire Initialization (200/400V, 50Hz)   8 : PLC Initialization   Others: Reserved	0	-	0	0	0	
13-09	Fault History Clearance Function	0: Do not Clear Fault History 1: Clear Fault History	0	-	0	O	0	*1
13-10	Password Function 2	0~9999	0		0	0	0	


Group 14: PLC Setting Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|c\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
14-00	T1 Set Value 1	0~9999	0	-	0	0	0	
14-01	T1 Set Value 2 ( Mode 7)	0~9999	0	-	0	0	0	
14-02	T2 Set Value 1	0~9999	0	-	0	0	0	
14-03	T2 Set Value 2 (Mode 7)	0~9999	0	-	0	0	0	
14-04	T3 Set Value 1	0~9999	0	-	0	0	0	
14-05	T3 Set Value 2 (Mode 7)	0~9999	0	-	0	0	0	
14-06	T4 Set Value 1	0~9999	0	-	0	0	0	
14-07	T4 Set Value 2 ( Mode 7)	0~9999	0	-	0	0	0	
14-08	T5 Set Value 1	0~9999	0	-	0	0	0	
14-09	T5 Set Value 2 (Mode 7)	0~9999	0	-	0	0	0	
14-10	T6 Set Value 1	0~9999	0	-	0	0	0	
14-11	T6 Set Value 2 ( Mode 7)	0~9999	0	-	0	0	0	
14-12	T7 Set Value 1	0~9999	0	-	0	0	0	
14-13	T7 Set Value 2 (Mode 7)	0~9999	0	-	0	0	0	
14-14	T8 Set Value 1	0~9999	0	-	0	0	0	
14-15	T8 Set Value 2 (Mode 7)	0~9999	0	-	0	0	0	
14-16	C1 Set Value	0~65535	0	-	0	0	0	
14-17	C2 Set Value	0~65535	0	-	0	0	0	
14-18	C3 Set Value	0~65535	0	-	0	0	0	
14-19	C4 Set Value	0~65535	0	-	0	0	0	
14-20	C5 Set Value	0~65535	0	-	0	0	0	
14-21	C6 Set Value	0~65535	0	-	0	0	0	
14-22	C7 Set Value	0~65535	0	-	0	0	0	
14-23	C8 Set Value	0~65535	0	-	0	0	0	
14-24	AS1 Set Value 1	0~65535	0	-	0	0	0	
14-25	AS1 Set Value 2	0~65535	0	-	0	0	0	
14-26	AS1 Set Value 3	0~65535	0	-	0	0	0	
14-27	AS2 Set Value 1	0~65535	0	-	0	0	0	
14-28	AS2 Set Value 2	0~65535	0	-	0	0	0	
14-29	AS2 Set Value 3	0~65535	0	-	0	0	0	
14-30	AS3 Set Value 1	0~65535	0	-	O	0	0	
14-31	AS3 Set Value 2	0~65535	0	-	0	0	0	
14-32	AS3 Set Value 3	0~65535	0	-	0	0	0	
14-33	AS4 Set Value 1	0~65535	0	-	0	0	0	
14-34	AS4 Set Value 2	0~65535	0	-	0	0	0	
14-35	AS4 Set Value 3	0~65535	0	-	0	0	0	
14-36	MD1 Set Value 1	0~65535	1	-	0	0	0	
14-37	MD1 Set Value 2	0~65535	1	-	0	0	0	
14-38	MD1 Set Value 3	0~65535	1	-	0	0	0	
14-39	MD2 Set Value 1	0~65535	1	-	0	0	0	
14-40	MD2 Set Value 2	0~65535	1	-	0	0	0	
14-41	MD2 Set Value 3	0~65535		-	0	0	0	
14-42	MD3 Set Value 1	0~65535	1	-	0	0	0	
14-43	MD3 Set Value 2	0~65535	1	-	0	0	0	
14-44	MD3 Set Value 3	0~65535	1	-	0	0	0	


Group 14: PLC Setting Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$	
14-45	MD4 Set Value 1	0~65535	1	-	0	0	0	
14-46	MD4 Set Value 2	0~65535	1	-	0	0	0	
14-47	MD4 Set Value 3	0~65535	1	-	0	0	0	


Group 15: PLC Monitoring Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|c\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
15-00	T1 Current Value 1	0~9999	0	-	0	0	0	
15-01	T1 Current Value 2 ( Mode 7)	0~9999	0	-	0	0	0	
15-02	T2 Current Value 1	0~9999	0	-	0	0	0	
15-03	T2 Current Value 2 (Mode 7)	)~9999	0	-	0	0	0	
15-04	T3 Current Value 1	0~9999	0	-	0	0	0	
15-05	T3 Current Value 2 ( Mode 7)	)~9999	0	-	0	0	0	
15-06	T4 Current Value 1	0~9999	0	-	0	0	0	
15-07	T4 Current Value 2 (Mode 7)	)~9999	0	-	0	0	0	
15-08	T5 Current Value 1	0~9999	0	-	0	0	0	
15-09	T5 Current Value 2 ( Mode 7)	)~9999	0	-	0	0	0	
15-10	T6 Current Value 1	0~9999	0	-	0	0	0	
15-11	T6 Current Value 2 (Mode 7)	0~9999	0	-	0	0	0	
15-12	T7 Current Value 1	0~9999	0	-	0	0	0	
15-13	T7 Current Value 2 (Mode 7)	)~9999	0	-	0	0	0	
15-14	T8 Current Value 1	0~9999	0	-	0	0	0	
15-15	T8 Current Value 2 ( Mode 7)	)~9999	0	-	0	0	0	
15-16	C1 Current Value	0~65535	0	-	0	0	0	
15-17	C2 Current Value	0~65535	0	-	0	0	0	
15-18	C3 Current Value	0~65535	0	-	0	0	0	
15-19	C4 Current Value	0~65535	0	-	0	0	0	
15-20	C5 Current Value	0~65535	0	-	0	0	0	
15-21	C6 Current Value	0~65535	0	-	0	0	0	
15-22	C7 Current Value	0~65535	0	-	0	0	0	
15-23	C8 Current Value	0~65535	0	-	0	0	0	
15-24	AS1 Results	0~65535	0	-	0	0	0	
15-25	AS2 Results	0~65535	0	-	0	0	0	
15-26	AS3 Results	0~65535	0	-	0	0	0	
15-27	AS4 Results	0~65535	0	-	0	0	0	
15-28	MD1 Results	0~65535	0	-	0	0	0	
15-29	MD2 Results	0~65535	0	-	0	0	0	
15-30	MD3 Results	0~65535	0	-	0	0	0	
15-31	MD4 Results	0~65535	0	-	0	0	0	
15-32	TD Current Value	0~65535	0	-	0	0	0	



Group 16: LCD Function Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
		13 : HP						
		14: m/s						
		15 : MPM						
		16 : CMM						
		17: W						
		18: KW						
		19:m						
		20: ${ }^{\circ} \mathrm{C}$						
		21 : RPM						
16-05	LCD Backlight	0~7	5	-	0	0	0	*1
16-06	Automatic Return Time	0~120	60	Sec	0	0	0	*1
16-07	Copy Function Selection	0 : Do not copy parameters	0	-	O	0	0	
		1 : Read inverter parameters and save to the operator.						
		2 : Write the operator parameters to inverter.   3 : Compare parameters of inverter and operator.						
16-08	Selection of Allowing Reading	0: Do not allow to read inverter parameters and save to the operator.   1 : Allow to read inverter parameters and save to the operator.	s	-	O	0	0	
16-09	Selection of Operator Removed (LCD)	```0 : Keep operating when LCD operator is removed. 1: Display fault to stop when LCD operator is removed```	0	-	0	0	0	*1
16-10	RTC Time Display Setting	0 : Hide	0		0	0	0	
		1: Display						
16-11	RTC Date Setting	12.01.01 ~ 99.12.31	$\begin{array}{\|c\|} \hline 12.01 .0 \\ 1 \\ \hline \end{array}$		O	0	0	
16-12	RTC Time Setting	00:00~23:59	00:00		0	0	0	
16-13	RTC Timer Function	0 : Disable	0		O	0	0	
		1: Enable						
		2: Set by DI						
16-14	P1 Start Time	00:00~23:59	08:00		0	0	0	
16-15	P1 Stop Time	00:00~23:59	18:00		0	0	0	
16-16	P1 Start Date	1:Mon, 2:Tue, 3:Wed,	1		0	0	0	
16-17	P1 Stop Date	$\begin{aligned} & \text { 4:Thu,:5:Fri, 6:Sat, } \\ & \text { 7:Sun } \end{aligned}$	5		O	0	0	
16-18	P2 Start Time	00:00~23:59	08:00		0	0	0	
16-19	P2 Stop Time	00:00~23:59	18:00		0	0	0	
16-20	P2 Start Date	1:Mon,2:Tue,3:Wed,	1		0	0	0	
16-21	P2 Stop Date	4:Thu, 5:Fri, 6:Sat, 7:Sun	5		O	0	0	
16-22	P3 Start Time	00:00~23:59	08:00		0	0	0	
16-23	P3 Stop Time	00:00~23:59	18:00		0	0	0	




Group 17: IM Motor Automatic Tuning Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|c\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
17-00	Mode Selection of Automatic Tuning	$0:$ Rotation Auto-tune   $1:$ Static Auto-tune   $2:$ Stator Resistance Measurement   $3:$ Reserved   $4:$ Loop Tuning	$2^{*}$	-	0	0	X	
17-01	Motor Rated Output Power	0.00~600.00	-	KW	0	0	X	
17-02	Motor Rated Current	0.1~999.9	-	A	0	0	X	
17-03	Motor Rated Voltage	200V: 0.0~255.0	220	V	0	0	X	
17-03	Motor Rated Volage	400V:0.0~510.0	440		0	0	$x$	
17-04	Motor Rated Frequency	10.0~400.0	60.0	Hz	0	0	X	
17-05	Motor Rated Speed	0~24000	KVA ${ }^{\text {a }}$	rpm	0	0	X	
17-06	Pole Number of Motor	2,4,6,8	4	Pole	0	0	X	
17-07	Reserved							
17-08	Motor No-load Voltage	$\begin{array}{\|l\|} \hline 200 \mathrm{~V}: 50 \sim 240 \\ \hline 400 \mathrm{~V} 100 \sim 480 \\ \hline \end{array}$	KVA ${ }^{* a}$	V	0	O	X	
17-09	Motor Excitation Current	$\begin{aligned} & 0.01 \sim 600.00 \\ & (15 \% \sim 70 \% \text { motor rated current) } \end{aligned}$	KVA ${ }^{\text {a }}$	A	0	O	X	
17-10	Automatic Tuning Start	$\begin{array}{\|l\|} \hline \text { 0: Disable } \\ \hline \text { 1: Enable } \\ \hline \end{array}$	0	-	0	0	X	
17-11	Error History of Automatic Tuning	0: No Error   1: Motor Data Error   2. Stator Resistance Tuning Error   3. Leakage Induction Tuning Error   4. Rotor Resistance Tuning Error   5. Mutual Induction Tuning Error   6. Reserved   7. DT Error   8. Motor Acceleration Error   9. Warning	0	-	0	0	x	
17-12	Leakage Inductance Ratio	$0.1 \sim 15.0$	3.4	\%	X	0	X	
17-13	Slip Frequency	$0.10 \sim 20.00$	1.00	Hz	X	0	X	

*c: Default value is $\mathbf{2}$ in V/F mode while it is $\mathbf{0}$ in SLV mode.
*a: KVA means the default value of this parameter will be changed by different capacities of inverter.

Group 18: Slip Compensation Parameters								
	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
Code					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
18-00	Slip Compensation Gain at Low Speed	0.00~2.50	$0.00{ }^{\text {* }}$	-	0	0	X	*1
18-01	Slip Compensation Gain at High Speed	-1.00~1.00	0.0	-	0	0	X	*1
18-02	Slip Compensation Limit	0~250	200	\%	0	X	X	
18-03	Slip Compensation Filter Time	0.0~10.0	1.0	Sec	0	X	X	
18-04	Regenerative Slip Compensation Selection	$\begin{array}{\|l\|} \hline \text { 0: } \text { Disable } \\ \hline \text { 1: Enable } \\ \hline \end{array}$	0	-	0	X	X	
18-05	FOC Delay Time	1~1000	100	ms	X	0	X	
18-06	FOC Gain	0.00~2.00	0.1	-	X	0	X	

*d: Default value is $\mathbf{0 . 0 0}$ in V/F mode while it is $\mathbf{1 . 0}$ in SLV mode.

## Group 19 Reserved

Group 20 Speed Control Parameters*								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{gathered} \text { PM } \\ \mathrm{SLV} \end{gathered}$	
20-00	ASR Gain 1	0.00~250.00	3.00	-	X	0	O	*1
20-01	ASR Integral Time 1	0.001~10.000	SLV:   0.500   PMSLV   $: 0.08$	Sec	X	0	O	*1
20-02	ASR Gain 2	0.00~250.00	3.00	-	X	0	0	*1
20-03	ASR Integral Time 2	0.001~10.000	SLV:   0.500   PMSLV   $: 0.08$	Sec	X	0	0	*1
20-04	ASR Integral Time Limit	0~300	200	\%	X	0	0	
$\begin{gathered} 20-05 \\ \sim \\ 20-06 \end{gathered}$	Reserved							
20-07	Selection of Acceleration and Deceleration of P/PI	0 : PI speed control will be enabled only in constant speed. For accel/decel, only use P control.   1 : Speed control is enabled either in constant speed or accel/decal.	1	-	X	0	X	
20-08	ASR Delay Time	0.000~0.500	0.004	Sec	X	0	X	
20-09	Speed Observer Proportional (P) Gain 1	0.00~2.55	0.61	-	X	0	X	*1
20-10	Speed Observer Integral(I) Time 1	0.01~10.00	0.05	Sec	X	0	X	*1
20-11	Speed Observer Proportional (P) Gain 2	0.00~2.55	0.61	-	X	0	X	*1
20-12	Speed Observer Integral(I) Time	0.01~10.00	0.06	Sec	X	0	X	*1


Group 20 Speed Control Parameters*								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|c\|} \hline \text { PM } \\ \text { SLV } \\ \hline \end{array}$	
	2							
20-13	Low-pass Filter Time Constant of Speed Feedback 1	1~1000	4	ms	X	0	X	
$\|20-14\|^{\mid}$	Low-pass Filter Time Constant of Speed Feedback 2	1~1000	30	ms	X	0	X	
20-15	ASR Gain Change Frequency 1	0.0~400.0	4.0	Hz	X	0	X	
20-16	ASR Gain Change Frequency 2	0.0~400.0	8.0	Hz	X	0	x	
$20-17$	Torque Compensation Gain at Low Speed	0.00~2.50	1.00	-	X	O	x	*1
$20-18$	Torque Compensation Gain at High Speed	-10~10	0	\%	X	O	X	*1

*: This parameter group is enabled in SLV and PMSLV modes.

Group 21 Torque Control Parameters										
Code	Parameter Name	Setting Range		Default	Unit	Control Mode			Attribute	
				V/F		SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$			
$\begin{array}{\|c} \hline 21-00 \\ \tilde{\sim}-04 \\ 21-04 \end{array}$	Reserved									
21-05	Positive Torque Limit	0~160			160	\%	X	0	0	
21-06	Negative Torque Limit	0~160		160	\%	X	0	0		
21-07	Forward Regenerative Torque Limit	0~160		160	\%	X	0	0		
21-08	Reversal Regenerative Torque Limit	0~160		160	\%	X	0	0		


Group 22: PM Motor Parametersonly available when PM Control Mode is selected								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$	
22-00	Rated Power of PM Motor	0.00~600.00	-	kW	X	X	0	
22-01	Rated Voltage of PM Motor	200V: 50.0~240.0	220.0	$v$	x	x	-	
	Rated Voltage of PM Motor	400V: 100.0~480.0	440.0	V	x	x	0	
22-02	Rated Current of PM Motor	0.1~999.9	KVA	A	X	X	0	
22-03	Pole Number of PM Motor	2~96	6	$\begin{array}{\|c\|} \hline \text { pole } \\ \text { s } \\ \hline \end{array}$	X	X	0	
22-04	Rated Rotation Speed of PM Motor	0~60000   (22-04, 22-06, only need to set one of them, the program will calculate the other.)	1500	rpm	X	X	0	
22-05	Maximum Rotation Speed of PM Motor	0~60000	1500	rpm	X	X	0	
22-06	PM Motor Frequency	0.0~400.0	75.0	Hz	X	X	0	
22-07	PM Motor Type	0: SPM	0	-	X	X	0	


Group 22: PM Motor Parametersonly available when PM Control Mode is selected								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \hline \text { PM } \\ & \text { SLV } \end{aligned}$	
		1: IPM						
22-08	Reserved							
22-09	PM SLV Start Mode	0: Forced to Start   1: Static to Start	0	-	X	X	0	
22-10	PM SLV Start Current	$\begin{array}{\|l\|} \hline 0 \sim 120 \% \\ \text { Motor Rated Current } \\ \hline \end{array}$	50	\%	X	X	0	
22-11	DC Injection Current	$\begin{array}{\|l\|} \hline 0 \sim 100 \% \\ \text { Motor Rated Current } \\ \hline \end{array}$	40	\%	X	X	0	
22-12	Reserved							
22-13	Speed Estimation Gain	4~16	8	-	X	X	0	
22-14	PM Armature Resistance	$0.001 \sim 32.767$	1.000	$\Omega$	X	X	0	
22-15	PM Motor D-axis Inductance	0.001~32.767	1.024	mH	X	X	0	
22-16	PM Motor Q-axis Inductance	$0.001 \sim 32.767$	1.024	mH	X	X	0	
22-17	PM EMF Coefficient	000.1 ~ 3276.7	0.001	$\begin{array}{\|l\|} \hline \mathrm{mV} / \mathrm{r} \\ \mathrm{ad} / \mathrm{s} \\ \hline \end{array}$	X	X	0	
$\begin{array}{\|c\|} \hline 22-18 \\ \tilde{22-20} \end{array}$	Reserved							
22-21	SLV PM Motor Tuning	0: Disable	0	-	X	X	0	
		1: Enable						
22-22	Fault History of SLV PM Motor Tuning	0. No Error   1~8: Reserved   9: Current Abnormity Occurs while   Loop Adjustment.   10: Reserved   11: Stator Resistance Measurement   Timeout   12: Reserved	0	--	X	X	0	*4


Group 23 Pump \& HVAC Function Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$	
23-00	Function Selection	0: Disable	0	-	0	0	0	
		1: Pump						
		2: HVAC						
23-01	Setting of Single \& Multiple Pumps and Master \& Slave Machines	0: Single Pump	0		0	X	X	
		1: Master						
		2: Slave 1						
		3: Slave 2						
		4: Slave 3						
23-02	Target Pressure Setting	$0.01 \sim 25.50$	2.00	PSI	0	X	X	
23-03	Maximum Pressure Setting	$0.01 \sim 25.50$	10.00	PSI	0	X	X	
23-04	Pressure Command Source	0 : Set by 23-02	0	0	0	X	X	
		1: Set by AI						
23-05	Display Mode Selection	0: Display of Target and Feedback	0	\%	0	x	x	


Group 23 Pump \& HVAC Function Parameters									
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute	
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$		
		setting of 23-03 needs to be lower   than 9.9 PSI)   1. Only Display Target Pressure   2. Only Display Feedback Pressure							
23-06 P	Proportion Gain (P)	0.00~10.00	3.00	-	0	X	X		
23-07	Integral Time (I)	0.0~100.0	0.5	Sec	0	X	X		
23-08	Differential Time (D)	0.00~10.00	0.00	Sec	0	X	X		
23-09	Sleep Tolerance Range	$0.10 \sim 25.50$	0.50	PSI	0	X	X		
23-10	Sleep Frequency	$0.00 \sim 180.00$	30.00	Hz	0	X	X		
23-11	Sleep Delay Time	$0.0 \sim 255.5$	0.0	Sec	0	X	X		
23-12	Maximum Pressure Limit	$0.00 \sim 25.50$	5.00	PSI	0	X	X		
23-13	Warning Time of High Pressure	$0.0 \sim 600.0$	10.0	Sec	0	X	X		
23-14	Stop Time of High Pressure	$0.0 \sim 600.0$	20.0	Sec	0	X	X		
23-15	Minimum Pressure Limit	$0.00 \sim 25.50$	0.50	PSI	0	X	X		
23-16	Warning Time of Low Pressure	$0.0 \sim 600.0$	10.0	Sec	0	X	X		
23-17	Fault Stop Time of Low Pressure	0.0 ~ 600.0	20.0	Sec	0	X	X		
23-18	Detection Time of Loss Pressure	$0.0 \sim 600.0$	0.0	Sec	0	X	X		
23-19	Detection Proportion of Loss Pressure	0~100	0	\%	O	X	X		
$\begin{array}{\|c} 23-20 \\ \sim \\ 23-22 \\ \hline \end{array}$	Reserved								
\|23-23		Direction of Water Pressure Detection	0: Upward Detection   1: Downward Detection	1		0	$\begin{aligned} & X \\ & X \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	
23-24	Range of Water Preesure Detection	$0.0 \sim 2.50$	0.1	PSI	0	X	X		
23-25	Period of Water Preesure Detection	$0.0 \sim 200.0$	20.0	Sec	0	X	X		
23-26	Acceleration Time of Water Pressure Detection	$0.1 \sim 6000.0$	KVA	Sec	O	X	X		
23-27	Deceleration Time of Water Pressure Detection	$0.1 \sim 6000.0$	KVA	Sec	O	X	X		
23-28	Foreced Run Command	$0.0 \sim 200$	0.0	Hz-	0	X	X		
23-29	Switching Time of Multiple Pumps in Parallel	$0 \sim 240$	3	Hr	0	X	X		
23-30	Detection Time of Water Flow with Multiple Pumps in Parallel	$0.0 \sim 30.0$	5.0		0	X	X		
$23-31$	Synchronous Selection of Multiple Pumps in Parallel	0: Disable   1: Pressure Setting and Run/Stop   2: Pressure Setting   3: Run/Stop	0		0	X	X		
$23-32$   $\sim$   23-40$\quad$Reserved	( Reserved								
23-41	Local/ Remote Key	$\begin{array}{\|l\|} \hline \text { 0: Disable } \\ \hline \text { 1: Enable } \\ \hline \end{array}$	1		0	0	0		
23-42	Energy Recaculating	0: Disable (Energy Accumulating)	0		0	0	0		


Group 23 Pump \& HVAC Function Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \end{aligned}$	
		1: Enable						
23-43	Electricity Price per kWh	$0.000 \sim 5.000$	0.000	\$	0	0	0	
$23-44 S_{E}^{S}$	Selection of Accumulative Electricity Pulse Output Unit	0: Disable	0		O	0	0	
		1: Unit for 0.1 kWh						
		2: Unit for 1 kWh						
		3: Unit for 10kWh						
		4: Unit for 100 kWh						
		5: Unit for 1000 kWh						
$23-45$	Given Modes of Flow Meters Feedback	0 : Disable	1		O	0	0	
		1: Analog Input						
		2: Pulse Input						
23-46	Maximum Value of Flow Meters	1~50000	10000	GPM	0	0	0	
23-47 T	Target Value of Flow Meters	1~50000	5000	GPM	0	0	0	
23-48	Maximum Flow Value of Feedback	0.01 ~ 99.00	80.00	\%	0	O	0	
23-49	Maximum Flow Warning Time of Feedback	$0.0 \sim 255.0$	3.0	Sec	0	0	0	
23-50	Maximum Flow Stop Time of Feedback	$0.0 \sim 255.0$	6.0	Sec	0	0	0	
${ }^{23-51}{ }^{1}$	Minimum Flow Value of Feedback	0.01 ~ 99.00	10.00	\%	0	0	0	
23-52	Minimum Flow Warning Time of Feedback	$0.0 \sim 255.0$	3.0	Sec	0	0	0	
23-53 ${ }^{1}$	Minimum Flow Stop Time of Feedback	$0.0 \sim 255.0$	6.0	Sec	0	0	0	
23-54	Detection Function of Low Suction	0 : Disable	0		0	0	0	
		1: PID Error Value						
		2: Current						
		3: Current and PID Error Value						
23-55	Detection Time of Low Suction	0~30.0	10.0	Sec	0	0	0	
23-56 PI	PID Error Level of Low Suction	0~30	10	\%	0	0	0	
${ }^{23-57}$ S	Current Level of Low   Suction(Motor Rated Current)	0 ~ 100	10	\%	0	0	0	
23-58	Reaction of Low Suction	0: Disable	0		0	0	0	
		1: Warning						
		2: Fault						
		3: Fault \& Restart						


Group 241 to 8 Pump Card Function Parameters								
Code	Parameter Name	Setting Range	Default	Unit	Control Mode			Attribute
					V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$	
$24-00 \mathrm{~F}_{\mathrm{F}}^{\mathrm{S}}$	Selection of 1 to 8 Pump Card Function	0: Function of 1 to 8 Pump Card is   Disabled   1: Fixed Modes of Inverter Pump:   $\quad$ First on and Last off; then Stop All.   2: Fixed Modes of Inverter Pump:   Only Stop Inverter Pump.   3: Fixed Modes of Inverter Pump:   First on and First Off; then Stop   All.   4: Cycle Modes of Inverter Pump:   First on and First Off; then Stop   All.   5: Cycle Modes of Inverter Pump:   Only Stop Inverter Pump.   6: 1 to 3 Cycle Modes of Inverter   Pump: First on and First off; then   Stop All	-	-	0	0	0	
24-01	Selection of Relay 2-4 Function	xxx0b: Reserved   xxx1b: Reserved   $\mathrm{xx0xb}$ : Realy 2 Disable   xx1xb: Realy 2 Enable   x0xxb: Realy 3 Disable   x1xxb: Realy 3 Enable   0xxxb: Realy 4 Disable   1xxxb: Realy 4 Enable	0000b		0	0	O	
24-02S	Selection of Relay 5-8 Function	$x \times x 0 b:$ Realy 5 Disable   xx 1 b : Realy 5 Enable   $\mathrm{xx0xb}$ : Realy 6 Disable   $\mathrm{xx1xb}$ Realy 6 Enable   $\mathrm{x0xxb}$ : Realy 7 Disable   $\times 1 \mathrm{xb}$ : Realy 7 Enable   $0 x x \mathrm{~b}$ : Realy 8 Disable   $1 \times x \times b:$ Realy 8 Enable	0000b		0	0	0	
24-03	Duration of Upper Limit Frequency	1.0 ~ 600.0	300.0	Sec	O	0	O	*1
24-04	Duration of Lower Limit Frequency	$1.0 \sim 600.0$	300.0	Sec	O	0	O	*1
-05	Switch Time of Magnetic Contactor	0.1 ~ 20.0	1.00	Sec	O	0	O	*1
24-06 A	Allowable Bias of Pump Switch	0.0~20.0	0.0	\%	0	0	0	*1
24-07	Cascade control selection	0: 1 to 8 pump card	0		O	0	O	

## 4．4 Description of Parameters

## Group 00－Basic Parameters

$00-00$	Control mode selection
	【0】：V／F
	【1】：Reserved
	$2 】:$ SLV
Range	【3】：Reserved
	【4】：Reserved
	【5】：PMSLV

The inverter offers the following control modes：
$00-00=0$ ：V／F Mode
Select the required V／F curve（01－00）based on your motor and application．
Perform a stationary auto－tune（ $17-00=2$ ）．If the distance between the inverter and the motor more than 50 m （165ft），see parameter 17－00 for details．
$\mathbf{0 0} \mathbf{- 0 0}=\mathbf{2}$ ：Sensorless Vector Control
Verify the inverter rating matches the motor rating．Use the motor parameter tuning function to measure and store motor parameters．Perform a rotational auto－tune to improve performance operating the motor in SLV mode．
Refer to parameter group 17 for details on auto－tuning．
00－00＝5：PM Sensorless Vector Control

Verify the inverter rating matches the motor rating．Set PM motor data in parameters 22－00 to 22－06．Refer to parameter 22－17 for details on PM Motor tuning．

## Braking Resistor

Choose a braking resistor based on application and drive model used．A braking module is required for Inverters ratings $200 \mathrm{~V} 30 \mathrm{HP}, 400 \mathrm{~V} / 40 \mathrm{HP}$ or greater．

Note：Parameter 00－00 is excluded from initialization．

$00-01$	Motor＇s rotation direction
Range	【0】：Forward
	$【 1 】:$ Reverse

Use the FWD／REV key to change motor direction when Run Command Selection（00－02＝0）is set to keypad control．In keypad control operation the direction is stored in 00－01．Direction of this function will be limited to the motor direction lock selection of parameter 11－00．

$00-02$	Run command selection
Range	【0】：Keypad control
	【1】：External terminal control
	【2】：Communication control
	【3】：PLC
	【4】：RTC

00－02＝0：Keypad Control
Use the keypad to start and stop the inverter and set direction with the forward／reverse key．Refer to section 4－1 for details on the keypad．

00－02＝1：External terminal control
External terminals are used to start and stop the inverter and select motor direction．
The inverter can be operated in 2－wire and 3－wire mode．

## －2－wire operation

For 2－wire operation，set 03－00（S1 terminal selection）to 0 and 03－01（S2 terminal selection）to 0 ．

Terminal S1	Terminal S2	Operation
Open	Open	Stop Inverter／FWD Active
Closed	Open	Run Forward
Open	Closed	Run Reverse
Closed	Closed	Stop Inverter，Display EF9 Alarm after 500ms

Parameter 13－08 to 2,4 or 6 for 2－wire program initialization，multi－function input terminal S 1 is set to forward ， operation／stop，and S2 is set for reverse，operation／stop．


Figure 4.4 ． 1 wiring example of 2－wire

## －3－wire operation

For 3－wire operation set any of parameters 03－02 to 03－05（terminal S3～S6）to 26 to enable 3－wire operation in combination with S1 and S2 terminals set to operation command and stop command．

Parameter 13－08 to 3， 5 or 7 for 3－wire program initialization，multi－function input terminal S 1 is set to run operation，S2 for stop operation and S5 for forward／reverse command．

Note：Terminal S1 must be closed for a minimum of 50 ms to activate operation．


Figure 4.4.2 wiring example of 3-wire


Figure 4.4.3 3-wire operation

## - 2-wire operation with hold function

To enable 2-wire operation with hold function, set any of parameters 03-02 to 03-05 (terminal S1~S6) to 53. When this mode is enabled set terminal $\mathrm{S} 1(03-00=0)$ to forward and $\mathrm{S} 2(03-01=1)$ to reverse run command.


Note: Terminal S1, S2 and S5 must be closed for a minimum of 50 ms to activate operation.
Note: The inverter will display SE2 error when input terminals S1-S6 is set to 53 and 26 simultaneously.


00-02=2: Communication control
The inverter is controlled by the RS-485 port. Refer to parameter group 9 for communication setup.
00-02=3: PLC control
The inverter is controlled by the inverter built-in PLC logic. Refer to section 4.4.
00-02=4: RTC control
The inverter is controlled by RTC timer when run command is set to RTC.

$\mathbf{0 0 - 0 5}$	Main Frequency Command Source Selection
$\mathbf{0 0 - 0 6}$	Alternative Frequency Source Selection
	【0】：Keypad
	【1】：External control（analog）
	【2】：Terminal UP／DOWN
	【3】：Communication control
	【4】：Reserved
	【5】：PID
	$【 6 】:$ RTC

00－05／00－06＝0：Keypad
Use the digital operator to enter frequency reference or to set parameter 05－01（frequency reference 1）as alternative frequency reference source．Refer to section 4．1．4 for details．

00－05／00－06＝1：External control（Analog Input）
Use analog reference from analog input AI1 or Al 2 to set the frequency reference（as shown in Figure 4．4．4）． Refer to parameters 04－00 to select the signal type．

Al1－Analog Input 1	Al2－Analog Input 2	04－00 Setting   （Default＝1）	Dipswitch SW2   （Default＇V＇）
$0 \sim 10 \mathrm{~V}$	$0 \sim 10 \mathrm{~V}$	0	Set to＇V＇
$0 \sim 10 \mathrm{~V}$	$4 \sim 20 \mathrm{~mA}$	1	Set to＇＇＇

Note：Set parameter 04－05 to 10 to add frequency reference using Al2 to Al1．


Figure 4．4．4 Analog input as main frequency reference command

## 00－05／00－06＝2：Terminal UP／DOWN

The inverter accelerates with the UP command closed and decelerates with the DOWN command closed．Please refer to parameter 03－00～03－05 for additional information．

Note：To use this function both the UP and DOWN command have to be selected to any of the input terminals．

00－05／00－06＝3：Communication control
The frequency reference command is set via the RS－485 communication port using the MODBUS RTU／BacNet／ MetaSys protocol．

Refer to parameter group 9 for additional information．
00－05／00－06＝5：PID

Enables PID control，reference frequency is controlled by the PID function．Refer to parameter group 10 for PID setup．

00－05／00－06＝6：RTC

Enables RTC control，reference frequency is controlled by the RTC function，Refer to parameter group 16 for RTC setup．

$\mathbf{0 0 - 0 7}$	Main and Alternative Frequency Command Modes
Range	【0】：Main reference frequency
	$【 1 】:$ Main frequency＋alternative frequency

When set to 0 the reference frequency is set by the main reference frequency selection of parameter 00－05． When set to 1 the reference frequency is sum of the main reference frequency（00－05）and alternative frequency （00－06）．

Note：The inverter will display the SE1 error when 00－07＝ 1 and parameter 00－05 and 00－06 are set to the same selection．

When parameter 00－06 is set to 0 （Keypad）the alternative frequency reference is set by parameter 05－01 （Frequency setting of speed－stage 0 ）．

$00-08$	Communication Frequency Command－READ ONLY
Range	$【 0.00 \sim 400.00 】 \mathrm{~Hz}$

Display the frequency reference when 00－05 or 00－06 is set to communication control（3）．

$00-09$	Communication Frequency Command Memory
Range	【0】：Do not store the communication frequency command at power down
	【1】：Store communication frequency reference at power down

Note：This parameter is only effective in communication mode．

$00-12$	Upper Limit Frequency
Range	$【 0.1 \sim 109.0 】 \%$

Set the maximum frequency reference as a percentage of the maximum output frequency．Maximum output frequency depends on motor selection．
Motor 1：Maximum frequency parameter 01－02．
Motor 2：Maximum frequency parameter 01－16．

$\mathbf{0 0 - 1 3}$	Lower Limit Frequency
Range	$【 0.0 \sim 109.0 】 \%$

Set the minimum frequency reference as a percentage of the maximum output frequency．Maximum output frequency depends on motor selection．Motor 1：Maximum frequency is set by parameter 01－02 and Motor 2 Maximum frequency is set by parameter 01－16．

## Notes：

－When the frequency lower limit is set to a value greater than 0 and the inverter is started the output frequency will accelerate to the frequency lower limit with a minimum frequency defined by parameter 01－08 for motor 1 and parameter 01－22 for motor 2.
－Frequency upper limit has to greater or equal to the frequency lower limit otherwise the inverter will display a SE01（Set range error）．
－Frequency upper and lower limit is active for all frequency reference modes．


Figure 4．4．5 Frequency reference upper and lower limits

00－14	Acceleration Time 1
Range	【0．1～6000．0】 Sec
00－15	Deceleration Time 1
Range	【0．1～6000．0】 Sec
00－16	Acceleration Time 2
Range	【0．1～6000．0】 Sec
00－17	Deceleration Time 2
Range	【0．1～6000．0】 Sec
00－21	Acceleration Time 3
Range	【0．1～6000．0】 Sec
00－22	Deceleration Time 3
Range	【0．1～6000．0】 Sec
00－23	Acceleration Time 4
Range	【0．1～6000．0】 Sec
00－24	Deceleration Time 4
Range	【0．1～6000．0】 Sec
00－25	Switching Frequency of Acceleration and Deceleration
Range	$\begin{aligned} & \lfloor 0.00 \sim 400.00 】 \mathrm{~Hz} \\ & \lfloor 0.0 \sim 1200.0 】 \mathrm{~Hz}(\text { When } 00-31=1) \end{aligned}$

Acceleration time is the time required to accelerate from 0 to $100 \%$ of maximum output frequency. Deceleration time is the time required to decelerate from 100 to $0 \%$ of maximum output frequency. Motor 1: Maximum frequency is set by parameter 01-02 and Motor 2 Maximum frequency is set by parameter 01-16.

Note: Actual acceleration and deceleration times can be affected by the inverter driven load.

The default values for the acceleration, deceleration times are dependent on the inverter size.

Size		Acceleration / Deceleration   Default Value
200V Class	400V Class	10 s   $5 \sim 15 \mathrm{HP}$ $\mathrm{5} \mathrm{\sim 20HP}$
$20 \sim 30 \mathrm{HP}$	$25 \sim 40 \mathrm{HP}$	15 s
$40 \sim 175 \mathrm{HP}$	$50 \sim 800 \mathrm{HP}$	20 s

## A: Select acceleration and deceleration time via the digital input terminals

The following table shows the acceleration / deceleration selected when the digital input function Accel/Decel time 1 (\#10) and Accel/Decel time 2 1(\#30) are used.

Table 4.4.1 Acceleration / deceleration time selection

Accel/decel time 2   $\mathbf{( S e t ~ 0 3 - 0 0 ~ 0 3 - 0 5 ~ = ~ 3 0 ) ~}$	Accel/decel time 1   (Set 03-00 to 03-05 = 10)	Acceleration   time	Deceleration   time
0	0	Taccc1 (00-14)	Tdec1 (00-15)
0	1	Taccc2 (00-16)	Tdec2 (00-17)
1	0	Taccc3 (00-21)	Tdec3 (00-22)
1	1	Taccc4 (00-23)	Tdec4 (00-24)

0: OFF, 1: ON


Figure 4.4.6: Terminal S5 switch between Tacc1/Tacc2 and Tdec1/Tdec2

## B．Automatically acceleration／deceleration time switch－over based on output frequency

Set acceleration／deceleration switch over frequency parameter $00-25$ to a value greater than 0 to automatically switch between Tacc1（00－14）／Tdec1（00－23）and Tacc4（00－24）／Tdec4（00－15）．

Tacc1（00－14）／Tdec1（00－23）are active when the output frequency＜00－25 and Tacc4（00－24）／Tdec4 （00－15）are active when the output frequency $>=00-25$ ．Refer to the Figure 4．4．7 for details．

Note：Multi－function input function \＃10（Accel／Decel time 1）and \＃30（Accel／Decel time 2）have a higher priority than switch over frequency parameter 00－25．


Figure 4．4．7 Automatic acceleration／deceleration time switch－over based on output frequency

$00-18$	Jog Frequency
Range	$0.00 \sim 400.00 】 \mathrm{~Hz}$     $【 0.0 \sim 1200.0 】 \mathrm{~Hz}($ When $00-31=1)$   $00-19$ Jog Acceleration Time   Range $【 0.1 \sim 0600.0 】$ Sec   $00-20$ Jog Deceleration Time   Range $【 0.1 \sim 0600.0 】$ Sec 20.

Jog acceleration time（00－19）is the time required to accelerate from 0 to $100 \%$ of maximum output frequency．Jog deceleration time（00－20）is the time required to decelerate from 100 to $0 \%$ of maximum output frequency．Motor 1：Maximum frequency is set by parameter 01－02 and Motor 2 Maximum frequency is set by parameter 01－16．
The inverter uses the Jog frequency $(00-18$ ，default 6.0 Hz ）as its frequency reference when jog is active．

$00-26$	Emergency Stop Time
Range	$【 0.0 \sim 6000.0 】$ Sec

The emergency stop time is used in combination with multi－function digital input function \＃14（Emergency stop）．When emergency stop input is activated the inverter will decelerate to a stop using the Emergency stop time（00－26）and display the［EM STOP］condition on the keypad．

Note：To cancel the emergency stop condition the run command has to be removed and emergency stop input deactivated．

Multi－function digital input terminals（03－00～03－05）are set to 14：When the emergency stop input is activated the inverter will decelerate to a stop using the time set in parameter 00－26．

Note：After an emergency stop command the run command and emergency stop command have to be removed before the inverter can be restarted．Please refer to Figure 4．4．8．The emergency stop function can be used to stop inverter in case of an external event．

Multi－function digital input terminals $(03-00 \sim 03-05)$ set to 15 ：When the base block input is activated the inverter output will turn off and the motor will coast to a stop．


Figure 4．4．8 Emergency stop example

$00-28$	Selection of Main Frequency Command Characteristic
Range	【0】：Positive characteristic（0～10V／4～20mA $=0 \sim 100 \%)$
	$【 1 】:$ Negative $/$ inverse characteristic $(0 \sim 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}=100 \sim 0 \%)$

$\mathbf{0 0 - 2 8}=\mathbf{0}$ ：Positive reference curve， $0-10 \mathrm{~V} / 4-20 \mathrm{~mA}=0-100 \%$ main frequency reference．
$\mathbf{0 0 - 2 8 = 1}$ ：Negative reference curve， $0-10 \mathrm{~V} / 4-20 \mathrm{~mA}=100-0 \%$ main frequency reference．

Note：Selection applies to analog input AI1 and AI2．

（a）Forward Characteristics

（b）Reverse Characteristics

Figure 4．4．9 Positive／negative analog input as main frequency reference command．

$\mathbf{0 0 - 3 2}$	Application
Range	【0】：Disable
	【1】：Water supply pump
	【2】：Reserved
	【3】：Exhaust fan
	【5】 HVAC
	【6】：Reserved
	【7】：Reserved

（1）Water supply pump

Parameter	Name	Value
$00-00$	Control mode selection	$0: \mathrm{V} / \mathrm{F}$
$11-00$	Direction lock selection	$1:$ Forward direction only
$00-14$	Acceleration time 1	1.0 sec
$00-15$	Deceleration time 1	1.0 sec
$01-00$	V／F curve selection	F
$01-04$	Middle output frequency 2	30.0 Hz
$01-05$	Middle output voltage 2	60.0 V
$07-00$	Momentary stop and restart selection	$1:$ Enable
$08-00$	Stall prevention function	$\mathrm{xx} 0 \mathrm{x}:$ Stall prevention during   deceleration

（3）Exhaust fan

Parameter	Name	Value
$00-00$	Control mode selection	$0:$ V／F
$11-00$	Direction lock selection	$1:$ Forward direction only
$01-00$	V／F curve selection	F
$01-04$	Middle output frequency 2	30.0 Hz
$01-05$	Middle output voltage 2	50.0 V
$07-00$	Momentary stop and restart selection	$1:$ Enable
$08-00$	Stall prevention function	xx0x $:$ Stall prevention during   deceleration

（4）HVAC

Parameter	Name	Value
$00-00$	Control mode selection	$0:$ V／F
$11-00$	Direction lock selection	$1:$ Forward direction only
$11-01$	Carrier frequency	8.0 kHz
$07-00$	Momentary stop and restart selection	$1:$ Enable
$11-03$	Automatic carrier frequency reduction	$1:$ Enable

User Parameter Setting (00-41~00-56) (only for LCD )

$00-41$	User Parameter 0 Function Setting
$00-42$	User Parameter 1 Function Setting
$00-43$	User Parameter 2 Function Setting
$00-44$	User Parameter 3 Function Setting
$00-45$	User Parameter 4 Function Setting
$00-46$	User Parameter 5 Function Setting
$00-47$	User Parameter 6 Function Setting
$00-48$	User Parameter 7 Function Setting
$00-48$	User Parameter 8 Function Setting
$00-50$	User Parameter 9 Function Setting
$00-51$	User Parameter 10 Function Setting
$00-52$	User Parameter 11 Function Setting
$00-53$	User Parameter 12 Function Setting
$00-54$	User Parameter 13 Function Setting
$00-55$	User Parameter 14 Function Setting
$00-56$	User Parameter 15 Function Setting

- User parameter (00-41 ~00-56) can select 16 sets of parameters (01-00 group $\sim 24-06$ group) and put them into the list to do the fast access setting.
- When the access setting of parameter 13-06 is set to 1 , user parameter 00-41 $\sim 00-56$ can be displayed and changed.
- User parameter 00-41 ~00-56 can be changed in the advanced modes, exclusive of being in operation.
- Set value in the parameter of 00-41 ~00-56 and set 13-06 to 1 .
- When $13-06=1$, only parameter of $00-00 \sim 00-56$ can be set or read in the advanced modes.

Example 1: Set 03-00 (Multi-function terminal Function Setting-S1) to user parameter 0 (00-41)

Steps	LCD Display	Descriptions
1	Group   00 Basic Func.   01 V/F Pattern   02 Motor Parameter	Select the start parameter group (00) in the advanced modes.
2	PARA 00    -41. User P0    -42. User P1    -43. User P2	Press (READ/ ENTER) key and $\boldsymbol{\Delta}$ (Up) / $\boldsymbol{\nabla}$ (Down) to select user parameter 0 (00-41).
3	Edit    User P0   $01-00$   $<01-00-24-06>$	Press (READ/ ENTER) key to the screen of data setting/ read. * The selected setting value will flash.
4	EditUser P0   03-00   $<01-00$   S1 Function Sel   24-06>	Press $\boldsymbol{4}$ (Left) / (Right) and $\boldsymbol{\Delta}(\mathrm{Up}) / \boldsymbol{\nabla}$ (Down) key to set the value to 03-00 ( Multi-function terminal Function Setting-S1)
5	Edit User P0 $=03-00^{00-41}$ $\frac{03-00 \quad \text { S1 Function Sel }}{<01-00-24-06>}$	Press (READ/ ENTER) key to save 03-00 and the digit stops flashing and the screen displays User P0=03-00; 03-00 (Multi-function terminal Function Setting-S1) has been defined as $00-41$. Few seconds later, the selected digit will flash again.
6	Monitor   Freq Ref   $12-16=000.00 \mathrm{~Hz}$   $\frac{12-------------------------------~}{12-18=00000.0 \mathrm{Az}}$	Press (BACK) key to the display of subdirectroy.   * If users do not press BACK key in one minute, the screen will automatically display the monitor mode shown as the left figure. The automatically return time can be set via 16-06.

Example 2: After one or more parameters in 00-41~00-56 are set, user parameters settings are as follows.

Step	LCD Display	Descriptions
1	Group   13 Driver Status   14 PLC Setting   15 PLC Monitor	Select the start parameter group (03) in the advanced modes.
2	PARA $13$   -06. Access Level   -07. Password 1   -08. Initialize	Press (READ/ ENTER) and $\boldsymbol{\Delta}(\mathrm{Up}) / \boldsymbol{\nabla}$ (Down) key to enter the access level of parameter (13-06).
3		Press (READ/ ENTER) key to enter the screen of the data setting/ read.   * The selected setting value will flash.
4	-ADV- 00:00 G01-02   Access Level   $\mathbf{1}$   $(0-2)$   $\langle 2\rangle$   User Level	Press $\boldsymbol{\triangle}$ (Up)/ $\mathbf{V}$ (Down) key to change setting value to 1 (13-06=1, user level) and Press (READ/ ENTER) key to save the setting value (03-00). Then, the digit stops flashing and the screen displays the setting value. Few seconds later, the selected digit will flash again.   User level ( $13-06=1$ ) can be set by one or more parameters in the user parameters of 00-41 $\sim 00-56$. If users do not set user parameters, $13-06$ will not be set in the user level (setting value=1).
5	PARA    -06. Access Level   -07. Password 13   -08. Initialize	Press (BACK) key to the display of subdirectory.
6	PARA User P0   -41. 00   -42. User P1   -43. User P2	Press (READ/ENTER) and $\boldsymbol{\Delta}$ (Up) / $\boldsymbol{\nabla}$ (Down) key to select user parameter 0 (00-41).
7	Edit  ${ }^{00-41}$   S1 Function Sel     00 2-Wire (FWD-RUN)   $(00 \sim 57)$     $<00>$ $<03-00>$	Press (READ/ ENTER) key to enter the screen of data setting/ read. *The selected setting value will flash.   In this example, 03-00 (Multi-function terminal Function Setting-S1) has been defined as user parameters (00-41). The bottom right location displays the original parameter group.
8	Edit    S1 Function Sel    006 FJOG    $(00 \sim 57)$    $<00>$ $<03-00>$	Press $\boldsymbol{\triangle}$ (Up) / $\mathbf{\nabla}$ (Down) key to change the setting value to 2 . Use (READ/ ENTER) key to save the setting value.   When the selected setting value does not flash again, the setting value will be saved to 00-41 and 03-00 simultaneously.
9	$\begin{gathered} \text { Monitor } \\ \text { Freq Ref } \\ \hline 12-16=000.00 \mathrm{~Hz} \\ -----------------------17=000.00 \mathrm{~Hz} \\ \hline \end{gathered}$	Press (BACK) key to the display of subdirectory.   * If users do not press (BACK) key in one minute, the screen will automatically display the monitor mode shown as the left figure. The automatically return time can be set via 16-06.

## User Parameter Run Mode Structures

A. Define other parameters (01-00 ~24-06) as user parameters.
[ Main Screen ]
[ Main Menu]
[ Subdirectroy]
[READ/ ENTER]

*User level (13-06=1) can be set by one or more parameters in the user parameters of 00-41 ~ 00-56.
[ Main Screen ] [ Main Menu ] Subdirectory ] [READ/ ENTER ]


## Group 01-V/F Control Parameters

## 01-00 V/F Curve Selection <br> Range 【0~FF】

The V/F curve selection is enabled for V/F mode. Make sure to set the inverter input voltage parameter 01-14.

There are three ways to set V/F curve:
(1) $01-00=0$ to $E$ : choose any of the 15 predefined curves ( 0 to $E$ ).
(2) 01-00 $=0 F$, use 01-02~01-09 and 01-12 ~ 01-13, with voltage limit.
(3) 01-00 = FF: use 01-02~01-09 and 01-12 ~ 01-13, without voltage limit.

The default parameters (01-02 $\sim 01-09$ and 01-12 $\sim 01-13$ ) are the same when 01-00 is set to $F$ (default) and $01-00$ is set to 1 .

Parameters 01-02 ~ 01-13 are automatically set when any of the predefined V/F curves are selected.

This parameter is not affected by the initialization parameter (13-08).

Consider the following items as the conditions for selecting a V/F pattern.
(1) The voltage and frequency characteristic of motor.
(2) The maximum speed of motor.

Table 4.4.2 5-30HP V/F curve selection

Type	Spe	cification	01-00	V/F curve ${ }^{-1}$	Type	Spe	cification	01-00	V/F*
	50 Hz		0			50Hz	Low Starting Torque   High Starting Torque	8 9	
	60 Hz	60 Hz Saturation   50 Hz Saturation	$\begin{gathered} \hline 1 \\ \hline \mathrm{~F} \\ \text { (Def. } \\ \text { Val.) } \\ \hline \\ 2 \end{gathered}$			60 Hz	Low Starting Torque   High Starting Torque	A	
	72Hz		3				90Hz	C	
	50 Hz	Variable Torque 1   Variable Torque 2	4 5				120Hz	D	
	60 Hz	Variable   Torque 3   Variable   Torque 4	6 7				180Hz	E	


Type	Specification	01-00	V/F curve* ${ }^{\text {* }}$
	1200 Hz	$\begin{gathered} F \\ (00-31=1) \end{gathered}$	

*1. Values shown are for 200 V class inverters; double values for 400 V class inverters.
$\ddagger$ Select high starting torque only for the following conditions.
(1) The power cable length is $>50 \mathrm{~m}$ (492ft).
(2) Voltage drop at startup is high.
(3) An AC reactor is used on the input side or output side of the inverter.
(4) Motor power is lower than the inverter rated power.

Table 4.4.3 40HP and above V/F curve selection

Type	Spec	cification	01-00	V/F curve ${ }^{1}$	Type	Spe	cification	01-00	V/F curve ${ }^{\text {a }}$
	50 Hz		0			50 Hz	Low Starting Torque   High Starting Torque	8 9	
	60 Hz	60 Hz   Saturation   $\begin{array}{c}50 \mathrm{~Hz} \\ \text { Saturation }\end{array}$	1 F (Def. Val.) 2			60 Hz	Low   Starting   Torque   High   Starting   Torque	A	
	72Hz		3		Constant-power torque(Reducer)		90 Hz	C	
	50 Hz	Variable   Variable   Torque 2	4 5			120Hz		D	
	60 Hz	Variable Torque 3   Variable Torque 4	6			180Hz		E	

*1. Values shown are for 200 V class inverters; double values for 400 V class inverters.
*2. High-speed motor is not supported above 40HP
$\ddagger$ Select high starting torque only for the following conditions.
(1) The power cable length is $>50 \mathrm{~m}$ (492ft).
(2) Voltage drop at startup is high.
(3) An AC reactor is used on the input side or output side of the inverter.
(4) Motor power lower than the inverter rated power.

01－02	Maximum Output Frequency
Range	【 $40.0 \sim 400.0 】 ~ H z ~$
01－03	Maximum Output Voltage
Range	$\begin{aligned} & \text { 200V:【0.1~255.0】 V } \\ & \text { 400V:【0.2~510.0】 V } \\ & \hline \end{aligned}$
01－04	Middle output frequency 2
Range	【0．0～400．0】 Hz
01－05	Middle Output Voltage 2
Range	$\begin{aligned} & \text { 200V:【0.0~255.0】 V } \\ & \text { 400V:【0.0~510.0】 V } \end{aligned}$
01－06	Middle Output Frequency 1
Range	【0．0～400．0】 Hz
01－07	Middle Output Voltage 1
Range	$\begin{aligned} & \text { 200V:【0.0~255.0】 V } \\ & \text { 400V:【0.0~510.0】 V } \end{aligned}$
01－08	Minimum Output Frequency
Range	【0．0～400．0】 Hz
01－09	Minimum Output Voltage
Range	$\begin{aligned} & \text { 200V:【0.0~255.0】 V } \\ & \text { 400V:【0.0~510.0】 V } \end{aligned}$
01－12	Base Frequency
Range	【10．0～400．0】 Hz
01－13	Base Output Voltage
Range	$\begin{aligned} & \text { 200V: 【0.0~255.0】 V } \\ & \text { 400V: 〔0.0~510.0 } \mathrm{V} \end{aligned}$

V／F curve setting（01－02～01－09 and 01－12～01－13）
Select any of the predefined V／F curves setting＇ 0 ＇to＇$E$＇that best matches your application and the load characteristic of your motor，choose a custom curve setting＇F＇or＇FF＇to set a custom curve．

## Important：

Improper V／F curve selection can result in low motor torque or increased current due to excitation．

For low torque or high speed applications，the motor may overheat．Make sure to provide adequate cooling when operating the motor under these conditions for a longer period of time．

If the automatic torque boost function is enabled（parameter 01－10），the applied motor voltage will automatically change to provide adequate motor torque during start or operating at low frequency．

## Custom V／F Curve Setting：

A custom curve selection allows users to set parameters 01－02～01－13 whereas a predefined curve selection does not．


Figure 4.4.10 Custom V/F curve
When setting the frequency related parameters for a custom V/F curve values make sure that:
$\underset{(01-02)}{\mathrm{F}_{\text {max }}}>\underset{(01-12)}{\mathrm{F}_{\text {base }}}>\mathrm{F}_{(01-04)}>\mathrm{F}_{(01-06)}>\mathrm{F}_{\text {mid }} \mathrm{(01-08)}$

The 'SE03' V/F curve tuning error is displayed when the frequency values are set incorrectly.
When 01-04 and 01-05 (or 01-18 and 01-09) are set to 0 , the inverter ignores the set values of Fmin2 and Vmin2.

When the control mode is changed parameter 00-00, 01-08 ( $\mathrm{F}_{\text {min }}$ ) and 01-09 ( $\mathrm{V}_{\text {min }}$ ) will automatically be changed to the default setting of the selected control mode.

## SLV (Sensorless vector control)

Enter the motor data in parameter group 17 for SV and SLV control mode (00-00) and perform auto-tuning.
In the SLV mode the V/F curve normally does not have to be re-adjusted after a successful auto-tune.
The maximum output frequency setting 01-02 (Fmax), base frequency 01-12 (Fbase) or minimum output frequency 01-08 (Fmin) can be adjusted but the voltage is automatically adjusted by the internal current controller.

Set the base frequency (01-12, Fbase) to the motor rated frequency on the motor nameplate.
Perform the auto-tuning procedure after adjusting parameters $02-19$ or $17-04$ to reduce the voltage at no-load operation.

Motor jitter can be reduced by lowering the no-load voltage. Please note that lowering the no-load voltage increases the current at no-load.

$01-10$	Torque Compensation Gain
Range	【0．0～2．0】

In V／F mode the inverter automatically adjusts the output voltage to adjust the output torque during start or during load changes based on the calculated loss of motor voltage．

The rate of adjustment can be changed with the torque compensation gain parameter．
Refer to the torque compensation gain adjustment shown in Figure 4．4．11．


Figure 4．4．11 Torque compensation gain to increase／decrease output torque
Increase value when
－The wiring between the inverter and the motor is too long
－The motor size is smaller than the inverter size
Note：Gradually increase the torque compensation value and make sure the output current does not exceed inverter rated current．

Reduce value when：
－When experiencing motor vibration

## Important：

Confirm that the output current at low speed does not exceed the rated output current of the inverter．

$01-14$	Input Voltage Setting
Range	$200 \mathrm{~V}: 【 155.0 \sim 255.0 】 \mathrm{~V}$
	$400 \mathrm{~V}: 【 310.0 \sim 510.0 】 \mathrm{~V}$

Set the inverter input voltage（E．g．200V／208V／230V／240V or $380 \mathrm{~V} / 415 \mathrm{~V} / 440 \mathrm{~V} / 460 \mathrm{~V} / 480 \mathrm{~V}$ ）．

This parameter is used as a reference for predefined V／F curve calculation（ $01-00=0$ to E），over－voltage protection level，stall prevention，etc．．．

$01-15$	Torque Compensation Time
Range	$【 0 \sim 10000 】 \mathrm{~ms}$

Set the torque compensation delay time in milliseconds．
Only adjust in the following situations：
Increase value when
－When experiencing motor vibration
Decrease value when：
－When motor torque response is too slow

## Group 02－IM Motor Parameter

02－00	No－load Current
Range	【0．01～600．00】 A
02－01	Rated Current
Range	V／F mode is $10 \% \sim 200 \%$ of inverter＇s rated current．SLV mode is $25 \% \sim 200 \%$ of inverter＇s rated current．
02－03	Rated Rotation Speed
Range	【0～60000】 rpm
02－04	Rated Voltage
Range	$\begin{aligned} & \text { 200V:【50.0~240.0】 V } \\ & \text { 400V: 【100.0~480.0】 V } \end{aligned}$
02－05	Rated Power
Range	【0．01～600．00】 KW
02－06	Rated Frequency
Range	$\begin{aligned} & 【 10.0 \sim 400.0 】 \mathrm{~Hz} \\ & \lfloor 10.0 \sim 1200.0 】 \mathrm{~Hz}(\text { When } 00-31=1) \end{aligned}$
02－07	Poles
Range	【2，4，6，8】
02－09	Excitation Current
Range	【15．0～70．0】 \％
02－10	Core Saturation Coefficient 1
Range	【0～100】 \％
02－11	Core Saturation Coefficient 2
Range	【0～100】 \％
02－12	Core Saturation Coefficient 3
Range	【80～300】 \％
02－13	Core Loss
Range	【0．0～15．0】 \％
02－15	Resistance between Wires
Range	【0．001～60．000】 $\Omega$
02－16	Rotor Resistance
Range	【0．001～60．000】 $\Omega$
02－17	Leakage Inductance
Range	【0．01～200．00】 mH
02－18	Mutual Inductance
Range	【0．1～6553．5】 mH
02－19	No－Load Voltage
Range	$\begin{aligned} & \text { 200V:【50~240】 V } \\ & \text { 400V:【100~480】 V } \end{aligned}$

In most case no adjustment is required after performing an auto－tune except when using the inverter in special applications（e．g．machine tool，positioning，etc．．．）．

Please refer to parameter group 22 for permanent magnet motor parameters．
（1）Number of motor poles（02－07）
Set the number of motor pole according to the motor nameplate．
（2）Motor rated power（02－05）

Set the motor power according to the motor nameplate.
(3) Motor rated current (02-01)

Set the motor rated current according to the motor nameplate.
(4) Motor rated voltage (02-04)

Set the motor rated voltage according to the motor nameplate.
(5) Rated frequency of motor (02-06)

Set the motor rated frequency according to the motor nameplate.
(6) Rated rotation speed of motor (02-03)

Set the motor rpm according to the motor nameplate.
(7) No-load motor voltage (02-19)

Parameter determines the rated flux during motor's rated rotation in SLV control mode. Set the value of this parameter to the same value as parameter 17-08 (02-19 for motor 2 ). A value of $10 \sim 50 \mathrm{~V}$ below the input voltage level ensures that the motor is capable of providing adequate torque performance when operating at nominal speed (or higher speed). Setting the value to small can result in a reduction in no-load current, weakened motor flux and an increase in motor current while the motor is loaded.
(8) Motor excitation current (02-09)

This parameter is automatically set during auto-tune. No adjustment required.
(9) Setting of motor core's saturation coefficient 1,2 and 3 (02-10, 02-11, 02-12)

These parameters are automatically set during auto-tune. No adjustment required. Parameters are set to $50 \%$ for $02-10,75 \%$ for $02-11$ and $137.5 \%$ for $02-12$ to reduce the impact of core saturation. The motor core's saturation coefficient is defined as a percentage of the motor excitation current. When the motor flux reaches $137.5 \%$ level, the core's saturation coefficient shall be greater than $137.5 \%$. When the motor flux is $50 \%$ or $75 \%$, the core's saturation coefficient is required to be less than $50 \%$ and $75 \%$.
(10) Motor core loss (02-13)

Set motor core loss as the percentage of the motor rated power.

$$
\% W_{\text {core }}(02-13)=\frac{3 \times \text { Motor core loss }(\text { watt })}{\text { Motor rated power (watts, 02-05) }} \times 100 \%
$$

Note: In V/F mode motor core loss (02-13) is used to for torque compensation.
(11) Motor line to line resistance (02-15)
(12) Motor rotor resistance R2 (02-16)
(13) Motor leakage inductance (02-17)
(14) Motor mutual inductance (02-18)
(15) Motor no-load current (02-00).

Value is calculated based on the motor rated frequency (17-05) and motor rated current (17-03).
In V / F control mode, the output current is greater than the no-load current with slip compensation is enabled.

Note: The value of 02-01 needs to be greater than the value set in parameter 02-00, otherwise warning message "SE01" out of range error will be displayed.


Figure 4.4.12 Y-equivalent model an induction motor

## Group 03- External Digital Input and Output Parameters




Refer to the multi-function digital input and related parameters in the following Figure 4.4.13


Figure 4.4.13 Multi-function digital input and related parameters

Table 4.4.4 Multi-function digital input setting (03-00 ~ 03-05) ("O": Enable, "X": Disable)

Value	Function		Description	Control mode		
	Name	LCD Display		V/F	SLV	$\begin{aligned} & \text { PM } \\ & \text { SLV } \\ & \hline \end{aligned}$
0	2-wire type (Forward operation)	$\begin{aligned} & \text { 2-Wire } \\ & \text { (FWD-RUN) } \end{aligned}$	2- wire (ON : Forward operation command).	O	O	0
1	2-wire type (Reverse operation)	$\begin{array}{\|l} \begin{array}{l} \text { 2-Wire } \\ \text { (REV-RUN) } \end{array} \\ \hline \end{array}$	2- wire (ON : Reverse operation command).	O	0	0
2	Multi-Speed Setting Command 1	Muti-Spd Ref 1	Multi-Speed Reference 1	0	0	0
3	Multi-Speed Setting Command 2	Muti-Spd Ref 2	Multi-Speed Reference 2	0	0	O
4	Multi-Speed Setting Command 3	Muti-Spd Ref 3	Multi-speed Reference 3	0	0	0
5	Multi-Speed Setting Command 4	Muti-Spd Ref 4	Multi-speed Reference 4	0	0	0
6	Forward Jog Run Command	FJOG	ON: Forward operation in jog mode $(00-18)$	0	0	0
7	Reverse Jog Run Command	RJOG	ON: Reverse operation in jog mode (00-18)	0	0	0
8	UP Frequency Increasing Command	UP command	ON: Command of output frequency increasing (only used by support of DOWN command).	0	0	0
9	DOWN Frequency   Decreasing   Command	DOWN command	ON: Command of output frequency decreasing (only used by support of UP command).	0	0	0
10	Acceleration/ Deceleration Setting Command 1	Acc/Decel Time Selection 1	Acceleration/deceleration time selection command1	O	0	0
11	Inhibit   Acceleration/   Deceleration   Command	ACC/DEC   Inhibit	ON: Acceleration/deceleration prohibition	0	0	0
12	Reserved	Reserved	Reserved	-	-	-
13	Reserved	Reserved	Reserved	-	-	-
14	Emergency Stop (Decelerate to Zero and Stop)	E-Stop	ON: Emergency stop input	0	0	0
15	External   Baseblock   Command   (Rotation freely to   Stop)	Ext. BB	ON: Inverter base interdiction	O	0	0
16	PID Control Disable	PID Disable	ON: PID control disable	0	0	0
17	Fault Reset	Fault Reset	Fault reset	0	0	0
18	Reserved	Reserved	Reserved	-	-	-
19	Speed Search 1(from the maximum frequency)	Speed Search $1^{1}$	ON: Search the speed from the maximum output frequency	O	0	0
20	Manual Energy Saving Function	Energy saving	ON: Manual energy saving control is based on the settings of 11-12 and 11-18.	O	X	0
21	PID Integral Res	PID I-Reset	ON: PID integral value reset	0	0	0


Value	Function		Description	Control mode		
	Name	LCD Display		V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$
22	Reserved	Reserved	Reserved	-	-	-
23	Reserved	Reserved	Reserved	-	-	-
24	PLC input	PLC Input	ON: Digital PLC input	0	0	0
25	External fault	Ext. Fault	ON: External fault alarm	0	0	0
26	3-Wire Sequence (Forward/ Reverse Command)	3-Wire (FWD/REV)	3 -wire control (forward/reverse command) 。   When the parameter is set to 26 , terminal S1 and terminal will become operation command and stop command respectively, and their original functions will be closed.	0	0	0
27	Local/ Remote Selection	Local/Remote	ON: Local mode (via the digital operator) OFF: Frequency command and operation command will be determined according to the setting of parameter (00-02 and 00-05)	0	O	0
28	Remote Mode Selection	Remote Mode Sel	ON: RS-485 communication OFF: Control circuit terminal	0	0	0
29	Jog Frequency Selection	JOG Freq Ref	ON: Selection jog frequency command	0	O	0
30	Acceleration/ Deceleration Setting Command 2	Acc/Decel Time Selection 2	Acceleration/deceleration time selection command2	O	O	0
31	Inverter Overheating Warning (OH2)	Overheat Alarm	ON: Inverter overheat alarm ( OH 2 ) input( will display OH 2 )	0	0	0
32	Reserved	Reserved	Reserved	-	-	
33	DC Braking	DC Brake Command	ON: Perform DC braking	0	O	0
34	Speed Search 2 (from Frequency Command)	Speed Search $2$	ON: Search speed from set frequency	O	0	0
35	Timing Function Input	Timer Input	. Set the time function at 03-33, 03-34 .Set the time function output at 03-11, 03-12	0	O	O
36	PID Soft Start Disable	PID SFS Disable	ON: PID slow-start off	0	O	0
37	Reserved	Reserved	Reserved	-	-	-
38	Reserved	Reserved	Reserved	-	-	-
39	Reserved	Reserved	Reserved	-	-	-
40	Reserved	Reserved	Reserved	-	-	-
41	PID Sleep	PID Sleep	ON: PID Sleep	0	0	0
42	Reserved	Reserved	Reserved	-	-	-
43	Reserved	Reserved	Reserved	-	-	-
44	Reserved	Reserved	Reserved	-	-	-
45	Reserved	Reserved	Reserved	-	-	-
46	Reserved	Reserved	Reserved	-	-	-
47	Fire Mode (Forced to Run Mode)	Fire Mode	ON: Turn off hardware and software fault or alarm protection (a special application of HVAC)	O	O	O
48	KEB Acceleration	KEB Accel.	ON: KEB acceleration start	0	X	X
49	Parameters Write-in Allowed	Write Enabled	ON: All parameters are writable. OFF: Except reference frequency (00-05) all parameters are write-protected.	0	O	O


Value	Function		Description	Control mode		
	Name	LCD Display		V/F	SLV	$\begin{array}{\|l\|} \hline \text { PM } \\ \text { SLV } \end{array}$
50	Unattended Start Protection (USP)	USP	ON: After power is input, the inverter ignores the operation command OFF: After power is input, the inverter will return the operation status before power is cut off.	0	O	0
51	Reserved	Reserved	Reserved	-	-	-
52	Reserved	Reserved	Reserved	-	-	-
53	2-Wire Self Holding Mode (Stop Command)	2-Wire (STOP)	2-Wire Self Holding Mode (ON: Stop Command).	0	O	0
54	Switch PID1 and PID2	PID 2 Enable	ON: PID1 enabled OFF: PID2 enabled	0	O	0
55	RTC Time Enable	RTC Timer Switch	ON:RTC Time Function Enabled	0	0	0
56	RTC Offset Enable	Offset Time Switch	ON:RTC Offset Enabled	0	O	0
57	Forcing Frequency   Run	Force Freq Cmd	ON: Run on Forcing Frequency (23-28) OFF: Determine frequency reference and run command depending on the setting of parameter ( $00-02$ and 00-05)	0	O	0
58	Safety Function	Safety Function	ON: Stop on the setting of 08-30	0	0	0

03-0X =00: 2-wire control: forward operation
$\mathbf{0 3 - 0 X}=\mathbf{0 1}$ : 2-wire control: reverse operation. Refer to the 2 -wire operation mode in Figure 4.3.1.
$03-0 X=02$ : Multi-speed setting command 1 .
$03-0 X=03$ : Multi-speed setting command 2.
$03-0 X=04$ : Multi-speed setting command 3.
$03-0 X=05$ : Multi-speed setting command 4 .
$03-0 X=29$ : Jog frequency selection (setting =29).
Select frequency reference using the multi-function digital input.

Table 4.4.5 Multi-speed operation selection

Speed	Multi-function digital input (S1 ~ S6) ${ }^{* 3}$					Frequency selection
	Jog frequency reference	Multi-speed frequency 4	Multi-speed frequency 3	Multi-speed frequency 2	Multi-speed frequency 1	
1	0	0	0	0	0	Frequency command 1 ( 05-01) or main speed frequency ${ }^{* 2}$
2	0	0	0	0	1	Auxiliary speed frequency or frequency reference 2 ( 06-01)
3	0	0	0	1	0	Frequency command 3 ( 06-02)
4	0	0	0	1	1	Frequency command 4 ( 06-03)
5	0	0	1	0	0	Frequency command 5 ( 06-04)
6	0	0	1	0	1	Frequency command 6 ( 06-05)
7	0	0	1	1	0	Frequency command 7 ( 06-06)
8	0	0	1	1	1	Frequency command 8 ( 06-07)
9	0	1	0	0	0	Frequency command 9 (06-08)
10	0	1	0	0	1	Frequency command 10 ( 06-09)
11	0	1	0	1	0	Frequency command 11(06-10)
12	0	1	0	1	1	Frequency command 12 ( 06-11)
13	0	1	1	0	0	Frequency command 13 ( 06-12)
14	0	1	1	0	1	Frequency command 14(06-13)
15	0	1	1	1	0	Frequency command 15 ( 06-14)
16	0	1	1	1	1	Frequency command 16 ( 06-15)
17	$1{ }^{* 1}$	-	-	-	-	Jog frequency command (00-18)

## 0: OFF, 1: ON, -: Ignore

*1. Jog frequency terminal has a higher priority than multi-speed reference 1 to 4 .
*2. When parameter 00-05=0 (frequency reference input = digital operator), multi-speed frequency 1 will be set by 05-01 frequency reference setting1). When parameter 00-05=1 (frequency reference input=control circuit terminal), multi-speed frequency command 1 is input through analog command terminal Al1 or AI2).
*3. Multi-speed operation is disabled when PID is enabled.
Wiring Example: Figure 4.4.14 and 4.4.15 show an example of a 9-speed operation selection.


Figure 4.4.14 Control Terminal Wiring Example


Figure 4.4.15 9-speed timing diagram
*1. When 00-05=1, multi-speed frequency reference is set by analog input Al1 or Al2.

03-0X =06: Forward jog run command, uses jog frequency parameter 00-18.

## Note:

- Jog command has a higher priority than other frequency reference commands.
- Jog command uses stop mode set in parameter 07-09 when Jog command is active $>500 \mathrm{~ms}$.

03-0X =07: Reverse jog run command, uses jog frequency parameter 00-18.

## Note:

- Jog command has a higher priority than other frequency reference commands.
- Jog command uses stop mode set in parameter 07-09 when Jog command is active $>500 \mathrm{~ms}$.
$\mathbf{0 3 - 0 X}=\mathbf{0 8}$ : UP frequency command; set parameter 00-05 Frequency command to 2 to activate. Refer to parameter 11-56 for UP/DOWN mode.

03-0X =09: Down frequency command; set parameter 00-05 Frequency command to 2 to activate. Refer to parameter 11-56 for UP/DOWN mode.

Note: UP/DOWN frequency command follows standard acceleration and deceleration times Tacc1 / Tdec1 (00-14, 00-15) or Tacc2 / Tdec $2(00-16,00-17)$ and requires both UP and DOWN functions 08 and 09 to be programmed to the digital input terminals.

Note: SE02 DI terminal Error will be displayed when:

- When only the UP or DOWN command function is programmed to the digital inputs.
- When both UP and DOWN command are activated simultaneously.

For the examples of UP/DOWN control wiring and operation, please refer to Figure 4.4.16 and 4.4.17.


UP Command   (Terminal S5)	1	0	0	1
Down Command   (Terminal S6)	0	1	0	1
Operation	Accel   (UP)	Decel   (DWN)	Hold	Hold

Figure 4.4.16 UP/DOWN wiring and operation example


Figure 4.4.17 Up / Down command timing diagram

## UP / DOWN Command Operation

When the Forward Run command is active and the UP or Down command is momentarily activated the inverter will accelerate the motor up to the lower limit of the frequency reference (00-13).

When using the UP / Down command, the output frequency is limited to the upper limit of frequency reference $(00-12)$ and the lower limit of frequency reference $(00-13)$.

The UP / DOWN command uses acceleration 1 or 2 / deceleration time 1 or 2 for normal operation Tacc1 / Tdec1 (00-14, 00-15) or Tacc2 / Tdec 2 (00-16, 00-17).

Frequency reference retention is active when parameter 11-58 is set to 1 and the frequency reference is saved when power is lost and retrieved when power is restored.
*1. When 11-58 = 1 and the operation command is active, the output frequency will accelerate to the previously stored frequency command.
*2. When 11-58 = 0 and the operation command is active, the output frequency will accelerate to the lower limit of frequency reference (00-13).

03-0X =10: Acceleration/deceleration 1 selection

03-0X =30: Acceleration/deceleration 2 selection
Refer to the "multi-function digital input terminals select acceleration / deceleration time" in Table 4.4.1 and Figure 4.4.6.

03-0X =11: Inhibit Acceleration/deceleration command (hold command)

When activated suspends the acceleration / deceleration operation and maintains the output frequency at current level.

If 11-58 = 1 , the frequency reference value is saved when the acceleration/deceleration inhibit command is active the frequency reference value is saved. Deactivating the acceleration / deceleration inhibit command resumes acceleration / deceleration.

If 11-58 = 1 , the frequency reference value is saved when the acceleration/deceleration inhibit command is active, the frequency reference value is saved even when powering down the inverter.

Refer to Figure 4.4.18. for an example.


Figure 4.4.18 Inhibit acceleration / deceleration command operation
*1. When $11-58=1$, and acceleration / deceleration inhibit command is activated, the frequency reference is stored even when powering down the inverter. When a run command is given (e.g. run forward) and the acceleration / deceleration inhibit command is active, the inverter will accelerate to the previously stored frequency reference.
*2. When $11-58=0$, and a run command is and the acceleration / deceleration inhibit command is active, the frequency reference and output frequency will remain at zero.

03-0X =14: Emergency stop (decelerate to zero and stop)
Refer to the "deceleration time of emergency stop" of parameter 00-26.
03-0X =15: External Baseblock Command (coast to stop)
Execute the base block command by the use of ON / OFF way of multi-function digital input terminal, and prohibit the inverter output.

During run: When an external base block command is activated, the keypad displays "BBn BaseBlock $(\mathrm{Sn})$ ", indicating the inverter output is turned off ( n indicates the digital input number 1-6). Upon removing the base block signal, the motor will run at the frequency reference. If speed seach from frequency reference is active the inverter output frequency starts from the frequency reference and searches for the coasting motor speed and continue to operate. If speed search is not active the output frequency starts at 0 Hz .

During deceleration: When an external base block command is activated, the keypad displays "BBn BaseBlock (Sn)", indicating the inverter output is turned off ( $n$ indicates the digital input number $1-6$ ). Upon removing the base block signal, the motor is stopped or will coast to a stop and the inverter will remains in the stop condition.

During acceleration: When an external base block command is activated, the keypad displays "BBn BaseBlock ( Sn )", indicating the inverter output is turned off ( n indicates the digital input number $1-6$ ). Upon removing the base block signal, the motor will run at the frequency reference. If speed seach from frequency reference is active the inverter output frequency starts from the frequency reference and searches for the coasting motor speed and continue to operate. If speed search is not active the output frequency starts at 0 Hz .


Figure 4.4.19 External base block operation

03-0X =16: PID control disable.
03-0X =17: Fault reset
The output becomes active when the inverter trips on a fault. Upon an inverter fault the inverter output will turn off (base block) and the keypad displays the dedicated fault message.

When fault occurs, the following actions can be used to reset the fault:

1. Program one of the multi-function digital inputs (03-00 to 03-05) to 17 (reset fault) and active input.*
2. Press the reset key of the digital operator (RESET).*
3. Recycle power to the inverter. Important Note: If a run command is active during power-up, the inverter will start running automatically.

* To reset an active fault the run command has to be removed.

03-0X =19: Speed Search 1 (from the maximum frequency).
03-0X =34: Speed Search 2 (from the frequency command).
Refer to the "speed search" function on pages 4-134.
03-0X =20: Energy saving enabled
Manual energy savings function is set with parameters 11-12 and 11-18.
For the manual energy saving operation refer to Figure 4.3.78.
03-0X =21: PID integral reset
$\mathbf{0 3 - 0 X}=\mathbf{2 5}$ : External fault
Activating the external fault input will turn off the inverter output and the motor will coast to a stop. The keypad displays the external fault message "EFn Ext. Fault ( Sn )", where n is the input terminal number.

03-0X =27: Local / Remote selection.
Switch the inverter frequency reference source between Local (keypad) or Remote (control circuit terminals or RS485). Use parameter 00-05 (Main frequency command source selection) and 00-02 (Run command selection) to select the remote source.

Note: In 3-wire operation terminal S1 and S2 are reserved for run/stop operation and the Local / Remote function can only be set to digital input terminals S3 to S6 (03-02 to 03-05).

Note: To switch between local and remote the inverter has to be stopped.

Input	Mode	Frequency Reference / Run/Stop Command Source
ON	Local	- Frequency reference and Run-Stop from keypad.   - LEDs SEQ and REF are off.
OFF	Remote	- Frequency reference source selected by parameter 00-05 and   Run-Stop source selected by parameter 00-02.   - LEDs SEQ and REF are on.

03-0X =28: Remote mode selection
Switch between terminal source and communication (RS-422/RS-485) source for frequency reference and operation command.

In Remote mode, indicators of SEQ and REF are on; you can use terminals AI1 and AI2 to control the frequency command, and use terminals S1, S2 or communication terminal RS-485 to control the operation command.

Input	Mode	Frequency Reference / Run/Stop Command Source
ON	Communication	- Frequency reference and run/stop command control via communication   $(R S-422 / R S-485)$.
OFF	Terminal	- Frequency reference source from AI1 / AI2 input (00-05=1) and   Run-Stop command from terminals S1 / S2 (00-02=1).



Figure 4.4.20 Remote mode operation selection
To switch the frequency reference and operation command input between communication RS-485 and control terminals the following parameters have to be set:

1. $00-05=1$ (use control terminal Al1 or Al2 as reference frequency source)
2. $00-02=1$ (use control terminal S1 or S2 for operation command)
3. Set one of the digital input terminals (03-02 to 03-05) to 28 (Operation selection of remote mode)

03-0X =31: Inverter overheat warning
When input is active the inverter displays warning message "OH2" and continues operation. Deactivating the input reverts back to the original display. Warning message does not require resetting the inverter.

## 03-0X =33: DC braking

When input is active DC-Injection braking is enabled during start and stopping of the inverter. DC Injection braking is disabled when a run or jog command is active. Refer to the DC braking time diagram in Figure 4.4.21.


Figure 4.4.21 DC braking timing diagram
$03-0 X=35$ : Timing function
Refer to the "time function" parameter 03-37 and 03-38.

03-0X =36: PID Soft start disable
Refer to the "PID Control" function of PID function parameter group 10.
03-0X =47: Fire mode (Foreced to operation mode)
When input is active disables all inverter warning and hardware (exclusive of SC) protections. This function is commonly used in commercial applications where the inverter controls an exhaust fan and needs run to destruction in case of a fire.

03-0X =48: KEB acceleration
When input is active enables KEB (Kinetic Energy Braking) during acceleration. Refer to the parameter description of 11-47 and 11-48. Note: To enable set parameter 11-47 to a value greater than 0 .

03-0X =49: Parameters write-in allowed
When input is active allows parameter to be changed.
Note: When none of the digital input terminals are set to function 49, parameter write-in protection is controlled by parameter 13-06.

Input	Parameter Save
ON	Parameters Write Enabled
OFF	Parameters Write Protected

03-0X $=50$ : Unattended Start Protection (USP)
When input is active prevents inverter from starting automatically when a run command is present at time of power-up. Please refer to Figure 4.4.21a for more details.


Figure 4.4.21a Unattended Start Protection

03-0X =53: 2-Wire Self Holding Mode (Stop Command).
Refer to the "2-wire operation with hold function" of parameter 00-02

## 03-0X =57: Forced Frequency Run

This function enables with the corresponding of parameter of 23-28 and the source of frequency command of parameter 00-05 set to the value of 5 (PID given, namely the parameter of10-03 needs to be active).

When any one of the multi-function digital input terminal (S1~S6) is set to the value of 16 (the interdiction of PID function), pump will not depend on feedback to do any PID output adjustment; simultaneously another one is set to the value of 57 (forced frequency run) and inverter will have the frequency run setting depending on the parameter of 23-28. Inverter will stop output when digital input terminals (S1~S6) are removed.

This function is applied to inverter output being controlled by external pressure sensor (eg. differential pressure switch) when pressure sensor disconnects.

03-0X =58: Safety Function
When digital input terminal enables, inverter will stop via the set of parameter 08-30 after safety function is active.

$03-08$	（S1～S6）DI Scan Time	
Range	$【 0 】$	Scan Time 4ms
	$【 1 】$	Scan Time 8ms

Set the digital input CPU scan time．The digital input signal needs to be present for the minimum scan time to qualify as an enabled command．

Note：For noisy environments select scan time of 8 ms （results in a slower response time）．

03－09	Multi－function Terminal S1－S4 Type Selection	
Range	【xxx0b】：S1 A contact	【xxx1b】：S1 B contact
	【xx0xb】 ${ }^{\text {S2 }}$ A contact	【xx1xb】 ：S2 B contact
	【x0xxb】 ：S3 A contact	【x1xxb】 ：S3 B contact
	【0xxxb】：S4 A contact	【1xxxb】：S4 B contact


$03-10$	Multi－function Terminal S5－S6 Type Selection	
Range	$【 \times x \times 0 \mathrm{~b} 】:$ S5 A contact	【xxx1b】：S5 B contact
	$【 x \times 0 \times b 】:$ S6 A contact	【xx1xb】：S6 B contact

Parameter 03－09 and 03－10 selects the digital input type between a normally open and a normally closed switch／contact．

Each bit of 03－09／03－10 presents an input ：
$03-09=\begin{array}{lllll}\underline{0} & \underline{0} & \underline{0} & \underline{0} & \underline{0} \text { ：normally open switch } \\ \text { s4 } & \text { s3 } & \text { s2 } & \text { s1 } & 1: \text { normally closed switch }\end{array}$
$03-10=\underline{\mathbf{x}} \quad \underline{0} \quad \mathbf{0}$ ：normally open switch
s6 s5 1：normally closed switch

Example：S1 and S2 wired to a normally closed contact／switch set 03－09＝0011．

Do not set the operation command parameter 00－02 to terminal control before setting the digital input type．Failure to comply may cause death or serious injury．


Figure 4.4.22 Multi-function digital output and related parameters

Table 4.4.6 Description of multi-function digital output

Value	Function		Description	Control Mode		
	Name	LCD Display		V/F	SLV	$\begin{gathered} \mathrm{PM} \\ \mathrm{SLV} \end{gathered}$
0	During Running	Running	ON: During running (Run Command is ON)	O	O	O
1	Fault Contact Output	Fault	ON: Fault contact output (except CFO0 and CF01)	0	O	O
2	Frequency Agree	Freq. Agree	ON: Frequency agree (frequency agree width detection is set by 03-14)	0	0	O
3	Setting Frequency Agree	Setting Freq Agree	ON: Output frequency = allowed frequency detection level (03-13) $\pm$ frequency bandwidth (03-14)	0	0	O
4	Frequency Detection 1	Freq. Detect 1	ON: During acceleration:   Output frequency $>=03-13+03-14$   OFF: During deceleration:   Output frequency < 03-13	0	0	O
5	Frequency Detection 2	Freq. Detect 2	OFF: During acceleration:   Output frequency $>=03-13+03-14$   ON: During deceleration:   Output frequency < 03-13	0	0	O
6	Automatic Restart	Auto Restart	ON: the period of automatic restart	0	O	O
7	Reserved	Invalid Do Func.	Reserved	-	-	-
8	Reserved	Invalid Do Func.	Reserved	-	-	-
9	Baseblock	Baseblock	ON: During baseblock	O	O	O
10	Reserved	Invalid Do Func.	Reserved	-	-	-
11	Reserved	Invalid Do Func.	Reserved	-	-	-
12	Over-Torque Detection	Over Torque	ON : Over torque detection is ON	O	O	O
13	Reserved	$\begin{gathered} \text { Invalid Do } \\ \text { Func. } \end{gathered}$	Reserved	-	-	-
14	Reserved	Invalid Do Func.	Reserved	-	-	-
15	Reserved	Invalid Do Func.	Reserved	-	-	-
16	Reserved	Invalid Do Func.	Reserved	-	-	-
17	Reserved	Invalid Do Func.	Reserved	-	-	-
18	PLC Status	PLC statement	ON: when 00-02 is set to 3 (PLC operation command source)	O	O	O
19	PLC Control	$\begin{gathered} \text { ControlFrom } \\ \text { PLC } \end{gathered}$	ON: Control from PLC	O	O	O
20	Zero Speed	Zero Speed	ON: Output frequency < Minimum output frequency (Fmin)	0	O	O
21	Inverter Ready	Ready	ON: Inverter ready (after power on, no faults)	O	O	O
22	Undervoltage Detection	Low Volt Detected	ON: DC bus voltage $=<$ Low-voltage warning detection level (07-13)	0	O	O
23	Source of Operation Command	$\underset{\text { Status }}{\text { Run Cmd }}$	ON: Operation command from LED digital operator (local mode)	O	O	O
24	Source of Frequency Command	Freq Ref Status	ON: Reference frequency from LED digital operator (local mode)	0	O	O
25	Low Torque Detection	Under Torque	ON: Low-torque detection is ON	0	O	O
26	Frequency Reference Missing	Ref. Loss.	ON: Reference frequency loss	0	O	O
27	Timing Function Output	Timer Output	Set time function parameter to 03-33 and 03-34, and the time function input is set by parameter from 03-00 and 03-05	0	0	O
28	Reserved	$\begin{gathered} \text { Tnvalid Do } \\ \text { Func. } \end{gathered}$	Reserved	-	-	-
29	Reserved	Invalid Do Func.	Reserved	-	-	-


30	Reserved	Invalid Do Func.	Reserved	-	-	
31	Reserved	Invalid Do Func.	Reserved	-	-	-
32	Communication Control Contacts	Control From Comm	ON: DO is set by communication control.	0	0	O
33	RTC Timer 1	RTC Timer 1	ON: 16-36 (RTC Speed Selection) selects Timer 1 and 16-32 (Source of Timer 1 ) is active in the set time.	0	O	O
34	RTC Timer 2	RTC Timer 2	ON: 16-36 (RTC Speed Selection) selects Timer 2 and 16-33 (Source of Timer 2) is active in the set time.	0	0	0
35	RTC Timer 3	RTC Timer 3	ON: 16-36 (RTC Speed Selection) selects Timer 3 and 16-34 (Source of Timer 3) is active in the set time.	0	0	0
36	RTC Timer 4	RTC Timer 4	ON: 16-36 (RTC Speed Selection) selects Timer 4 and 16-35 (Source of Timer 4) is active in the set time.	0	0	0

## $03-1 \mathrm{X}=0$ : During Running

OFF	Run command is OFF and the inverter is stopped.
ON	Run command is ON or output frequency is greater than 0.

$03-1 X=1$ : Fault contact output
Output is active during fault condition.
Note: Communication error (CF00, CF01) do not activate the fault contact.

## 03-1X=2: Frequency Agree

Output is active when the output frequency falls within the frequency reference minus the frequency detection width (03-14).

## $03-1 X=3$ : Setting Frequency Agree

Output is active when the output frequency falls within the frequency detection width (03-14) of the set frequency detection level (03-13).

## $03-1 X=4$ : Frequency detected 1

Output is active when the output frequency rises above the frequency detection level (03-13) + frequency detection width (o3-14) and deactivates when the output frequency falls below frequency detection level (o3-13).

## $03-1 X=5$ : Frequency detected 2

Output is active when the output frequency is below the frequency detection level (03-13) + frequency detection width (03-14) and turns off when the output frequency falls below frequency detection level.
$03-1 X=6$ : Automatic restart.
Output is active during an auto-restart operation.
$03-1 X=9$ : Baseblock (B.B.)
Output is active when the inverter output is turned off during a Baseblock command.
$03-1 \mathrm{X}=12$ : Over torque detected (Normally Open)
Output is active during an over torque detection see parameters 08-13 $\sim 08-16$.

03-1X=25: Low torque detected (Normally Open)
Output is active during low torque detection see parameters 08-17 ~08-20.
$03-1 \mathrm{X}=18$ : PLC status $($ setting $=18)$
Output is active when operation command parameter (00-02) is set to 3: PLC Control.
03-1X=19: PLC control contact
Output is controlled by the PLC logic
03-1X=20: Zero-speed
Output is active during zero-speed

Active	Output frequency >=minimum output frequency (01-08, Fmin)
Off	Output frequency is <=the minimum output frequency



Figure 4.4.23 Zero-speed operation

03-1X=21: Inverter Ready
Output is active when no faults are active and the inverter is ready for operation.
$03-1 X=22$ : Undervoltage Detection
Output is active when the DC bus voltage falls below the low voltage detection level (07-13).
$03-1 X=23$ : Source of operation command
Output is active in local operation command.

OFF	Remote mode:   00-02 = 1 or 2, or any one of the multi-function digital input terminals (S1 to S6) set to   function 5 (LOCAL / REMOTE control) is OFF.   SEQ LED of the keypad is ON.
ON	Local mode:   $00-02=0$, or any one of the multi-function digital input terminals (S1 to S6) set to   function 5 (LOCAL / REMOTE control) is active.   SEQ LED of the keypad is OFF.

$03-1 X=24$ : Source of frequency command
Output is active in local frequency command.

OFF	Remote mode:
	function 5 (LOCAL / REMOTE control) is OFF.
	REF LED of the keypad is ON.

$\mathbf{0 3 - 1 X}=26$ : Frequency reference missing
Output is active when the frequency reference is lost. When parameter $11-41$ is set to 0 the inverter will decelerate to a stop. When parameter $11-41$ is set to 1 operation will continue at the value of parameter 11-42 times the last know frequency reference.
$03-1 X=27$ : Time function output

Output is controlled by timer function see parameter 03-37 and 03-38.
03-1X=32: Communication control contacts
Output is active when communication control is active.

$03-13$	Frequency Detection Level
Range	$【 0.0 \sim 400.0 】 \mathrm{~Hz}$
	$【 0.0 \sim 1200.0 】 \mathrm{~Hz}($ when $00-31=1)$
$03-14$	Frequency Detection Width
Range	$【 0.1 \sim 25.5 】 \mathrm{~Hz}$

Frequency Detection Level：set the multi－function output terminals R1A－R1C，R2A－R2C or R3A－R3C to the desired detection level and bandwidth for use with multi－function output functions 2 to 5 ．

The time charts for the Frequency Agree Detection operation are shown in the following Table 4．4．7．
Table 4．4．7 Frequency Detection Operation


| 03－19 | Relay（R1A－R3C）Type |  |
| :---: | :--- | :--- | :--- |
| Range | 【xx0b】：R1A contact | 【xxx1b】：R1 B contact |
|  | 【xx0xb】：R2 A contact | 【xx1xb】：R2 B contact |
|  | 【x0xxb】：R3 A contact | 【xx1xb】：R3 B contact |

Parameter 03－19 selects the digital output type between a normally open and a normally closed contact． Each bit of 03－19 presents an output ：

$$
\begin{array}{llllll}
03-19= & \underline{0} & \underline{0} & \underline{0} & \text { 0: normally open contact } \\
& \text { R3 } & \underline{R} 2 & \text { R1 } & \text { 1: normally close contact }
\end{array}
$$

Example：R1 normally closed and R2 normally open contact set 03－19＝xx001．

$03-27$	UP／DOWN Frequency Hold／Adjust Selection
Range	【0】：Maintain UP／DOWN frequency when stopping．
	【1】：Clear UP／DOWN frequency when stopping．
	【2】：Allow frequency UP／DOWN when stopping．

$03-27=0$ ：When the run command is removed the UP／DOWN frequency reference before deceleration is stored．The next time the run command is applied the output frequency will ramp up to the previously stored frequency reference．

03－27＝1：When the run command is removed the UP／DOWN frequency reference command is cleared（set to 0 ）．The next time the run command is applied the output frequency will start at 0 ．
$03-27=2$ ：UP／DOWN command is active when run command is not active．

$03-31$	Pulse Input Scaling
Range	$【 50 \sim 32000 】 \mathrm{~Hz}$

Pulse input scaling，100\％＝Maximum pulse frequency．

03－32	Pulse Input Gain
Range	$【 0.0 \sim 1000.0 】 \%$

Target value（03－03）in \％＝Pulse input frequency scaled to $100 \%$ based on maximum pulse frequency （03－31）times the gain（03－32）＋bias（03－33）．

03－33	Pulse Input Bias
Range	$【-100.0 \sim 100.0 】 \%$

Target value（03－03）in \％＝Pulse input frequency scaled to $100 \%$ based on maximum pulse frequency （03－31）times the gain（03－32）＋bias（03－33）．

$03-34$	Pulse Input Filter Time
Range	$【 0.00 \sim 2.00 】$ Sec

＊Refer to Figure 4．4．24 for the pulse input specification．

Gain and Bias


Figure 4．4．24 Pulse input adjustment

## Set Pulse Input Setup as Flow Meters Input

Set parameter 23－45（Given Modes of Flow Meters Feedback）to 2 （Pulse Input）to use the pulse input terminal PI as the flow meters input．Refer to the description of parameter group 23 for details．Next set the pulse input scaling（03－31），enter the pulse input frequency to match the maximum output frequency． Adjust the pulse input filter time（03－34）in case interference or noise is encountered．

$03-37$	Timer ON Delay（DI／DO）
Range	$【 0.0 \sim 6000.0 】$ Sec
$03-38$	Timer OFF Delay（DI／DO）
Range	$【 0.0 \sim 6000.0 】$ Sec

Enable the timer function be setting one of multi－function input parameters 03－00～03－05（S1 to S6）to 35 （timer function input）and one of multi－function output parameters 03－11，03－12（R1A－R1C to R3A－R3C）to 27 （timer function output）．

The timer function can be used to implement a timer relay．Use timing parameter 03－37 and 03－38 to set the timer ON／OFF delay．

Timer output is turned ON when the multi－function timer input is ON for the time specified in parameter 03－37．

Timer output is turned OFF after the multi－function timer input is OFF for the time specified in parameter 03－38．

## Timing example：



## Group 04 External Analog Input and Output Parameters

04－00	Al Input Signal Type
Range	【0】 ：Al2 0～10V（SW2 switch to V position）   【1】 ：Al2 4～20mA（SW2 switch to I position）
04－01	Al1 Signal Scanning and Filtering Time
Range	【0．00～2．00】 Sec
04－02	Al1 Gain Value
Range	【0．0～1000．0】 \％
04－03	Al1 Bias Value
Range	【－100～100．0】 \％
04－05	Al2 Function Setting
Range	【0】：Auxiliary Frequency   【1】：Frequency Reference Gain   【2】：Frequency Reference Bias   【3】：Output Voltage Bias   【4】：Coefficient of Acceleration and Deceleration Reduction   【5】：DC Braking Current   【6】：Over－Torque Detection Level   【7】：Stall Prevention Level During Running   【8】：Frequency Lower Limit   【9】：Jump Frequency 4   【10】：Added to Al1   【11】 ：Positive Torque Limit   【12】：Negative Torque Limit   【13】 ：Regenerative Torque Limit   【14】：Positive／Negative Torque Limit   【15】 ：Reserved   【16】：Torque Compensation   【17】：Reserved
04－06	Al2 Signal Scanning and Filtering Time
Range	【0．00～2．00】 Sec
04－07	Al2 Gain Value
Range	【0．0～1000．0】 \％
04－08	Al2 Bias Voltage Value
Range	【－100．0～100．0】 \％

（1）Analog Input Level Adjustment Al1，Al2（04－02，04－03，04－07，04－08）
Each analog input Al1and AI2 has a separate gain and bias parameter associated with it．
Analog input signal AI1 can be adjusted with parameter 04－02 and 04－03；Analog input signal AI2 can be adjusted with parameter 04－07 and 04－08．Refer to Figure 4．4．25．


Figure 4.4.25 Analog inputs and related parameters

Gain setting: Sets the level in \% that corresponds to a 10 V or 20 mA signal at the analog input.

Bias setting: Sets the level in \% that corresponds to a 0 V or 4 mA signal at the analog input.

Use both gain and bias setting to scale the input signal.


Figure 4.4.26 Gain and bias operations (for frequency reference signal)

## (2) Al1 signal filtering time (04-01)

(3) Al2 signal filtering time (04-06)

All analog inputs (Al1, Al 2 ) have a $1^{\text {st }}$ order programmable input filter that can be adjusted when noise is present on each of the incoming analog signal to prevent erratic drive control.

The filter time constant (range: 0.00 to 2.00 seconds) is defined as the time that the input step signal reaches $63 \%$ of its final value.

Note: Increasing the filter time causes the drive operation to become more stable but less responsive to change to the analog input.


Figure 4.4.27 Filter time constant

## (4) Al2 function setting (04-05)

AI2 is multi-function analog input terminal function selection. Refer to Table 4.4.8 for function overview

Table 4.4.8 Multi-function analog input list (04-05 setting)

Value	Function		Description	Control mode		
	Name	LCD Display		V/F	SLV	$\begin{aligned} & \text { PM } \\ & \mathrm{SLV} \end{aligned}$
0	Auxiliary Frequency	AUX.Freq Ref	$\begin{aligned} & \text { Max Output Frequency (01-02, } \\ & \text { Fmax) }=100 \% \text {. } \end{aligned}$	0	0	O
1	Frequency Reference Gain (FGAIN)	Freq Ref Gain	Aggregated gain= Al1 = 04-02 * FGAIN	0	0	0
2	Frequency Reference Bias (FBIAS)	Freq Ref Bias	Aggregated bias $=$ Al1 $=04-03$ FBIAS	0	0	0
3	Output Voltage Bias (VBIAS)	Output Volt Bias	Aggregate output voltage $=\mathrm{V} / \mathrm{F}$ curve voltage + VBIAS	0	X	0
4	Coefficient of Acceleration and Deceleration Reduction (K)	Tacc/Tdec Scaling	Actual acceleration and deceleration time $=$ accel. and decal. time / K	0	0	0
5	DC Braking Current	DC Inj Current	Adjust the DC braking current (0~ $100 \%$ ) based on analog input. When the inverter rated current = $100 \%$, DC braking current 07-07 is disabled.	0	0	0
6	Over-Torque Detection Level	Over Tq Level	Change over-torque detection level based on over-torque detection level, at this time, 08-15 is disabled.	0	0	0
7	Stall Prevention Level During Running	Run Stall Level	Adjust the action level (30\% ~ 200\%) of stall prevention in operation based on analog input. The inverter rated current $=100 \%$	0	X	O
8	Frequency Lower Limit	Ref. Low Bound	Adjust the lower limit ( 0 ~ 100\%) of frequency command based on analog input, the maximum output $=100 \%$. The lower limit of frequency command is the greater one of the actual frequency command's lower limit 00-13 or the multi-function analog input.	0	0	O
9	Jump Frequency 4	Jump Freq 4	Jump frequency 4. $100 \%$ = maximum output frequency	0	0	0


Value	Function		Description	Control mode		
	Name	LCD Display		V/F	SLV	$\begin{gathered} \hline \mathbf{P M} \\ \mathrm{SLV} \end{gathered}$
10	Added to Al1	Add to Al1	Added to Al1. $100 \%$ = maximum output frequency	0	0	0
11	Positive Torque Limit	Positive Tq Limit	100\% = Motor's rated torque	X	0	0
12	Negative Torque Limit	Negative Tq Limit	100\% = Motor's rated torque	X	0	0
13	Regenerative Torque Limit	Regen. Tq Limit	100\% = Motor's rated torque	X	0	0
14	Positive / Negative Torque Limit	+/- Tq Limit	100\% = Motor's rated torque	X	0	0
15	Torque Limit	Tq Limit	100\% = Motor's rated torque	X	X	X
16	Torque Compensation	Tq Compensation	100\% = Motor's rated torque	X	0	X
17	Reserved	No Function	Reserved	0	0	0

04-05=0: Auxiliary frequency
When parameter 00-05 = 1 (main frequency from external control) the auxiliary speed reference frequency can be activated via the multi-speed input commands (see table 4.4.5). The auxiliary frequency command can be set via AI2. The maximum output frequency is set by 01-02, Fmax $=100 \%$.

## 04-05=1: Frequency Reference Gain (FGAIN)

Multi-function analog input Al2 can be used to adjust the frequency reference gain of analog input AI1. The total frequency reference gain of terminal Al1 is the internal gain set by parameter 04-02 times FGAIN. The maximum frequency reference for Al1 is $100 \%$.


Figure 4.4.28 Frequency gain adjustment

## Example:

When the internal gain of $\mathrm{Al} 1(04-02)$ is set to $100 \%$ and Al 2 to 5 V (for example FGAIN $=50 \%$ ), the reference frequency of terminal Al 1 will be $50 \%$, as shown in Figure 4.4.29.


Figure 4.4.29 Frequency reference gain adjustment (example)

04-05=2: Frequency Reference bias (FBIAS)
Multi-function analog input terminal AI2 can be used to adjust the frequency reference bias of Al1. The total frequency reference bias of terminal Al1 is the sum of internal bias set by parameter 04-03 and FBIAS. The maximum frequency reference for Al1 is $100 \%$.


Figure 4.4.30 Bias adjustment

## Example:

Terminal Al1 input is $0 \mathrm{~V}, 04-02=100 \%$ (Al1 gain), $04-03=0 \%$ (Al1 bias) and terminal Al 2 input is 3 V . The reference frequency will be $30 \%$ as shown in Figure 4.4.31.


Figure 4.4.31 Frequency Reference bias adjustment (example)

## 04-05=3: Output Voltage Bias (VBIAS)

Multi-function analog input AI2 can be used to adjust the output voltage. The total output voltage of inverter is the sum of output voltage based on the selected V/F curve and VBIAS.
The maximum output voltage is set by $01-03, \mathrm{Vmax}=100 \%$.


Figure 4.4.32 Bias adjustment

04-05=4: Acceleration and deceleration coefficient (K)
Multi-function analog input AI2 can be used to adjust the acceleration and deceleration time coefficient. The actual acceleration and deceleration time is calculated as follows:
$\frac{\text { Acceleration / Deceleration time (00-14 ~00-17, 00-21~00-24) }}{K}$

Acceleration/ Deceleration time setting is $100 \%$ (00-14~00-17, 00-21~00-24).


Figure 4.4.33 Acceleration / deceleration time reduction coefficient
04-05=5: DC braking current
Multi-function analog input Al2 can be used to adjust the DC Injection braking current. DC braking current parameter 07-07 setting should be set to $0 \%$ to use this function. The inverter rated current $=100 \%$


Figure 4.4.34 DC braking current adjustment

04-05=6: Over-torque detection level
Multi-function analog input AI2 can be used to adjust the over-torque detection level.
$100 \%$ of inverter rated current (V/F control mode)
$100 \%$ motor rated torque (SLV control mode)
If the multi-function analog input is used to adjust the over-torque level, the internal over-torque detection level $(08-15)$ is disabled.


Figure 4.4.35 Over-torque/less torque detection level adjustment

4-05=7: Stall prevention level during running
Multi-function analog input AI2 can be used to adjust the stall prevention level during operation. Inverter rated current $=100 \%$. When AI2 is set to control stall prevention level $(04-05=7)$ and parameter 08-03 (Stall prevention level during operation) is used, then the lesser of the two value becomes the active stall prevention level during operation.

Example: If the motor power is less than that of the inverter, the operation and the stall prevention of the motor will be based on the factory settings, multi-function analog input Al2 can be used to reduce the stall prevention level during operation.


Figure 4.4.36 Stall prevention level adjustment during operation
04-05=8: Frequency lower limit
Multi-function analog input AI2 can be used to adjust the lower limit of frequency reference.
Maximum output frequency (Fmax, 01-02) $=100 \%$. The actual lower limit is determined by the maximum value of 00-13 (frequency lower limit) and level of the multi-function analog input AI2.


Figure 4.4.37 Adjustment of lower limit of frequency reference

04-05=9: Jump frequency 4
Multi-function analog input AI2 can be used to adjust Jump frequency 4.
Maximum output frequency (01-02, Fmax) $=100 \%$. Setting 11-08 $\sim 11-10$ to 0.0 Hz turns of the Jump frequency function.


Figure 4.4.38 Jump frequency 4 setting operation

## 04-05=10: Added to AI1

Multi-function analog input Al2 can be used as a bias level for analog input Al1.


Figure 4.4.39 Added to Al1 as a bias operation

## Example:

$04-02(\mathrm{Al} 1$ gain value $)=100 \%, 04-03(\mathrm{Al2}$ gain value $)=0 \%$, and terminal Al 2 level is 2 V . If input terminal AI1 is 0 V , the internal reference frequency of terminal AI1 will be $20 \%$

04-05=11: Positive torque limit

Multi-function analog input Al2 can be used to adjust the positive torque limit.
04-05=12: Negative torque limit
Multi-function analog input AI2 can be used to adjust the negative torque limit.
04-05=13: Regenerative torque limit
Multi-function analog input Al2 can be used to adjust the regenerative torque limit.

04-05=14: Positive / negative torque limits

Multi-function analog input AI2 can be used to adjust both the positive and negative torque limit. For more details on torque limits, please refer to parameter group 21 - torque control group.

04-05=15: Torque limit of speed control
Multi-function analog input AI2 can be used to adjust the torque limit in closed loop vector mode.
04-05=16: Torque compensation of speed control
Multi-function analog input AI2 can be used to adjust the torque compensation in closed loop vector mode.
For more details on the torque control functions, please refer to parameter group 21 - torque control group.

04－11	A01 Function Setting
Range	【0】：Output Frequency   【1】：Frequency Command   【2】：Output Voltage   【3】：DC Voltage   【4】：Output Current   【5】：Output Power   【6】 ：Motor Speed   【7】 ：Output Power Factor   【8】：Al1 Input   【9】 ：Al2 Input   【10】：Torque Command   【11】：q－axis Current   【12】：d－axis Current   【13】：Speed Deviation   【14】：Reserved   【15】：ASR Output   【16】：Reserved   【17】：q－axis Voltage   【18】：d－axis Voltage   【19】：Reserved   【20】：Reserved   【21】：PID Input   【22】：PID Output   【23】：PID Target Value   【24】：PID Feedback Value   【25】：Output Frequency of the Soft Starter   【26】：PG feedback   【27】 ：PG compesation
04－12	A01 Gain Value
Range	【0．0～1000．0】 \％
04－13	AO1 Bias Value
Range	【－100．0～100．0】 \％
04－16	AO2 Function Setting
Range	Setting range and definition are the same as those of 04－11．
04－17	AO2 Gain Value
Range	【0．0～1000．0】 \％
04－18	AO2 Bias Value
Range	【－100．0～100．0】 \％
04－19	AO Output Signal Type
Range	【0】：AO1 0～10V AO2 0～10V   【1】：AO1 0～10V AO2 4～20mA   【2】：AO1 $4 \sim 20 \mathrm{~mA}$ AO2 0～10V   【3】：AO1 $4 \sim 20 \mathrm{~mA}$ AO2 4～20mA

For the analog output and related parameters，refer to figure 4．4．40．


Figure 4.4.40 Analog outputs and related parameters

## Analog output AO1 and AO2 adjustment (04-12, 04-13 and 04-17, 04-18)

Signal: Use parameter 04-11 to select the analog output signal for AO1 and parameter 04-16 to select the analog output signal for AO2.

Gain: Use parameter 04-12 to adjust the gain for AO1 and parameter 04-17 to adjust the gain for AO2. Adjust the gain so that the analog output ( $10 \mathrm{~V} / 20 \mathrm{~mA}$ ) matches $100 \%$ of the selected analog output signal (04-11 for AO1 and 04-16 for AO2).

Bias: Use parameter 04-13 to adjust the bias for AO1 and parameter 04-18 to adjust the bias for AO2.
Adjust the bias so that the analog output ( $0 \mathrm{~V} / 4 \mathrm{~mA}$ ) matches $0 \%$ of the selected analog output signal (04-11 for AO1 and 04-16 for AO2).


Figure 4.4.41 Analog output level adjustment

Table 4.4.9 Selection of analog output terminals function (04-11 and 04-16)

$04-11,04-16$   Parameter setting	Function (Keypad display)	Monitoring Parameters Group 12
0	Output Freq	12-17
1	Freq Ref	12-16
2	Output Voltage	12-19
3	DC Voltage	12-20
4	Output Current	12-18
5	Output KW	12-21
6	Motor Speed	12-22
7	Output PF	12-23
8	Al1 Input	12-25
9	Al2 Input	12-26
10	Torque Ref	12-27
11	Current lq	12-28
12	Current Id	12-29
13	Speed Deviation	12-30
14	Reserved	
15	ASR Output	12-32
16	Reserved	-
17	Voltage Ref Vq	-
18	Voltage Ref Vd	-
19	Reserved	-
20	Reserved	-
21	PID Input	12-36
22	PID Output	12-37
23	PID Setpoint	12-38
24	PID Feedback	12-39
25	Output Freq (SFS)	-
26	Reserved	-
27	Reserved	-
28	Comm Control	-

## Group 05 Multi－Speed Parameters

$05-00$	Acceleration and Deceleration Selection of Multi－Speed
Range	$【 0 】:$ Acceleration and deceleration time are set by 00－14 $\sim 00-24$
	【1】：Acceleration and Deceleration Time are set by 05－17 $\sim 05-48$

05－00＝0：Standard Acceleration and deceleration times parameters 00－14～00－17／00－21～00－24 are used for multi－speed $0 \sim 15$ ．

05－00＝1：Each multi－speed uses a dedicated acceleration and deceleration time parameters 05－17～ $05-48$ ．There are two different modes for acceleration／deceleration timing when 05－00 is set to 1 ，see time example on the next page．

## Acceleration time calculation formula

$$
\text { Acceleration time } x \text { (set frequency - output frequency) }
$$

Time it takes to reach set frequency $=$

> Maximum output frequency

## Deceleration time calculation formula

> Deceleration time x (output frequency - set frequency)

Time it takes to reach set frequency $=$
Maximum output frequency

Maximum output frequency：Parameter $01-00=F$ ，maximum output frequency set by 01－02，01－00 $\neq \mathrm{F}$ ， maximum output frequency determined by V／F curve selected（50．0／ 60.0 ／ 90.0 ／ 120.0 ／180．0）．

Example ：01－00＝01（50Hz（maximum output frequency），05－02＝10 Hz（multi－step speed 0 ），05－17＝5．0s （Acceleration time），05－18＝20．0 sec．（Deceleration time）．

## Acceleration time calculation formula

Time it takes to reach set frequency $=\frac{5.0 \times 10 \mathrm{~Hz}}{50 \mathrm{~Hz}}=1.0 \mathrm{sec}$ ．

## Deceleration time calculation formula

Time it takes to reach set frequency $=$

$$
\frac{20.0 \times 10 \mathrm{~Hz}}{50 \mathrm{~Hz}}=4.0 \mathrm{sec} .
$$

Example：Acceleration／deceleration timing when $05-00$ is set to 1 ．In this example the following parameters are set：

00－02＝1（External Terminal Operation）
03－00＝0（Terminal S1：Forward／Stop）
03－01＝1（Terminal S2：Reversal／Stop）
03－02＝2（Terminal S3：Speed 1）
03－03＝3（Terminal S4：Speed 2）
03－03＝4（Terminal S5：Speed 3）

## Acceleration / Deceleration Calculation Mode 1:

If the run command is cycled on and off, acceleration and deceleration time ( $a \sim f$ ) is calculated based on the active speed command as follows:


## Acceleration／Deceleration Calculation Mode 2：

If the run command is remains on，acceleration and deceleration time $(a \sim f)$ is calculated based on the active speed command as follows：


$05-01$	Frequency Setting of Speed－Stage 0
Range	$【 0.0 \sim 400.00 】 \mathrm{~Hz}$
	$【 0.0 \sim 1200.0 】 \mathrm{~Hz}($ when $00-31=1)$


$05-17$	Acceleration time setting for multi speed 0
Range	$【 0.1 \sim 6000.0 】$ Sec


$05-18$	Deceleration time setting for multi speed 0
Range	$【 0.1 \sim 6000.0 】$ Sec


05－19	Acceleration time setting for multi speed 1
Range	【0．1～6000．0】 Sec
05－20	Deceleration time setting for multi speed 1
Range	【0．1～6000．0】 Sec
05－21	Acceleration time setting for multi speed 2
Range	【0．1～6000．0】 Sec
05－22	Deceleration time setting for multi speed 2
Range	【0．1～6000．0】 Sec
05－23	Acceleration time setting for multi speed 3
Range	【0．1～6000．0】 Sec
05－24	Deceleration time setting for multi speed 3
Range	【0．1～6000．0】 Sec
05－25	Acceleration time setting for multi speed 4
Range	【0．1～6000．0】 Sec
05－26	Deceleration time setting for multi speed 4
Range	【0．1～6000．0】 Sec
05－27	Acceleration time setting for multi speed 5
Range	【0．1～6000．0】 Sec
05－28	Deceleration time setting for multi speed 5
Range	【0．1～6000．0】 Sec
05－29	Acceleration time setting for multi speed 6
Range	【0．1～6000．0】 Sec
05－30	Deceleration time setting for multi speed 6
Range	【0．1～6000．0】 Sec
05－31	Acceleration time setting for multi speed 7
Range	【0．1～6000．0】 Sec
05－32	Deceleration time setting for multi speed 7
Range	【0．1～6000．0】 Sec
05－33	Acceleration time setting for multi speed 8
Range	【0．1～6000．0】 Sec
05－34	Deceleration time setting for multi speed 8
Range	【0．1～6000．0】 Sec
05－35	Acceleration time setting for multi speed 9
Range	【0．1～6000．0】 Sec


05－36	Deceleration time setting for multi speed 9
Range	【0．1～6000．0】 Sec
05－37	Acceleration time setting for multi speed 10
Range	【0．1～6000．0】 Sec
05－38	Deceleration time setting for multi speed 10
Range	【0．1～6000．0】 Sec
05－39	Acceleration time setting for multi speed 11
Range	【0．1～6000．0】 Sec
05－40	Deceleration time setting for multi speed 11
Range	【0．1～6000．0】 Sec
05－41	Acceleration time setting for multi speed 12
Range	【0．1～6000．0】 Sec
05－42	Deceleration time setting for multi speed 12
Range	【0．1～6000．0】 Sec
05－43	Acceleration time setting for multi speed 13
Range	【0．1～6000．0】 Sec
05－44	Deceleration time setting for multi speed 13
Range	【0．1～6000．0】 Sec
05－45	Acceleration time setting for multi speed 14
Range	【0．1～6000．0】 Sec
05－46	Deceleration time setting for multi speed 14
Range	【0．1～6000．0】 Sec
05－47	Acceleration time setting for multi speed 15
Range	【0．1～6000．0】 Sec
05－48	Deceleration time setting for multi speed 15
Range	【0．1～6000．0】 Sec

## Group 06 Automatic Program Operation Parameters

06－00	Automatic Operation Mode Selection
Range	【0】：Disable   【1，4】：Execute a single cycle operation．Restart speed is based on the previous stopped speed．   【2，5】：Execute continuous cycle operation．Restart speed is based on the previous cycle stop speed．   【3，6】：After completion of a single cycle，the on－going operation speed is based on the speed of the last stage．Restart speed is based on the previous stopped speed   1 to 3：After a stop the inverter will start with the incomplete step when the run command is re－applied．   4 to 6：After a stop the inverter will start with the first step of the cycle when the run command is re－applied．

Automatic operation mode uses frequency reference parameters 05－01，06－01～06－15，operation time parameters 06－16 $\sim 06-31$ and direction of operation parameters 06－32～06－47．

Note：The automatic operation mode is disabled when any of the following functions are enabled：
－Frequency wobbling function
－PID function
－Parameters 06－16 to 06－31 are set to 0.

## Notes：

－When automatic operation mode is enabled multi－step speed reference command 1～4 （03－00～03－07＝2～5）is disabled．
－Frequency of multi－step speed 0 is set by 05－01．
－Acceleration／deceleration time is set by parameter 00－14 and 00－15 in automatic operation mode．

Automatic operation frequency reference settings

$06-01$	Frequency setting of speed－stage 1
$06-02$	Frequency setting of speed－stage 2
$06-03$	Frequency setting of speed－stage 3
$06-04$	Frequency setting of speed－stage 4
$06-05$	Frequency setting of speed－stage 5
$06-06$	Frequency setting of speed－stage 6
$06-07$	Frequency setting of speed－stage 7
$06-08$	Frequency setting of speed－stage 8
$06-09$	Frequency setting of speed－stage 9
$06-10$	Frequency setting of speed－stage 10
$06-11$	Frequency setting of speed－stage 11
$06-12$	Frequency setting of speed－stage 12
$06-13$	Frequency setting of speed－stage 13
$06-14$	Frequency setting of speed－stage 14
$06-15$	Frequency setting of speed－stage 15
Range	$0.00 \sim 400.00 \mathrm{~Hz}$

Automatic operation time settings

$06-16$	Operation time setting of speed-stage 0
$06-17$	Operation time setting of speed-stage 1
$06-18$	Operation time setting of speed-stage 2
$06-19$	Operation time setting of speed-stage 3
$06-20$	Operation time setting of speed-stage 4
$06-21$	Operation time setting of speed-stage 5
$06-22$	Operation time setting of speed-stage 6
$06-23$	Operation time setting of speed-stage 7
$06-24$	Operation time setting of speed-stage 8
$06-25$	Operation time setting of speed-stage 9
$06-26$	Operation time setting of speed-stage 10
$06-27$	Operation time setting of speed-stage 11
$06-28$	Operation time setting of speed-stage 12
$06-29$	Operation time setting of speed-stage 13
$06-30$	Operation time setting of speed-stage 14
$06-31$	Operation time setting of speed-stage 15
Range	$0.0 \sim 6000.0$ Sec

Automatic operation direction settings

$06-32$	Operation direction selection of speed-stage 0
$06-33$	Operation direction selection of speed-stage 1
$06-34$	Operation direction selection of speed-stage 2
$06-35$	Operation direction selection of speed-stage 3
$06-36$	Operation direction selection of speed-stage 4
$06-37$	Operation direction selection of speed-stage 5
$06-38$	Operation direction selection of speed-stage 6
$06-39$	Operation direction selection of speed-stage 7
$06-40$	Operation direction selection of speed-stage 8
$06-41$	Operation direction selection of speed-stage 9
$06-42$	Operation direction selection of speed-stage 10
$06-43$	Operation direction selection of speed-stage 11
$06-44$	Operation direction selection of speed-stage 12
$06-45$	Operation direction selection of speed-stage 13
$06-46$	Operation direction selection of speed-stage 14
$06-47$	Operation direction selection of speed-stage 15
Range	0: Stop, 1: Forward, 2: Reversal

Example 1: Automatic operation mode - Single cycle
In this example the inverter executes a single cycle and then stops.

## Parameter Settings:

$06-00=$	1 or 4 (Single cycle operation)
$06-32 \sim 06-34=1$ (Forward for multi-step speed $0-2)$	
$06-35=$	2 (Reversal for multi-step speed 3)
$06-36 \sim 06-47=0($ Stop for multi-step speed $4-15)$	
$05-01=$	15 Hz (Multi-step speed $0: 15 \mathrm{~Hz})$
$06-01=$	30 Hz (Multi-step speed $1: 30 \mathrm{~Hz})$
$06-02=$	50 Hz (Multi-step speed $2: 50 \mathrm{~Hz})$
$06-03=$	20 Hz (Multi-step speed 0:20 Hz)
$06-16=$	20 sec (Multi-step speed 0:20 sec)
$06-17=$	25 sec (Multi-step speed 1:25 sec)
$06-18=$	30 sec (Multi-step speed $2: 30 \mathrm{sec}$ )
$06-19=$	40 sec (Multi-step speed 3:40 sec)



Figure 4.4.42 Single cycle automatic operation (stop)

Example 2: Automatic operation mode - Continuous cycle
In this example the inverter repeats the same cycle.

## Parameter Settings:

06-00 = $\quad 2$ or 5 (Continuous cycle operation)
06-01~06-47=Enter same setting as that of Example 1.


Figure 4.4.43 Periodic automatic operation

Example 3: Automatic operation mode - Single cycle and continue running at last speed of the cycle In this example the inverter executes a single cycle and continue running at last speed of the cycle.

## Parameter Settings:

06-00=
3 or 6 (Single cycle operation)
06-32~06-35=
1 (Forward)
06-36~06-47=
0

Other parameter $=$ Enter same setting as that of Example 1.


Figure 4.4.44 Single cycle automatic operation (continuous)

06-00= 1 to 3 :
After a stop the inverter will start with the incomplete step when the run command is re-applied.
06-00= 4 to 6:
After a stop the inverter will start with the first step of the cycle when the run command is re-applied.


## Group 07：Start／Stop Parameters

$07-00$	Momentary Power Loss／Fault Restart Selection
Range	【0】：Disable
	【1】：Enable

$\mathbf{0 7 - 0 0}=\mathbf{0}$ ：Inverter trips on＂UV＂fault if power loss time is greater than 8 ms ．
07－00＝1：Inverter resumes operation after a momentary power loss while running．

$07-01$	Fault Auto－Restart Time
Range	$【 0 \sim 7200 】$ Sec

07－01＝ 0 sec．：$\quad$ Automatic restart time interval uses minimum baseblock time（07－18）．
07－01＜07－18：$\quad$ Automatic restart time interval uses minimum baseblock time（07－18）．
07－01＞07－18：$\quad$ Automatic restart time interval uses fault reset time（07－01）．
Refer to Figure 4．4．45 for setting automatic restart interval．


Figure 4．4．45 Automatic restart operation

$07-02$	Number of Fault Auto－Restart Attempts
Range	$【 0 \sim 10 】$

## Automatic restart operation：

a）Fault is detected．The inverter turn off the output，displays the fault on the keypad and waits for the minimum baseblock time parameter 07－18 to expire before accepting another run／automatic restart command．
b）After the minimum baseblock time（07－18）has expired，the active fault is reset and a speed search operation is performed．The time between each fault restart attempt is set by parameter 07－01．
c）When the total number of restart attempts exceed the number of automatic restart attempts set in parameter 07－02，the inverter will turn off the output and the fault contact is activated．

When the automatic restart function is enabled the internal automatic restart attempt counter is reset based on the following actions：

1．No fault occurs in 10 minutes or longer after the automatic restart
2．Reset command to clear fault via input terminal or using the keypad
3．Power to the inverter is turned off and back on again

The automatic restart function can be used for the following faults．Please note that when the fault is not listed in the table the inverter will not attempt an automatic restart．

OC（over current）	OL1（motor overload）	
GF（ground failure）	OL2（Inverter overload）	
FU（DC fuse is opened）	OT（Over－torque detection）	
OV（overvoltage）	UT（Under torque detection）	
UV（under voltage）	OPL（Output phase loss）	
IPL（input phase loss）	OH（overheat warning）	
$4-126$		

Multi－function digital output R1A－R1C，R2A－R2C，R3A－R3C can be programmed to activate during an automatic reset attempt，refer to parameter 03－11，03－12 and 03－39．

Please refer to Figure 4．4．46 for the automatic restart operation．


Figure 4．4．46 Auto－restart operation
Warning－Excessively use of the automatic restart function will damage the inverter．

$07-06$	DC Injection Braking Start Frequency
Range	$【 0.0 \sim 10.0 】 \mathrm{~Hz}$

DC injection braking start frequency is the level the output frequency has to reach before DC braking injection function is activated．

$07-07$	DC Injection Braking Current
Range	$【 0 \sim 100 】 \%$

DC Injection braking current as percentage of the inverter rated current．Increasing this level will increase the amount of heat generated by the motor windings．Do not set this parameter higher than the level necessary to hold the motor shaft．

$07-08$	DC Injection Braking Time at Stop
Range	$【 0.00 \sim 10.00 】$ Sec

Duration of DC injection braking during a stop operation．DC injection braking at stop is disabled when parameter 07－08 is set to 0 sec ．

$07-16$	DC Injection Braking Time at Start
Range	$【 0.00 \sim 10.00 】$ Sec

Duration of DC injection braking during a start operation．DC injection braking at start is disabled when parameter $07-16$ is set to 0 sec ．

## DC Injection Braking Operation

When DC Injection braking is active DC voltage is applied to the motor, increasing the braking current and resulting in an increase in the strength of the magnetic field trying to lock the motor shaft.

To enable DC injection braking during a start operation set the DC injection braking current (07-07) and the DC injection braking time (07-16) at start to a value greater than 0 . DC injection braking at start can be used to prevent "wind milling effect" in fan applications.

To enable DC injection braking during a stop operation set the DC injection braking current (07-07) and the DC injection braking time at stop $(07-08)$ to a value greater than 0 .

## Notes:

- When parameter 07-16 is set to 0 sec . the inverter will start from the minimum output frequency.
- Increasing the DC braking time (07-08, 07-16) can reduce the motor stop time.
- Increasing the DC braking current (07-07) can reduce the motor stop time.
- During stop operation: If the DC braking start frequency < minimum output frequency (01-08), DC braking is activated when the output frequency reaches the minimum output frequency level.
- DC Injection braking cannot be used in sensor vector control (SV).

For DC braking operation, please refer to Figure 4.4.47.


Figure 4.4.47 DC braking operation
DC braking operation can be controlled via any one of the multi-function input terminals (03-00 to 05) function 33. Refer to figure 4.4.47 for DC braking operation.

DC braking current can be controlled via the multi-function analog input (04-05) function 5 . Refer to Figure 4.4.34.

$07-09$	Stop Mode Selection
Range	【0】：Deceleration to Stop
	【1】：Coast to Stop
	【2】：DC Braking Stop
	【3】：Coast to Stop with Timer

When a stop command is issued the inverter stops according to the stop mode selected．There are four types of stop modes，

## 07－09＝0：Deceleration to stop

When a stop command is issued，the motor will decelerate to the minimum output frequency（01－08）Fmin and then stop．Deceleration rate depends on the deceleration time（factory default：00－15）．

When the output frequency reaches the DC braking stop frequency（07－06）or the minimum output frequency（01－08），DC injection braking is activated and the motor stops．
$\frac{\text { Output frequency when stop command is issued }}{\text { Maximum output frequency } F_{\max }(01-02)} \times$ deceleration time setting

Note：S curve setting will add to the overall stop time


T：DC Braking Time at stop（07－08）
Figure 4．4．48 Deceleration to stop

07－09＝1：Coast to stop

When a stop command is issued，the motor will coast to a stop．Stop time depends on motor load and friction of the system．

The inverter waits for the time set in the minimum baseblock time（07－18）before accepting the next run command．

In SLV mode $(00-00=2)$ the speed search function is automatically enabled upon the next run command．
Note：When using a mechanical brake set parameter 07－26 to 1 ．


Figure 4.4.49 Coast to stop
07-09=2: DC braking to stop
When a stop command is issued, the inverter will turn off the output (Baseblock) and after the minimum Baseblock time (07-18) has expired activate DC braking (07-07). Refer to Figure 4.4.50.

The DC braking time (tDcDB) of Figure 4.4.50 is determined by the value of 07-08 (DC Braking start time) and the output frequency at the time the stop command was issued.
tocDB $=\frac{(07-08) \times 10 \times \text { output frequency }}{\operatorname{Fmax}(01-02)}$

Note: Increase the minimum Baseblock time (07-18) in case an Overcurrent trip occurs during the DC braking.

tb.b :Minimum baseblock time (07-18) tocds :DC braking time


Figure 4.4.50 DC braking to stop

07－09＝3：Coast to stop with timer
When a stop command is issued the motor will coast to a stop after the minimum Baseblock time（07－18） has expired．The inverter ignores the run command until the total time of the timer has expired．

The total time of the timer is determined by the deceleration time $(00-15,17,22$ or 24$)$ and the output frequency upon stop．Refer to Figure 4．4．51


Figure 4．3．61 Coast to stop with timer

$07-13$	Low Voltage Detection Level
Range	$〔 200 \mathrm{~V} 】: 150 \sim 300 \mathrm{~V}$   【400V】：300～600V
$07-25$	Low voltage Detection Time
Range	$【 0.00 \sim 1.00 】$ Sec

Adjust the $07-13$ voltage level from 150 to 210 Vdc （ 200 V series）or from 300 to $420 \mathrm{Vdc}(400 \mathrm{~V}$ series）．

When the AC input voltage is lower than the 07－13 value（07－13／ $1.414=A C$ voltage detection level）for the time specified in 07－25 the low－voltage error＂UV＂will displayed．If 07－25＝ 0.00 sec ．，the UV error will be displayed immediately．

Set preventive measures：
－The inverter input voltage will limit the output voltage．If the input voltage drops excessively，or if the load is too big，the motor may stall．
－If the input voltage drops below the value set in 07－13 then the output is turned off momentarily．The inverter will not automatically start when power is restored．

$07-14$	Pre－excitation Time
Range	$【 0.00 \sim 10.00 】$ Sec
$07-15$	Pre－excitation Level
Range	【100～200】\％

If a high starting torque is required for the application，especially for a large horsepower motors，the pre－excitation operation can be used to pre－flux（magnetize）the motor．

## Pre-excitation time (07-14)

When an operation command (forward or reverse) is activated, the inverter will automatically start pre-excitation based on the time set in parameter 07-14.

The time for the flux to reach $100 \%$ is a function value of motor's electrical time constant (See figure 4.4.52).

Electrical time constant (quadratic by-pass circuit time constant) can be calculated by motor parameter setting (group 02)

Electrical time constant T2=
Motor leakage inductance (02-17) + motor mutual inductance (02-18)
Motor rotor resistance (02-16)

Set the pre-excitation time (07-14) based on the electrical time constant T2

## 07-15: Pre-excitation initial level

Use the pre-excitation initial level (07-15) to provide a higher excitation current during the pre-excitation time (07-14), which will increase the speed and stability for motors.

In order to quickly magnetize the motor, reduce the pre-excitation time (07-14) and set the pre-excitation level (07-15) to a high level.

If $07-15$ is set greater than $100 \%$, providing a high excitation current during the pre-excitation time (07-14), motor's magnetization time is shorted. When the setting reaches $200 \%$, magnetization is reduced by roughly half.

A high pre-excitation level (07-15) might result in excessive motor sound during pre-excitation.

When the flux reaches $100 \%$, pre-excitation current reverts back to $100 \%$ and pre-excitation is completed.


Figure 4.4.52 Pre-excitation operation

$07-18$	Minimum Base block Time
Range	$【 0.1 \sim 5.0 】$ Sec

In case of a momentary power failure, the inverter continues to operate after the power has been restored when parameter 07-00 is set to 1 . Once the momentary power failure is detected; the inverter will automatically shut down the output and maintain B.B for a set time (07-18).

It is expected that after the minimum base block time has expired the residual voltage to be almost zero.

When the momentary power failure time exceeds the minimum base block time (07-18), the inverter will automatically perform a speed search upon return of power. Refer to the following figure 4.4.53.

(a) Minimum baseblock time (07-18) greater than momentary power loss time

(b) Minimum baseblock time (07-18) is shorter than momentary power loss time

Figure 4.4.53 Minimum B.B time and momentary power loss time
Minimum base block time (07-18) is also used to for the DC braking function in combination with speed search as follows:

- Set the minimum base block time required (07-18).
- Execute speed search or DC braking function.
- Increase minimum Baseblock time if over-current "OC" condition occurs.
- After speed search is completed, normal operation continues.

$07-19$	Direction－Detection Speed Search Operating Current
Range	【0～100】\％
$07-20$	Speed Search Operating Current
Range	【0～100】\％
$07-21$	Integral Time of Speed Searching
Range	【0．1～10．0】 Sec
$07-22$	Delay Time of Speed Searching
Range	【0．0～20．0】 Sec
$07-23$	Voltage Recovery Time
Range	【0．1～5．0】 Sec
$07-24$	Bidirectional Speed Search Selection
Range	【0】：Disable   【1】：Enable
$07-26$	Mechanical braking selection
Range	【0】：Disable   【1】：Enable
$07-27$	Start Selection after Fault during SLV Mode
Range	【0】：Speed search start   【1】：Normal Start
$07-28$	Start after External Base Block
Range	【0】：Speed search start   【1】 ：Normal Start

Speed search function is used to find the speed of a coasting motor and continue operation from that point． The speed search function is active after a momentary power loss．

## Speed Search from Multi－function digital inputs

Set the multi－function digital input to external speed search command 1 or 2 ．External speed search command 1 （value $=19$ ）and 2 （value $=34$ ）cannot be set at the same time，otherwise＂SE02＂（digital input terminal error）warning occurs．

Speed search function must be enabled before applying the run command to ensure proper operation． See relay logic in figure 4．4．54．


Figure 4．4．54 Speed search and operation commands

## Notes：Speed Search Operation

－The speed search cannot be used when the motor rated power is greater than the inverter rated power．
－The speed search cannot be used when the motor rated power is two inverter sizes smaller than the inverter currently used．
－The speed search cannot be used in combination with a high－speed motor．
－In V／F mode，it is necessary to perform a static auto－tune．

- In SLV mode, it is necessary to perform a rotational auto-tune. Perform a static auto-tune when using long motor leads.

Speed search uses current detecting. Use parameter 07-24 to select detection direction.

## 07-19: Speed Direction Search Operating Current

- Used in bidirectional speed search only (07-24 = 1).
- Set bidirectional current level.
- Increase value if speed search is not successful at low speeds (above 5 Hz )

Note: If value is too high may cause DC braking effect.

## 07-20: Speed Search Operating Current

- Can be used for bidirectional $(07-24=1)$ or unidirectional $(07-24=0)$ speed search.
- Sets speed search current Level.
- The set value must be lower than the excitation current (02-09) and must equal to the no-load current. If the no-load current is unknown it is recommended to set value at $20 \%$.
- Excessive speed search current will cause inverter output to saturate.
- It is recommended to use speed search in case of a momentary power loss. Increase the minimum base block time (07-18) in case of an over-current condition.


## 07-21: Integral time of speed searching

- Can be used for bidirectional $(07-24=1)$ or unidirectional $(07-24=0)$ speed search.
- Set the integral time during speed search.
- If OV occurs, increase the set value to increase the speed search time. Decrease the value if a quick start is required


## 07-22: Delay time of speed searching

- Use delay time when using a contactor on the inverter output side.
- The inverter speed search starts after the delay time expires.
- Speed search delay time is disabled when set to $0.0 \mathrm{sec} .(07-22=0.0)$


## 07-23: Voltage recovery time

- Sets the voltage recovery time.
- Sets the time for the inverter to restore the output voltage from 0 V to the specified $\mathrm{V} / \mathrm{f}$ level after speed search function is completed.


## 07-24: Bidirectional speed search selection

0: Disable (Bidirectional speed search off)

Speed search is executed using speed search operating current defined in parameter 07-20. In case speed search is not successful (e.g. motor speed is too low) a speed search time-out warning is displayed. Set 07-19 to value greater than 0 to enable DC braking at speed search if a time-out occurs frequently.

1: Enable (Bidirectional speed detection)
At start the current controller will send a step current to the motor (07-19) to determine the motor direction.
Once direction is determined the current controller will perform a speed search using speed search operating current defined in parameter 07-20. Speed search is executed after a momentary power loss
(external speed search command 2, 03-00 to 03-05 = 34) or from max. frequency (external speed search command 1, 03-00 to 03-05 = 19). Speed search direction will follow the speed command.

## 07-26: Mechanical braking function

- In SLV mode $(00-00=2)$ set the stop mode to the coast stop $(07-09=1)$ or to the coast to stop with timer (07-09 = 3). After a stop command is issued (coast to stop or coast to stop with times) the speed search function is automatically activated for the next start.

0: Disable (No mechanical brake is installed)

1: Enable (Mechanical brake is installed)

## 07-27: Start Selection after fault during SLV mode

0: Speed search start: Speed search is executed after a fault in SLV mode.

1: Normal start: Speed search is not enabled.

Note: Set the parameter to 1 (normal start) after a fault has occurred and a mechanical brake is used to stop the motor.

## 07-28: Start after external Baseblock

0: Speed search start: Speed search is executed after base block is removed.

1: Normal start: Speed search is not enabled.

Note: Set parameter to 1 for control mode is V/F $(00-00=0)$ or SLV mode (00-00 = 2) when the external base block active time is longer than the time the motor needs to come to a complete stop. After the external base block command is removed the inverter will accelerate from min. frequency.

## ■ Speed search based on current detection

(a) Speed search at starting


Figure 4.4.55 Speed search at starting
(b) Speed search in recovery period of momentary power failure


Figure 4.4.56 Speed search in recovery period of momentary power failure

## Notes:

If the minimum base block time (07-18) is longer than the momentary power failure time, the speed search starts operation after the minimum base block time (07-18).

If the minimum base block time (07-18) is too short, the speed search operation begins immediately after power has been restored.

## Group 08 Protection Parameters

08－00	Stall Prevention Function
Range	【xxx0b】：Stall prevention is enabled in acceleration．   【xxx1b】：Stall prevention is disabled in acceleration．   【xx0xb】：Stall prevention is enabled in deceleration．   【xx1xb】：Stall prevention is disabled in deceleration．   【x0xxb】：Stall prevention is enabled in operation．   【x1xxb】：Stall prevention is disabled in operation．   【0xxxb】：tall prevention in operation decelerates based on deceleration time 1   【1xxxb】：Stall prevention in operation decelerates based on deceleration time 2
08－01	Stall Prevention Level in Acceleration
Range	【30～200】 \％
08－02	Stall Prevention Level in Deceleration
Range	【330～410】V ：200V 【660～820】V ：400V
08－03	Stall Prevention Level in Operation
Range	【30～200】 \％
08－21	Limit of Stall Prevention in Acc over Base Speed
Range	【0～100】\％
08－22	Stall Prevention Detection Time in Operation
Range	【2～100】 msec

Stall prevention during acceleration（08－00＝xxx0b）

Prevents the inverter from faulting（Overcurrent，Motor overload，Inverter overload）when accelerating with heavy loads．

When the inverter output current reaches the level set in parameter 08－01 minus $15 \%$ the acceleration rate starts to decrease．When the inverter output current reaches the level set in parameter 08－01 the motor stops accelerating．Refer to Figure 4．4．57 for more information．

## Notes：

－Reduce stall prevention level during acceleration（08－01）in case the motor stalls（when the motor power is smaller than the inverter rating．
－The inverter rated output current should be set to $100 \%$ ．


Figure 4．4．57 Stall prevention during acceleration

If the motor is used in the constant power $(\mathrm{CH})$ region, the stall prevention level (08-01) is automatically reduced to prevent the stall.

Stall prevention level during acceleration (Constant horsepower)
Stall Prev. Lev. Acceleration $(\mathrm{CH})=$ Stall prevention level in acceleration (08-01) x Fbase (01-12)
Output frequency

Parameter 08-21 is the stall prevention limit value in Constant Horsepower region. Refer to Figure 4.4.58.


Figure 4.4.58 Stall prevention level and limit in acceleration

## Stall prevention selection during deceleration (08-00=xx0xb)

Stall prevention during deceleration automatically increases the deceleration time according based on the DC-bus voltage to prevent over-voltage during deceleration. Refer to Figure 4.4 .59 for stall prevention during deceleration

When the DC-bus voltage exceeds the stall prevention level deceleration will stop and the inverter will wait for the DC-bus voltage to fall below the stall prevention level before continuing deceleration. Stall prevention level can be set by 08-02, see Table 4.4.10.

Table 4.4.10 Stall prevention level

Inverter model	08-02 default value
200 V class, 5 to 15 HP	395 VDC
200 V class, 20 HP and above	385 VDC
400 V class, 5 to 20 HP and above	790 VDC
400 V class, 25 HP and above	770 VDC

Note: When using external braking (braking resistor or braking module) disable stall prevention during deceleration (08-00 to xx1xb).


Figure 4.4.59 Stall prevention selection in deceleration

## Stall prevention selection during run (08-00=x0xxb)

Stall prevention during run can only be used in V/F or SLV control mode.

This function prevents the motor from stalling by automatically reducing the output frequency during run.

If the inverter output current rises above the level set in parameter 08-03 for the time specified in parameter 08-22, the inverter output frequency is automatically decreased following deceleration time 1 (00-15) or deceleration time 2 (00-17).

When the inverter output current falls below the level set in parameter (08-03) minus 2\%, normal operation continues and the output frequency increases to the frequency reference using the acceleration time 1 or acceleration time 2. Refer to the following figure 4.4.60.

Note: The stall prevention level during run can be set by using multi-function analog input $\mathrm{Al} 2(04-05=7)$.


Figure 4.4.60 Stall prevention selection in operation

$08-05$	Selection for Motor Overload Protection（OL1）
	【xx0b】：Motor Overload Protection is disabled．
	【xxx1b】：Motor Overload Protection is enabled．
	【xx0xb】：Cold Start of Motor Overload
Range	【xx1xb】：Hot Start of Motor Overload
	【x0xxb】：Standard Motor
	【x1xxb】：Special motor
	【0xxxb】：Reserved
	【1xxxb】：Reserved

The motor overload protection function estimates the motor overload level based on the output current， output frequency，motor characteristics and time．The motor overload trip time depends on the motor rated current when the output frequency is greater than 60 Hz ．

On inverter power－up the motor overload protection internal thermal accumulation register is automatically reset．

To use the built－in motor overload protection function parameter 02－01（motor rated current）has to match the motor rated current on the motor nameplate．

Turn off the motor overload protection when using two or more motors connected to the inverter（set 08－05 ＝xxx0b），and provide external overload protection for each motor（e．g．thermal overload switch）．

With cold start enabled（08－05＝xx0xb），motor overload protection occurs in 5 and a half minutes when operating the motor at $150 \%$ of the motor rated current at an output frequency greater than 60 Hz ．

With hot start enabled（ $08-05=x x 1 x b)$ ，motor overload protection occurs in 3 and a half minutes when operating the motor at $150 \%$ of the motor rated current at an output frequency greater than 60 Hz ．

Refer to the following Figure 4.4 .61 for an example of motor overload protection standard curve．


Figure 4．4．61 Motor overload protection curve（example：standard motor）
When using force cooled motors（Special inverter motor），thermal characteristics are independent of the motor speed，set 08－05 $=\mathrm{x} 1 \mathrm{xxb}$ ．

When $08-05=x 1 x x b$ ，overload protection function is based on motor rated current for output frequencies between 6 and 60 Hz ．If the output frequency is lower than 1 Hz ，the overload protection function uses $83 \%$ of the motor rated current to determine an overload condition．

When 08－05＝x0xxb，overload protection function is based on 70\％of the motor rated current for an output frequency of 20 Hz ．If the output frequency is lower than 1 Hz ，the overload protection function uses $40 \%$ of
the motor rated current to determine an overload condition．
Refer to Figure 4．4．62 for motor overload rating at different output frequencies．


Figure 4．4．62 Motor overload rating at different output frequencies

$08-06$	Start－up mode of overload protection operation（OL1）
Range	【0】：Stop Output after Overload Protection
	$【 1 】:$ Continuous Operation after Overload Protection．

08－06＝0：When the inverter detects a motor overload the inverter output is turned off and the OL1 fault message will flash on the keypad．Press RESET button on the keypad or activate the reset function through the multi－function inputs to reset the OL1 fault．

08－06＝1：When the inverter detects a motor overload the inverter will continue running and the OL1 alarm message will flash on the keypad until the motor current falls within the normal operating range．

$08-08$	Automatic Voltage Regulation（AVR）
Range	   $【 1 】: A V R$   is enabled   

Automatic voltage regulation stabilizes the motor voltage independent of fluctuation to the input voltage．
$08-08=0$ ：Automatic voltage regulation is active．
$\mathbf{0 8 - 0 8 = 1}$ ：Automatic voltage regulation is not active，motor voltage follows the input voltage fluctuation．

$08-09$	Selection of Input Phase Loss Protection
Range	   $【 1 】:$ Enable

$08-09=0$ ：Input phase loss detection is disabled．
08－09＝1：Input phase loss detection is enabled．Keypad shows＂IPL input Phase Loss＂（IPL），when an input phase loss is detected the inverter output is turned off and the fault contact is activated．

Note：The input phase loss detection is disabled when the output current is less than $30 \%$ of the inverter rated current．

$08-10$	Selection of Output Phase Loss Protection
Range	【0】：Disable
	【1】：Enable

$08-10=0$ ：Output phase loss detection is disabled．
$08-10=1$ ：Output phase loss detection is enabled．Keypad shows＂OPL Output Phase Loss＂（OPL），when an output phase loss is detected and the inverter output is turned off and the fault contact is activated．

Note：The output phase loss detection is disabled when the output current is less than $10 \%$ of the inverter rated current．

08－13	Selection of Over－Torque Detection
Range	【0】：Over－Torque Detection is Disabled．   【1】：Start to Detect when Reaching the Set Frequency．   【2】：Start to Detect when the Operation is Begun．
08－14	Selection of Over－Torque Operation
Range	【0】：Deceleration to Stop when Over－Torque is Detected．   【1】：Display Warning when Over－Torque is Detected．Go on Operation．   【2】：Coast to Stop when Over Torque is Detected．
08－15	Level of Over－Torque Detection
Range	【0～300】\％
08－16	Time of Over－Torque Detection
Range	【0．0～10．0】 Sec
08－17	Selection of Low－Torque Detection
Range	【0】 ：Low－Torque Detection is Disabled．   【1】：Start to Detect when Reaching the Set Frequency．   【2】：Start to Detect when the Operation is Begun．
08－18	Selection of Low－Torque Operation
Range	【0】：Deceleration to Stop when Low－Torque is Detected．   【1】：Display Warning when Low－Torque is Detected．Go on Operation．   【2】：Coast to Stop when Low－Torque is Detected．
08－19	Level of Low－Torque Detection
Range	【0～300】\％
08－20	Time of Low－Torque Detection
Range	【0．0～10．0】 Sec

The over torque detection function monitor the inverter output current or motor torque and can be used to detect increase in inverter current or motor torque（e．g．heavy load）．

The low torque detection function monitor the inverter output current or motor torque and can be used to detect a decrease in inverter current or motor torque（e．g．belt break）．

The torque detection levels（08－15，08－19）are based on the inverter rated output current（ $100 \%=$ inverter rated output current）when operating the inverter in V／F control mode and motor output torque（ $100 \%=$ motor rated torque）when operating the inverter in SLV control mode．

## Over－torque detection

Parameter 08－13 selects over－torque detection function．An over－torque condition is detected when the output current／torque rises above the level set in parameter 08－15（Over－torque detection level）for the time specified in parameter 08－06（Over－torque detection time）．
$08-13=0$ ：Over－torque detection is disabled．
$08-13=1$ ：Over－torque detection is enabled when the output frequency reaches the set frequency．
$\mathbf{0 8 - 1 3}=\mathbf{2}$ ：Over－torque detection is enabled during running．
Parameter 08－14 selects the way the inverter acts when an over－torque condition is detected．
$\mathbf{0 8 - 1 4 = 0}$ ：When an over－torque condition is detected the inverter displays and over－torque detection fault and the motor decelerates to a stop．

08－14＝1：When an over－torque condition is detected the inverter displays an over－torque detection alarm and continues to run．
$\mathbf{0 8 - 1 4}=\mathbf{2}$ ：When an over－torque condition is detected the inverter displays and over－torque detection fault
and the motor coasts to a stop


Figure 4.4.63 Over-torque detection operation

## Low-torque detection

Parameter $08-18$ selects low-torque detection function. An low-torque condition is detected when the output current / torque falls below the level set in parameter 08-19 (low-torque detection level) for the time specified in parameter 08-20 (Low-torque detection time).
$08-17=0$ : Low-torque detection is disabled.
08-17=1: Low-torque detection is enabled when the output frequency reaches the set frequency.
$\mathbf{0 8 - 1 7}=2$ : Low-torque detection is enabled during running.
Parameter $08-18$ selects the way the inverter acts when an over-torque condition is detected.
$\mathbf{0 8 - 1 8}=\mathbf{0}$ : When a low-torque condition is detected the inverter displays and low-torque detection fault and the motor decelerates to a stop.

08-18=1: When a low-torque condition is detected the inverter displays a low-torque detection alarm and continues to run.
$\mathbf{0 8 - 1 8}=\mathbf{2}$ : When a low-torque condition is detected the inverter displays and low-torque detection fault and the motor coasts to a stop
. Setting Example of less torque detection:


Figure 4.4.64 Low torque detection operation

Over and low torque detection condition can be output to the multi－function digital outputs（R1A－R1C， R2A－R2C，R3A－R3C）by setting parameters $03-11,03-12$ and $03-39$ to 12 or 25 ．Refer to figure 4.4 .65 for more information．


Figure 4．4．65 Over－torque／low torque detection multi－function digital output terminal

08－23	Ground Fault（GF）Selection
Range	【0】：Disable
	【1】：Enable

If the inverter leakage current is greater than $50 \%$ of inverter rated current and the ground fault function is enabled（08－23），the keypad will display a＂GF Ground Fault＂（GF），motor will coast to a stop and fault contact is activated．

$08-24$	Operation Selection of External Fault
Range	【0】：Deceleration to Stop
	【1】：Coast to Stop
	【2】：Continuous Operation
$08-25$	Detection selection of External Fault
Range	【0】：Immediately Detect when the Power is Supplied．
	【1】：Start to Detect during Operation

Select operation selection when an external fault occurs．Refer to the multi－function inputs on how to set up the inverter for an external fault input．

$08-30$	Selection of Safety Function
Range	【0】：Deceleration to Stop
	【1】：Coast to Stop

If multi－function digital input terminal is set to 58 （Safety Function），inverter will stop via the set of $08-30$ when this function is enabled．

$08-37$	Fan Control Function
	【0】：Start at Operation
Range	【1】：Permanent Start
	【2】：Start at High Temperature
$08-38$	Delay Time of Fan Off
Range	【0～600】Sec

08－37＝0：Start at Operation

Fan starts while inverter is running．
If the inverter stops over the delay time of fan off（08－38），fan is off．

08－37＝1：Permanent Start

When the inverter is at power on，fan will start permanently．

08－37＝2：Start at High Temperature
When the temperature of heatsink is higher than that of internal setting，fan immediately starts． If the heatsink is cooling down or starts over the delay time of fan off（08－38），fan is off．

08－35	Fault Selection of Motor Overheat
Range	【0】 ：Disable   【1】 ：Deceleration to Stop   【2】 ：Coast to Stop
08－36	Time Coefficient of PTC Input Filter
Range	【0．00～5．00】
08－39	Delay Time of Motor Overheat Protection
Range	【1～300】 Sec

Protection of motor overheating is enabled via the sensor of motor fan with the temperature impedance chacteristics of positive temperature coefficient（PTC）．

Thermistor of PTC connects with terminals MT and GND．If motor is overheating，the keypad displays the error code of OH 4 ．

08－35＝0：Fault selection of motor overheating is disabled．
$\mathbf{0 8}-35=1,2$ ：Motor stop running while fault of motor overheating is enabled．
Protection of motor overheating is enabled at $R_{T}>1330 \Omega$ of thermistor of PTC and the reach of delay time set by 08－39．The keypad will display an＂OH4 Motor overheat＂and fault output is active．

When the value of thermistor of PTC is $\mathrm{R}_{\mathrm{T}}<550 \Omega$ ，it can reset＇OH4 Motor overheat．＂

Note：The stop mode of the inverter fault is set by 08－35．
08－35＝1：Deceleration to stop when the inverter fault occurs．
$08-35=2$ ：Coast to stop when the inverter fault occurs

## Notes：

－If thermistor of PTC does not connect with MT and GND，the keypad will display an＂OH4 Motor overheat．＂
－The value of the external thermistor of PTC is in compliance with British National Standard．
a． $\mathrm{Tr}-5^{\circ} \mathrm{C}: \mathrm{RT} \leqq 550 \Omega$
b． $\mathrm{Tr}+5^{\circ} \mathrm{C}: \mathrm{RT} \geqq 1330 \Omega$

Refer to Figure 4.4.66 for the connecting between the corresponding temperature of thermistor of PTC and terminals.


Figure 4.3.66 Protection of motor overheating

## Group 09：Communication Parameters

09－00	INV Communication Station Address
Range	【1～31】
09－01	Communication Mode Selection
Range	【0】：MODBUS   【1】：BacNET   【2】 ：MetaSys   【3】：PUMP in Parallel Connection   【4】：PROFIBUS
09－02	Baud Rate Setting（bps）
Range	【0】： 1200 【1】 $: 2400$ 【2】： 4800 【3】 9600 【4】： 19200 【5】： 38400
09－03	Stop Bit Selection
Range	【0】： 1 Stop Bit   【1】： 2 Stop Bits
09－04	Parity Selection
Range	【0】 ：No Parity   【1】：Even Bit   【2】：Odd Bit
09－06	Communication Error Detection Time
Range	【0．0～25．5】 Sec
09－07	Fault Stop Selection
Range	【0】 ：Deceleration to Stop Based on Deceleration Time 1   【1】：Coast to Stop when Communication Fault Occurs．   【2】：Deceleration to Stop Based on Deceleration Time 2   【3】：Keep Operating when Communication Fault Occurs．
09－08	Comm．Fault Tolerance Count
Range	【1～20】
09－09	Waiting Time
Range	【5～65】 msec
09－10	Device Instance Number
Range	1～254

The Modbus communication port RJ45（S＋，S－）can be used to monitor，control，program and trouble－shoot the inverter．The built－in RS－485 can support the following communication protocol：
－Modbus communication protocol
－BacNet communication protocol
－MetaSys communication protocol
－Pump in Parallel Connection
Modbus communication can perform the following operations，independent of the frequency command selection（00－05）setting and operation command selection（00－02）setting：
－Monitor inverter signals
－Read and write parameters．
－Reset fault
－Control multi－function inputs

## Modbus (RS-485) communication specification:

Items	Specification
Interface	RS-485
Communication type	Asynchronous (start - stop synchronization)
Communication parameters	Baud rate: 1200, 2400, 4800, 9600, 19200 and 38400 bps   Data Length: 8 bits (Fixed)   Parity: options of none, even and odd bit.   For even and odd selection stop bit is fixed at $1 \mathrm{bit}$.
Communication protocol	Modbus RTU / ASCII
Number of inverters	Maximum 31 units

## Communication wiring and setup

(1) Turn off power to the inverter.
(2) Connect communication lines of the controller to the inverter (RJ45).
(3) Turn power on.
(4) Set the required communication parameters (09-00) via the keypad.
(5) Turn off power to the inverter and wait until keypad is completely off.
(6) Turn power on
(7) Start communication between controller and inverter.

## Modbus (485) communication architecture

(1) Modbus communication configuration uses a master controller (PC, PLC), communicating to a maximum of 31 inverters.
(2) The master controller is directly connected to the inverter via the RS-485 interface. If the master controller has a RS-232, a converter must be installed to convert signals to RS-485 to connect the master controller to the inverter.
(3) A maximum 31 inverters can be connected to a network, following the Modbus communication standard.

## Communication Parameters:

09-00: Inverter station addresses: Range 1-31
09-02: RS-485 communication baud rate setting
= 0: 1200 bps (bits / second)
= 1: 2400 bps
= 2: 4800 bps
= 3: 9600 bps
= 4: 19200 bps
= 5: 38400 bps
09-03: Stop bit selection
= 0: 1 stop bit
= 1: 2 stop bits
09-04: Parity selection of RS-485 communication
= 0: No parity.
= 1: even parity.
= 2: odd parity.

09-06: RS-485 communication error detection time

09-07: Stop selection of RS-485 communication failure
= 0: Deceleration to stop by deceleration time 00-15
= 1: Coast to stop
= 2: Deceleration to stop using the deceleration time of 00-26 (emergency stop time)
= 3: Continue to operate (only shows a warning message, press the stop button to stop operation)

## 09-08: Comm. fault tolerance count

When the number of communication errors exceeds the value set in parameter 09-08 the inverter will display the comm. Fault alarm.

09-09: Wait time of inverter transmission
Sets the inverter response delay time. This is the time between the controller message and the start of the inverter response message. Refer to Figure 4.4.67. Set the controller receive time-out to a greater value than the wait time parameter (09-09).


Figure 4.4.67 Communication Message Timing

## Group 10：PID Parameters

$10-00$	PID Target Value Source Setting
Range	【0】：Keypad Given（for PUMP or HVAC mode）
	【1】：Al1 Given
	【2】：Al2 Given
	【3】：Reserved
	【4】：10－02 Given
	【5】：Reserved

Note：Parameter only active when frequency command selection（00－05）is set to 5 ．

$10-01$	PID Feedback Value Source Setting
Range	【1】：Al1 Given
	【2】：AI2 Given
	【3】：Reserved

Note：Parameter 10－00 and 10－01 cannot be set to the same source．If both parameters are set to the same source the keypad will show a SE05 alarm．

10－02	PID Target Value
Range	【0．0～100．0】 \％
10－03	PID Control Mode
Range	【xxx0b】：PID Disable   【xxx1b】：PID Enable   【xx0xb】：PID Positive Characteristic   【xx1xb】：PID Negative Characteristic   【x0xxb】：PID Error Value of D Control   【x1xxb】：PID Feedback Value of D Cotrol   【0xxxb】 ：PID Output   【1xxxb】 ：PID Output＋Target Value
10－04	Feedback Gain
Range	【0．01～10．00】
10－05	Proportional Gain（P）
Range	【0．00～10．00】
10－06	Integral Time（1）
Range	【0．0～100．0】 Sec
10－07	Differential Time（D）
Range	【0．00～10．00】 Sec
10－09	PID Bias
Range	【－100～100】 \％
10－10	PID Primary Delay Time
Range	【0．00～10．00】 \％
10－14	PID Integral Limit
Range	【0．0～100．0】 \％
10－23	PID Limit
Range	【0．00～100．0】 \％
10－24	PID Output Gain
Range	【0．0～25．0】


$10-25$	PID Reversal Output Selection
Range	【0】：Do not Allow Reversal Output         【1】：Allow Reversal Output
	PID Target Acceleration／Deceleration Time
$0.0 \sim 25.5 】$ Sec	

## PID Adjustments

Gain control：The error signal（deviation）between the input command（set value）and the actual control value（feedback）．This error signal or deviation is amplified by the proportional gain（ P ）to control the offset between the set value and the feedback value．

Integral control：The output of this control is the integral of the error signal（difference between set value and feedback value）and is used to minimize the offset signal that is left over from the gain control．When the integral time $(\mathrm{I})$ is increased，the system response becomes slower．

Differential control：This control is the inverse from integral control and tries to guess the behavior of the error signal by multiplying the error with the differential time．The result is added to the PID input． Differential control slows down the PID controller response and may reduce system oscillation．Note：Most applications that PID control（fan and pump）do not require differential control．
Refer to Figure 4．4．68 for PID control operation


Figure 4．4．68 PID Control

## PID Control Type

The inverter offers two types of PID control：
（a）PID control with differential feedback：$(10-03=x 1 x x b)$
Make sure to adjust the PID parameters without causing system instability．Refer to Figure 4．4．69 for PID control for feedback value differential．


Figure 4．4．69 PID control for feedback differential value
(b) Basic PID control: (10-03 $=x 0 \times x b)$

This is the basic type of PID control. Refer to the figure 4.4.70.


Figure 4.4.70 Basic PID control

## PID Setup

Enable PID control by setting parameter 10-03, PID target value (10-00) and PID feedback value (10-01).
To use PID control set frequency command selection 00-05 to 4 .
(1) Select PID target value (10-00):

## 10-00: PID target value

$=0$ : keypad given
$=1$ : analog Al1 given (default)
=2: analog Al2 given
=3: Reserved
=4:10-02
(2) Select PID feedback value (10-01):

## 10-01: PID feedback value

= 1: Analog Al1 given
= 2: Analog Al2 given
= 3: Reserved


Figure 4.4.71 PID input selection

## PID Control Setting

PID control block diagram.

The following figure shows the PID control block diagram.


Figure 4.4.72 PID control block diagram

## PID Tuning

Use the following procedures to start PID control,
(1) Enable PID control (set 10-03 to a value greater than "xxx0b").
(2) Increase the proportional gain (10-05) to the highest value possible without causing the system to become unstable.
(3) Decrease the integral time (10-06) to the lowest value possible without causing the system to become unstable.
(4) Increase the differential time (10-07) to the highest value possible without causing the system to become unstable.

The PID control serves to maintain a given process within certain limits whether it is pressure, flow etc. To do this the feedback signal is compared to the set value and the difference becomes the error signal for the PID control.

The PID control then responds by trying to minimize this error. The error is multiplied times the value of the Proportional gain set by parameter 10-05. An increased gain value results in a larger error. However, in any system as the gain is increased there is a point that the system will become unstable (oscillate).

To correct this instability, the response time of the system may be slowed down by increasing the Integral time set by parameter 10-06. However slowing the system down too much may be unsatisfactory for the process.

The end result is that these two parameters in conjunction with the acceleration time (01-14) and deceleration (01-15) times require to be adjusted to achieve optimum performance for a particular application.

PID output polarity can be selected with parameter 10-03 (setting $=x x 0 x b$ : PID output forward, setting $=$ $x x 1 x b$ : PID output reversal). When the PID output is set for reverse operation the output frequency decreased when the PID target value increases.

PID feedback value can be adjusted using parameter 10-04 (PID feedback gain) as well as with the analog input gain and bias for terminal AI1 or AI2.

10-14: PID integral limit: Used to limit the integral output to prevent motor stall or damage to the system in case of a rapid change in the feedback signal. Reduce the value of 10-14 to increase the inverter response.

10-23: PID limit: Used to limit the output of the PID control. Maximum output frequency is $100 \%$.

10-10: Primary delay time: Low pass filter situated after the PID limit block that can be used to prevent PID output resonance. Increase the time constant to a value greater than the resonance frequency cycle and reduce time constant to increase the inverter response.

10-09: PID bias: Used to adjust the offset of the PID control. The offset value is added to the frequency reference as compensation. Use parameter 10-24 (PID output gain) to control the amount of compensation.

In case the PID control output value goes negative, parameter 10-25 (PID reversal output selection) can be used to reverse the motor direction.

Note: The PID output remains at zero when reverse operation is disabled.

10-26: PID target SFS: Sets the PID target value acceleration and deceleration ramp time. The PID target SFS can be disabled by setting the multi-function digital inputs 03-00~03-05 to 36 (PID target SFS is off). Reduce the acceleration / deceleration time in case load resonance or system instability is encountered.

## PID Fine Tuning

All PID control parameters are related to each other and require to be adjusted to the appropriate values. Therefore, the procedure achieving the minimum steady-state is shown as following:
(1) Increase or decrease the proportion $(P)$ gain until the system is stable using the smallest possible control change.
(2) The integral (I) reduces the system stability which is similar to increasing the gain. Adjust the integral time so that the highest possible proportional gain value can be used without affecting the system stability. An increase in the integral time reduces system response.
(3) Adjust the differential time if necessary to reduce overshoot on startup. The acceleration / deceleration time can also be used for the same purpose.

Fine-tuning PID control parameters:
(1) Reduce overshoot

(2) Stabilize PID control

(3) Reduce long-period oscillation

(4) Reduce short-period oscillation


In case overshoot occurs, reduce the derivative time (D) and increase the integral time (I).

To quickly stabilize the PID control, reduce the integral time (I) and increase the differential time (D) in case overshoot occurs.

Adjust the integral time (I) in case of long-periodical system oscillation.

Adjusting the differential time (D) and proportional (P) gain when experiencing short-periodical oscillation.

$10-11$	PID Feedback Loss Detection Selection
	$【 0 】:$ Disable
Range	【1】：Warning
	【2】：Fault
$10-12$	PID Feedback Loss Detection Level
Range	【0～100】 \％
$10-13$	PID Feedback Loss Detection Time
Range	【0．0～10．0】Sec

The PID control function provides closed－loop system control．In case PID feedback is lost，the inverter output frequency may be increase to the maximum output frequency．

It is recommended to enable to the PID feedback loss when the PID function is used．

## PID feedback loss detection

## 10－11＝0：Disable

## 10－11＝1：Warning

A feedback loss condition is detected when the PID feedback value falls below the value set in parameter 10－12（PID feedback loss detection level）for the time set in parameter 10－13（PID feedback loss detection time）．PID feedback loss warning message＂Pb＂will be displayed on the keypad and the inverter will continue to operate．

## 10－11＝2：Fault

A feedback loss condition is detected when the PID feedback value falls below the value set in parameter 10－12（PID feedback loss detection level）for the time set in parameter 10－13（PID feedback loss detection time）．PID feedback loss fault message＂Fb＂will be displayed on the keypad，the inverter stops and the fault contact is activated．


Figure 4．4．73 PID feedback loss detection

$10-17$	Start Frequency of PID Sleep
Range	$【 0.00 \sim 180.00 】 \mathrm{~Hz}$
$10-18$	Delay Time of PID Sleep
Range	【0．0～255．5】 Sec
$10-19$	Frequency of PID Waking up
Range	【0．00～180．00】 Hz
$10-20$	Delay Time of PID Waking up
Range	【0．0～255．5】 Sec
$10-29$	PID Sleep Selection
	【0】：Disable   Range

The PID Sleep function is used to stop the inverter when the PID output falls below the PID sleep level （10－17）for the time specified in the PID sleep delay time parameter（10－18）．

The inverter wakes up from a sleep condition when the PID output（Reference frequency）rises above the PID wake－up frequency（10－19）for the time specified in the PID wake－up delay time（10－20）．

Use parameter 10－29 to enable／disable PID sleep function．
10－29＝0：PID Sleep function is disabled．
10－29＝1：PID sleep operation is based on parameters of 10－17 and 10－18．
10－29＝2：PID sleep mode is enabled by multi－function digital input
Refer to figure 4．4．74（a）and（b）for PID sleep／wakeup operation．


Figure 4．4．74：（a）PID control bock diagram


Figure 4．4．74：（b）Timing diagram PID sleep／wakeup

## Notes：

The PID sleep timer is enabled when the output frequency（Fout）falls below the PID sleep frequency （10－17）．When the sleep timer reaches the set PID sleep delay time（10－18）the inverter will decelerate to a stop and enter the sleep mode．

While sleep mode is active and the motor has stopped，the internal PID control is still in operating．When the reference frequency increases and exceeds the wakeup frequency parameter 10－19 for the time specified in the wakeup delay time parameter 10－20，the inverter will restart and the output frequency will ramp up to the reference frequency．

Parameter 10－00 and 10－01 cannot be set to the same source．If both parameters are set to the same source the keypad will show a SE05 alarm．

$10-27$	PID Feedback Display Bias
Range	$【-99.99 \sim 99.99 】$
$10-28$	PID Feedback Display Gain
Range	【0．00～100．00】

## PID Feedback Display Scaling

The PID feedback signal can be scaled to represent actual engineering units．Use parameter 10－28 to set the feedback signal gain for the feedback signal range maximum and parameter 10－27 to the feedback signal minimum．

## Example：

Feedback signal is a pressure transducer（4－20mA）with a range of $0-200 \mathrm{PSI}$ $4 \mathrm{~mA}=0 \mathrm{PSI}, 20 \mathrm{~mA}=200 \mathrm{PSI}$ ．

Set parameter 10－27 to 0.0 minimum of transducer range（0\％）．
Set parameter $10-28$ to 2.0 maximum of transducer range（100\％）．
Refer to the figure 4．4．75 for displaying the unit conversion．


Figure 4．4．75 Feedback signal scaling

$10-30$	Upper Limit of PID Target
Range	$【 0 \sim 100 】 \%$
$10-31$	Lower Limit of PID Target
Range	$【 0 \sim 100 】 \%$

PID target value will be limited to the upper and lower limit range of PID target．

$10-32$	PID Switching Function
Range	【0】：PID1
	【1】 ：PID2
	【2】：Set by DI
	【3】：Set by RTC


$10-36$	PID2 Proportional Gain（P）
Range	$【 0.00 \sim 10.00 】$
$10-37$	PID2 Integral Time（I）
Range	【0．0～100．0】 Sec
$10-38$	PID2 Differential Time（D）
Range	【0．00～10．00】Sec

10－32＝0：PID 1 function is enabled．
PID target value is set by 10－02 and proportional gain，integral time and differential time are set by 10－05， 10－06 and 10－07．

10－32＝1：PID 2 function is enabled．
PID target value is set by 10－02 and proportional gain，integral time and differential time are set by $10-36$ ， 10－37 and 10－38．

10－32＝2：Set by Digital Input

If the digital input terminal is enabled（digital multi－function terminal is set to 54 ），PID1 will switch to PID2．
10－32＝3：Set by RTC
When RTC timer is enabled，PID1 will switch to PID2．

$10-33$	PID Maximum Feedback Value
Range	$【 0.0 \sim 100.0 】 \%$

Function of PID maximum feedback value is the $100 \%$ corresponding value of $10-02$ ．

$10-34$	PID Decimal Width
Range	$【 0 \sim 4 】$

Function of PID decimal width enables the user to set the decimal point．
For example，if it is set to 1 ，the keypad displays the first decimal place XXX ．X．If it is set to 2 ，the keypad displays the second decimal place XX．XX．

$10-35$	PID Unit
Range	【0～21】

PID unit enables the user to select the unit for PID target vaule．

When $10-35=0$ ，parameter of $12-38$ will be used by the unit of $\%$ ．

Refer to the PID function for more details of PID2 description．

## Group 11：Auxiliary Parameters

$11-00$	Direction Lock Selection
Range	【0】：Allow Forward and Reverse Rotation
	【1】：Only Allow Forward Rotation
	【2】：Only Allow Reverse Rotation

If motor operation direction is set to 1 or 2 ，the motor can only operate in that specific direction．Run commands in the opposite direction are not accepted．

Forward or reverse commands can be issued via the control terminals or keypad．

Note：The reverse rotation selection can be used in fan and pump application where reverse rotation is prohibited．

$11-01$	Carrier Frequency
Range	【0】：Carrier Output Frequency Tuning
	【1】：Reserved
	【2～16】2～16 KHz

## Notes：

（1）Value 2 to 16 represents KHz ．
（2）When 11－01＝0，variable carrier frequency is used see parameter 11－30～11－32．
（3）For SLV mode，the minimum value of $11-01$ is 4 kHz ．
（4）Setting range is determined by the inverter rating（13－00）．
（5）Refer to section 3 inverter derating based on carrier frequency．
（6）A low carrier frequency increases motor noise but reduces motor losses and temperature．
（7）A low carrier frequency decreases RFI，EMI interference and motor leakage current．
Refer to the carrier frequency Table 4．4．11．
Table 4．4．11 Carrier frequency settings

Carrier frequency（11－01＝2 to 16））	2KHz－－6K－－10K－16KHz
Motor noise	High－－－－－－－－－－－－－－－－－－－low
Output current waveform	Non－sinusoidal－－－－－－－－－－－－－－－－－sinusoidal（better）
Noise interference	Low－－－－－－－－－－－－－－－－－－－high
Leakage current	Low－－－－－－－－－－－－－－－－－－－－high

If wire length between the inverter and the motor is too long，the high－frequency leakage current will cause an increase in inverter output current，which might affect peripheral devices．Adjust the carrier frequency to avoid this as shown in table 4．4．12．

Table 4．4．12 Wire length and carrier frequency

Wire length	＜ $\mathbf{3 0}$ Meter（98ft）	up to 50 Meter   $(164 \mathrm{ft})$	up to $\mathbf{1 0 0}$ Meter   $(328 \mathrm{ft})$	$>\mathbf{1 0 0} \mathbf{~ M e t e r}$   $>328 \mathrm{ft}$
Carrier frequency   $(11-01$ value $)$	Max．value 16 KHz   $(11-01=14 \mathrm{KHz})$	Max．value 10 KHz   $(11-01=10 \mathrm{KHz})$	Maxi．value 5 KHz   $(11-01=5 \mathrm{KHz})$	Max．value 2 KHz   $(11-01=2 \mathrm{KHz})$

## Notes：

（1）Reduce the carrier frequency if the torque does not match the speed．
（2）In V／F control mode，the carrier frequency is determined by parameters 11－30（Carrier frequency max． limit），11－31（Carrier frequency lower limit）and 11－32（Carrier frequency proportional gain）．

$11-02$	Soft PWM Function Selection
Range	【0】：Disable
	【1】：Enable

11－02＝0：Soft－PWM control disabled．
11－02＝1：Soft－PWM control enabled．Soft－PWM control can improve the＇metal＇noise produced by the motor，more comfortable for the human ear．At the same time，Soft－PWM also limits RFI noise to a minimum level．The default setting of Soft－PWM control is disabled．When Soft－PWM is enabled，the maximum carrier frequency is limited to 8 kHz ．

$11-03$	Automatic Carrier Lowering Selection
Range	【0】：Disable
	【1】：Enable

11－03＝0：Automatic carrier frequency reduction during an overheat condition is disabled．
11－03＝1：Carrier frequency is automatically lowered in case the inverter heatsink overheats and returns to carrier frequency set in parameter 11－01 when the inverter temperature returns to normal．See section 3.5 for more information．

$11-04$	S－curve Time Setting at the Start of Acceleration
$11-05$	S－curve Time Setting at the End of Acceleration
$11-06$	S－curve Time Setting at the Start of Deceleration
$11-07$	S－curve Time Setting at the End of Deceleration
Range	$【 0.00 \sim 2.50 】$ Sec

The $S$ curve function for acceleration／deceleration is used to reduce mechanical impact caused by the load during momentary starting and stopping of the inverter．To use the $S$ curve function set the time for acceleration start point（11－04），acceleration end point（11－05），deceleration start point（11－06）and deceleration end point（11－07）．Refer to figure 4．4．76 for more information．


Figure 4．4．76 S curve characteristic

Total acceleration and deceleration time when the $S$ curve is used：
Accelerating time $=$ Accelerating time $1($ or 2$)+\frac{(11-04)+(11-05)}{2}$
Deceleration time $=$ Deceleration time $1($ or 2$)+\frac{(11-06)+(11-07)}{2}$

$11-08$	Jump Frequency 1
$11-09$	Jump Frequency 2
$11-10$	Jump Frequency 3
Range	$【 0.0 \sim 400.0 】 \mathrm{~Hz}$
	$【 0.0 \sim 1200.0 】 \mathrm{~Hz}$（When $00-31=1$ ）
$11-11$	Jump Frequency Width
Range	$【 0.0 \sim 25.5 】 \mathrm{~Hz}$

These parameters allow＂jumping over＂of certain frequencies that can cause unstable operation due to resonance within certain applications．

Note：Prohibit any operation within the jump frequency range．During acceleration and deceleration the frequency is continuous without skipping the jump frequency．

To enable jump frequency $1-3(11-08-11-10)$ set the frequency to a value greater than 0.0 Hz ．
Use the jump frequency width（11－11）to create a jump frequency range．Refer to figure 4．4．77．


Figure 4．4．77 Jump frequency operation

## Jump frequency via Analog Input．

Set parameter 04－05（Al2 function selection）to 9 （frequency jump setting 4）to control the jump frequency via analog input AI2．Refer to Figure 4．4．38．

Note：When jump frequency overlap the sum of the overlapped jump frequencies will be used as the jump frequency range．Refer to figure 4．4．78．


Figure 4．4．78 Jump frequency overlap

$11-12$	Manual Energy Saving Gain
Range	$【 0 \sim 100 】 \%$
$11-18$	Manual Energy Saving Frequency
Range	$【 0.00 \sim 400.00 】 \mathrm{~Hz}$
	$【 0.0 \sim 1200.0 】 \mathrm{~Hz}$（When $00-31=1)$

Manual energy savings reduces the output voltage for the purpose of saving energy．

To enable manual energy savings set one of the multi－function digital input（03－00 to 03－05）to 20 and activate the input or use parameter 11－18 to set the manual energy savings activation frequency．

When the output frequency rises above the value set in parameter 11－18 manual energy savings function is enabled．Setting parameter 11－18 manual energy savings frequency to 0.0 Hz disables the manual energy savings frequency activation function．Refer to figure 4．4．88 for more information．

Note：Only use manual energy savings functions in combination with light loads．
Manual energy saving gain（11－12）determines the output voltage of the inverter when manual energy savings is enabled．Output voltage is percentage gain times the V／F voltage．

Manual energy saving control uses the voltage recovery time（07－23）to change the output voltage


Figure 4．4．79 Manual energy saving operation

11－19	Automatic Energy Saving Function
Range	【0】 ：Automatic Energy Saving is Disabled．   【1】 ：Automatic Energy Saving is Enabled．
11－20	Filter Time of Automatic Energy Saving
Range	【0～200】 msec
11－21	Voltage Upper Limit of Energy Saving Tuning
Range	【0～100】 \％
11－22	Adjustment Time of Automatic Energy Saving
Range	【0～5000】 msec
11－23	Detection Level of Automatic Energy Saving
Range	【0～100】 \％
11－24	Coefficient of Automatic Energy Saving
Range	【0．00～655．35】

In the V/F control mode the automatic energy saving (AES) function automatically adjusts the output voltage and reduces the output current of the inverter to optimize energy savings based on the load.

The output power changes proportional to the motor load. Energy savings is minimal when the load exceeds $70 \%$ of the output power and savings become greater when the load decreases.

The parameter of automatic energy saving function has been set at the factory before shipment. In general, it is no need to adjust. If the motor characteristic has significant difference from the TECO standard, please refer to the following commands for adjusting parameters:

## Enable Automatic Energy Savings Function

(1) To enable automatic energy saving function set 11-19 to 1.
(2) Filter time of automatic energy saving (11-20)
(3) Commissioning parameter of energy saving (11-21 to 11-22)

In AES mode, the optimum voltage value is calculated based on the load power requirement but is also affected by motor temperature and motor characteristic.

In certain applications the optimum AES voltage needs to be adjusted in order to achieve optimum energy savings. Use the following AES parameters for manual adjustment:

11-21: Voltage limit value of AES commissioning operation

Sets the voltage upper limit during automatic energy saving. 100\% corresponds to the settings of parameter 01-03 (Maximum Output Voltage) depending on the inverter class used. Refer to the figure 4.4.80.


Figure 4.4.80 Voltage limit value of commissioning operation

11-22: Adjustment time of automatic energy saving
Set sample time constant for measuring output power.
Reduce the value of 11-22 to increase response when the load changes.
Note: If the value of 11-22 is too low and the load is reduced the motor may become unstable.

11-23: Detection level of automatic energy saving
Set the automatic energy saving output power detection level.

11-24: Coefficient of automatic energy saving
The coefficient is used to tune the automatic energy saving. Adjust the coefficient while running the inverter on light load while monitoring the output power. A lower setting means lower output voltage.

## Notes:

- If the coefficient is set to low the motor may stall.
- Coefficient default value is based on the inverter rating. Set parameter 13-00. If the motor power does not match the inverter rating.

$11-29$	Auto De－rating Selection
Range	【0】：Disable
	【1】：Enable

The automatic de－rating function automatically reduces the output frequency by $30 \%$ of the nominal motor speed when the inverter detects an overheat condition（heatsink）．

Automatic de－rating function depends on the automatic carried frequency reduction selection（11－03）．
If automatic carrier frequency reduction is disabled（11－03＝0），the output frequency is reduced by $30 \%$ of the nominal motor speed when an overheat condition is detected．

If automatic carrier frequency reduction is enabled（11－03＝1），the output frequency is reduced by $30 \%$ of the nominal motor speed when the carrier frequency is at its minimum setting．

11－29＝0：Auto de－rating selection disabled，carrier frequency is based on 11－01 or 11－03．

11－29＝1：Auto de－rating selection is enabled．

$11-30$	Variable Carrier Frequency Max．Limit
Range	$【 0 \sim 16 】 \mathrm{KHz}$
$11-31$	Variable Carrier Frequency Min．Limit
Range	$【 0 \sim 16 】 \mathrm{KHz}$
$11-32$	Variable Carrier Frequency Proportional Gain
Range	$【 00 \sim 99 】$

Carrier frequency method depends on the selected control mode．

Control Mode	Variable Carrier Frequency   $(11-01=\mathbf{0})$	Fixed Carrier Frequency   $(11-01=2-16 \mathrm{kHz})$
V／F	Available	Available
SLV	Not available	Available

Variable carrier frequency can be adjust with parameter 11－30～11－32．

$K$ is a coefficient；the value of $K$ is based on the following based on the maximum carrier frequency：
$\mathrm{K}=1$ ：when $11-30<5 \mathrm{KHz}$
$\mathrm{K}=2$ ：when $10 \mathrm{KHz}>11-30 \geq 5 \mathrm{KHz}$
$\mathrm{K}=3$ ：when $11-30 \geq 10 \mathrm{KHz}$

## Notes:

- In V/F control mode if the speed and torque are constant, the variable carrier frequency mode (11-01=0) can be selected to reduce the carrier frequency based on output frequency.
- If the carrier frequency proportional gain (11-32) > 6 and 11-30 < 11-31, error message "SE01" out of range will appear on the keypad.
- If the minimum limit (11-31) is set higher than the maximum limit (11-30), the minimum limit will be ignored and the carrier frequency will be set at the highest limit (11-30).
- In fixed carrier frequency mode (11-01 = 2-16) parameters 11-30, 11-31 and 11-32 are not used.
- In SLV control mode, the maximum limit of the carrier frequency is fixed at 11-30.

$11-41$	Reference Frequency Loss Detection
Range	0 (1) $:$ Deceleration to Stop when Reference Frequency Disappears         $11-42$
Range	【0.0~100.0】\%

A Reference frequency loss is detected when the frequency command falls $90 \%$ within 20 ms .
The action performed when a reference loss is detected is set with parameter 11-41.
11-41=0: Inverter will decelerate to a stop when a reference loss is detected.
11-41=1: Inverter will continue to operate; reference frequency is the last know reference frequency $x$ the level set in parameter 11-42.

The inverter will return to normal operation when:
(1) The reference frequency is restored while running and the reference level exceeds $80 \%$ of the master frequency command.
(2) Stop command is issued.

Refer to Figure 4.4.81 for the process diagram of multi-function digital output (03-11~03-12) when reference frequency loss occurs.


Figure 4.4.81 Operation for reference frequency loss

$11-43$	Hold Frequency at Start
Range	$【 0.0 \sim 400.0 】 \mathrm{~Hz}$
$11-44$	Frequency Hold Time at Start
Range	$【 0.0 \sim 10.0 】$ Sec
$11-45$	Hold Frequency at Stop
Range	$【 0.0 \sim 400.0 】 \mathrm{~Hz}$
$11-46$	Frequency Hold Time at Stop
Range	$【 0.0 \sim 10.0 】$ Sec

The hold function is used to temporarily hold the reference frequency in order to prevent stalling the motor or preventing an over current condition during starting or stopping due to load conditions．

During start the inverter will operate at the hold frequency at start for the time specified in the parameter $11-44$ in order to establish the magnetic flux．

Note：The acceleration of deceleration time does not include the start and stop hold time．Refer to the figure 4．4．82．


Figure 4．4．82 Reserved function

When the inverter is in stop mode，this function can also be used to prevent wind milling．In addition，it can be used for the purpose of braking using the motor to consume the braking energy resulting in a better controlled stop．Refer to the DC brake parameter 07－16 for DC braking during start．

## Notes：

－The hold function at start is inactive when the hold frequency at start（11－43）is set to a value less than Fmin（01－08）．
－The hold function at stop is inactive when the hold frequency at stop（11－45）is set to a value less than Fmin（01－08）．

$11-47$	KEB Deceleration Time
Range	$【 0.0 \sim 25.5 】$ Sec
$11-48$	KEB Detection Level
Range	$【 190 \sim 210 】 \mathrm{~V}: 200 \mathrm{~V}$
	$【 380 \sim 420 】 \mathrm{~V}: 400 \mathrm{~V}$

KEB function can be used to keep the inverter from tripping on a under voltage condition due to a momentary power－loss．To enable the KEB function set parameter 11－47 to a value greater than 0.0 sec．

Upon detection of a power－loss the inverter uses the KEB deceleration time（11－47）to decelerate the motor and using the regenerative energy from the motor to maintain the DC－bus at a nominal level．

## 11－48：KEB detection level

If the DC－bus voltage falls below the value set in 11－48，the KEB is activated and the inverter starts decelerating according to the value set in 11－47．

To accelerate back to the original output frequency one of the digital inputs（03－00 to 03－05）set for 48 （KEB acceleration）has to be activated and the DC voltage has to rise above 11－48＋delta V （Delta $\mathrm{V}=$ +10 V for 200 V series，Delta $\mathrm{V}=+20 \mathrm{~V}$ for 400 V series）．

Refer to the example in Figure 4．4．83．


Figure 4．4．83 KEB operation

$11-51$	Braking Selection of Zero Speed
Range	【0】：Disable
	【1】：Enable

11－51：Operation selection of zero－speed braking
In V／F control mode，the DC braking operation can be used to the motor shaft．
Set 11－51 to select zero－speed braking operation to 1 to enable this function．
To use DC braking operation set parameter 00－02（operation command selection）to 1 and parameter $00-05$（frequency reference selection）to 1 ，the operation command and frequency reference are now set for external control．When the frequency reference is 0 V （or less than 4 mA ），and the operation command is turned on，the zero－speed＇DC＇braking operation is activated and holding torque is generated using DC braking．

Refer to Figure 4．4．84 for more information on zero－speed DC braking operation．
Note：DC braking 07－07 is limited to $20 \%$ of the inverter rated current．


Figure 4．4．84 Zero－speed braking operation

$11-54$	Output kWh Initialization
Range	【0】：Do not Clear Output kWh
	【1】：Clear Output kWhr

Reset kW－hour meter（12－40）．

$11-55$	STOP Key Selection
Range	【0】 ：Stop Key is Disabled when the Operation Command is not Provided by   Keypad．   【1】 Stop Key is Enabled when the Operation Command is not Provided by   Keypad．

11－55 $=0$ ：Stop button disabled when operation command is set for terminals $(00-02=1)$ or communication （00－02＝3）．
11－55＝1：Stop button enabled

$11-56$	UP／DOWN Selection
Range	【0】 $:$ When UP／DOWN in Keypad is Disabled，it will be Enabled if Press ENTER   after Frequency Modification．
	【1】：When UP／DOWN in Keypad is Enabled，it will be Enabled after Frequency   Modification．

11－56＝0：Changing the reference frequency on the keypad in UP／DOWN control requires the ENTER button to be pressed for the inverter to accept the modified reference frequency．

11－56＝1：Changing the reference frequency on the keypad in UP／DOWN control immediately changes the reference frequency and there for the output frequency．

Note：The reference frequency can be changed（up or down）via the keypad or by setting one of multi－functional digital input terminals（03－00 to 03－05）to 8 and 9 ．Refer to instructions of （03－00 to 03－05＝ 8 or 9 ）．

$11-58$	Record Reference Frequency
Range	【0】：Disable
	【1】：Enable

This function is enabled only when one of multi－function digital input terminals（03－00 to 03－05）is set to 11 （ACC／DEC disabled）or to 8 and 9 （up／down）．Refer to the figure 4．4．18 for the inhibition of acceleration／ deceleration，and figure 4．4．17 for up／down operation．

## Group 12：Monitoring Parameters

$12-00$	Display Screen Selection（LED）	
Range	Highest bit＝＞ $\mathbf{0} \underline{0} \underline{0} \underline{0} \underline{0} \quad<=$ lowest bit	
	The value range of each bit is $0 \sim 7$ from the highest bit to the lowest bit，	
	【0】：No display	【1】：Output Current
	【2】：Output Voltage	【3】：DC Bus Voltage
	【4】：heatsink Temperature	【5】：PID Feedback
	【6】：Al1 Value	【7】：AI2 Value

Note：The highest bit is used for power－up monitor．The 4 least significant bits can be used to customize the display sequence see section 4．1．3．

$12-01$	PID Feedback Display Mode（LED）
Range	【0】：Display the Feedback Value by Integer（xxx）
	【1】：Display the Feedback Value by the Value with First Decimal Place（xx．x）
	【2】：Display the Feedback Value by the Value with Second Decimal Places（x．xx）
$12-02$	PID Feedback Display Unit Setting（LED）
Range	【0】：xxxxx（no unit）
	【1】：xxxPb（pressure）
	【2】：xxxFL（flow）


$12-05$	Status Display of Digital Input Terminal（LED／LCD）
Range	Read－only

Terminals S1-S6 are represented using two segments of each digit. Segment turns on when input is active. The bottom segments of each of the first three digits are used to represent the digital outputs (R1, R2, R3). Segments turn on when output is active.

Example1: S1~S6, R1, R2 and R3 are ON


Example2: S1~S6, R1, R2 and R3 are OFF


Note: Refer to section 4.3 for monitors 12-11~12-75.

$13-00$	Inverter Rating Selection
Range	$\mathbf{0 0 H} \sim \mathrm{FFH}$


Inverter model	13－ 00 display
F510－2005－XXX	205
F510－2008－XXX	208
F510－2010－XXX	210
F510－2015－XXX	215
F510－2020－XXX	220
F510－2025－XXX	225
F510－2030－XXX	230
F510－2040－XXX	240
F510－2050－XXX	250
F510－2060－XXX	260
F510－2075－XXX	275
F510－2100－XXX	2100
F510－2125－XXX	2125
F510－2150－XXX	2150
F510－2175－XXX	2175


Inverter model	13－ 00 display
F510－4005－XXX	405
F510－4008－XXX	408
F510－4010－XXX	410
F510－4015－XXX	415
F510－4020－XXX	420
F510－4025－XXX	425
F510－4030－XXX	430
F510－4040－XXX	440
F510－4050－XXX	450
F510－4060－XXX	460
F510－4075－XXX	475
F510－4100－XXX	4100
F510－4125－XXX	4125
F510－4150－XXX	4150
F510－4175－XXX	4175
F510－4215－XXX	4215
F510－4250－XXX	4250
F510－4300－XXX	4300
F510－4375－XXX	4375
F510－4425－XXX	4425
F510－4535－XXX	4535
F510－4670－XXX	4670
F510－4800－XXX	4800


$13-01$	Software Version
Range	$0.0-9.9$


$13-03$	Cumulative Operation Hours 1
Range	【0～23】hours
$13-04$	Cumulative Operation Hours 2
Range	【0～65535】days
$13-05$	Selection of Accumulative Operation Time
Range	【0】：Accumulative time in power on
	$【 1 】:$ Accumulative time in operation

13－05＝0：Inverter logs the time while the inverter is powered－up．
13－05＝1：Inverter logs the time when the inverter is running．

$13-06$	Parameters Locked
Range	【0】：Parameters out of 13－06 are read－only
	【1】：Only user parameter is enabled．
	【2】：All parameters are writable．
$13-07$	Parameter Password Function
Range	Reserved


13－08	Restore Factory Setting
Range	【0】：No Initialization   【1】：Reserved   【2】： 2 wire Initialization（ $220 / 440 \mathrm{~V}, 60 \mathrm{~Hz}$ ）   【3】： 3 wire Initialization（220／440V， 60 Hz ）   【4】： 2 wire Initialization（ $230 / 415 \mathrm{~V}, 50 \mathrm{~Hz}$ ）   【5】： 3 wire Initialization（230／415V，50Hz）   【6】： 2 wire Initialization（200／380V， 50 Hz ）   【7】： 3 wire Initialization（200／380V， 50 Hz ）   【8】：PLC Initialization   【Others】：Reserved

Use parameter 13－08 to initialize the inverter to factory default．It is recommended to write down the modified parameters before initializing the inverter．After initialization，the value of 13－08 will return to zero automatically．

13－08＝2：2－wire initialization（220V／440V）

Multi－function digital input terminal S1 controls forward operation／stop command，and S2 controls reverse operation／stop command．Refer to Figure 4．4．1．

Inverter input voltage（01－14）is automatically set to 220 V （ 200 V class）or 440 V （ 400 V class）．

Inverter maximum frequency（01－12）is automatically set to 60 Hz ．
13－08＝3：3－wire initialization（220V／440V）
Multi－function digital input terminal S5 controls the forward／reverse direction，and terminals S1 and S2 are set for 3－wire start operation and stop command．Refer to Figure 4．4．2 and Figure 4．4．3 for 3－wire type operation mode．

Inverter input voltage（01－14）is automatically set to 220 V （ 200 V class）or 440 V （ 400 V class）．

Inverter maximum frequency（01－12）is automatically set to 60 Hz ．
13－08＝4：2－wire initialization（230V／415V）

Multi－function digital input terminal S1 controls forward operation／stop command，and S2 controls reverse operation／stop command．Refer to Figure 4．4．1．

Inverter input voltage（01－14）is automatically set to 230 V （ 200 V class）or 415 V （ 400 V class）．

Inverter maximum frequency（01－12）is automatically set to 50 Hz ．
13－08＝5：3－wire initialization（230V／415V）
Multi－function digital input terminal S5 controls the forward／reverse direction，and terminals S1 and S2 are set for 3－wire start operation and stop command．

Inverter input voltage（01－14）is automatically set to 230 V （ 200 V class）or 415 V （ 400 V class）．

Inverter maximum frequency（01－12）is automatically set to 50 Hz ．
13－08＝6：2－wire initialization（200V／380V）

Multi－function digital input terminal S1 controls forward operation／stop command，and S2 controls reverse
operation／stop command．Refer to Figure 4．4．1．

Inverter input voltage（01－14）is automatically set to 200 V （ 200 V class）or 380 V （ 400 V class）．

Inverter maximum frequency（01－12）is automatically set to 50 Hz ．
13－08＝7：3－wire initialization（200V／380V）
Multi－function digital input terminal S5 controls the forward／reverse direction，and terminals S1 and S2 are set for 3－wire start operation and stop command．

Inverter input voltage（01－14）is automatically set to 200 V （ 200 V class）or 380 V （ 400 V class）．

Inverter maximum frequency（01－12）is automatically set to 50 Hz ．
13－08＝8：PLC initialization
Clear built－in PLC ladder logic and related values．

$13-09$	Fault History Clearance Function
Range	【0】：Do not Clear Fault History
	【1】：Clear Fault History

13－09＝1：Clears inverter fault history

$13-10$	Password Function 2
Range	$0 \sim 9999$

Group 14：PLC Setting Parameters

$14-00$	T1 Set Value 1
$14-01$	T1 Set Value 2（Mode 7）
$14-02$	T2 Set Value 1
$14-03$	T2 Set Value 2（Mode 7）
$14-04$	T3 Set Value 1
$14-05$	T3 Set Value 2（Mode 7）
$14-06$	T4 Set Value 1
$14-07$	T4 Set Value 2（Mode 7）
$14-08$	T5 Set Value 1
$14-09$	T5 Set Value 2（Mode 7）
$14-10$	T6 Set Value 1
$14-11$	T6 Set Value 2（Mode 7）
$14-12$	T7 Set Value 1
$14-13$	T7 Set Value 2（Mode 7）
$14-14$	T8 Set Value 1
$14-15$	T8 Set Value 2（Mode 7）
Range	【0～9999 】


$14-16$	C1 Set Value
$14-17$	C2 Set Value
$14-18$	C3 Set Value
$14-19$	C4 Set Value
$14-20$	C5 Set Value
$14-21$	C6 Set Value
$14-22$	C7 Set Value
$14-23$	C8 Set Value
Range	【0～65535】


$14-24$	AS1 Set Value 1
$14-25$	AS1 Set Value 2
$14-26$	AS1 Set Value 3
$14-27$	AS2 Set Value 1
$14-28$	AS2 Set Value 2
$14-29$	AS2 Set Value 3
$14-30$	AS3 Set Value 1
$14-31$	AS3 Set Value 2
$14-32$	AS3 Set Value 3
$14-33$	AS4 Set Value 1
$14-34$	AS4 Set Value 2
$14-35$	AS4 Set Value 3
Range	【0～65535 】


$14-36$	MD1 Set Value 1
$14-37$	MD1 Set Value 2
$14-38$	MD1 Set Value 3
$14-39$	MD2 Set Value 1
$14-40$	MD2 Set Value 2


$14-41$	MD2 Set Value 3
$14-42$	MD3 Set Value 1
$14-43$	MD3 Set Value 2
$14-44$	MD3 Set Value 3
$14-45$	MD4 Set Value 1
$14-46$	MD4 Set Value 2
$14-47$	MD4 Set Value 3
Range	【0～65535

Please refer to section 4.5 for more details of built－in PLC function．

## Group 15：PLC Monitoring Parameters

$15-00$	T1 Current Value 1
$15-01$	T1 Current Value 2（Mode 7）
$15-02$	T2 Current Value 1
$15-03$	T2 Current Value 2（Mode 7）
$15-04$	T3 Current Value 1
$15-05$	T3 Current Value 2（Mode 7）
$15-06$	T4 Current Value 1
$15-07$	T4 Current Value 2（Mode 7）
$15-08$	T5 Current Value 1
$15-09$	T5 Current Value 2（Mode 7）
$15-10$	T6 Current Value 1
$15-11$	T6 Current Value 2（Mode 7）
$15-12$	T7 Current Value 1
$15-13$	T7 Current Value 2（Mode 7）
$15-14$	T8 Current Value 1
$15-15$	T8 Current Value 2（Mode 7）
Range	【0 99999 】


$15-16$	C1 Current Value
$15-17$	C2 Current Value
$15-18$	C3 Current Value
$15-19$	C4 Current Value
$15-20$	C5 Current Value
$15-21$	C6 Current Value
$15-22$	C7 Current Value
$15-23$	C8 Current Value
Range	$【 0 \sim 65535 】$


$15-24$	AS1 Results
$15-25$	AS2 Results
$15-26$	AS3 Results
$15-27$	AS4 Results
$15-28$	MD1 Results
$15-29$	MD2 Results
$15-30$	MD3 Results
$15-31$	MD4 Results
$15-32$	TD Current Value
Range	【0～65535

## Group 16：LCD Function Parameters

$16-00$	Main Screen Monitoring
Range	$【 5 \sim 75 】$
$16-01$	Sub－Screen Monitoring 1
Range	$【 5 \sim 75 】$
$16-02$	Sub－Screen Monitoring 2
Range	$【 5 \sim 75 】$

At power－up the inverter shows two monitor section on the display，main monitor section and the sub－screen monitor section（smaller font）．

Choose the monitor signal to be displayed as the main－screen monitor screen in parameter 16－00，and the monitor signals to be displayed on the sub－screen monitor in parameters 16－01 and 16－02，similar to monitor parameters 12－5～12－75．

16－03	Selection of Display Unit
Range	【0】 ：Display unit is Hz （Resolution is 0.01 Hz ）   【1】 ：Display unit is \％（Resolution is $0.01 \%$ ）   【2～38】：Display unit rpm，（uses number of motor poles to calculate）【40～9999】 ：100\％is XXXX with no decimals（integer only）   【10001～19999】：100\％is XXX．X with 1 decimal   【20001～29999】：100\％is XX．XX with 2 decimals   【30001～39999】：100\％is X．XXX with 3 decimals
16－04	Selection of Engineering Unit
Range	【0】 ：No Unit   【1】：FPM   【2】 ：CFM   【3】：PSI   【4】：GPH   【5】 ：GPM   【6】：IN   【7】：FT   【8】：／s   【9】：／m   【10】：／h   【11】：${ }^{\circ} \mathrm{F}$   【12】 ：inW   【13】：HP   【14】 ：m／s   【15】 ：MPM   【16】 ：CMM   【17】：W   【18】：KW   【19】：m   【20】 ：${ }^{\circ} \mathrm{C}$   【21】：RPM

（1）．Display unit of digital operator（16－03）

Set the units of the following items to be displayed，the frequency reference（05－01，00－18，06－01～06－15） and the monitoring frequency 12－16，12－17（Output frequency）
（2）．Display unit of engineering（16－04）．

When 16－03 $=00040-39999$ ，engineering units are enabled．The displayed set range and the frequency range of unit（05－01，06－01～06－15）as well as the monitoring frequency（12－16，12－17）are changed by parameters 16－04 and 16－03．

16－03	Set／displayed contents			
0	0.01 Hz			
1	0.01 \％（maximum output frequency 01－02＝100\％）			
2－39	RPM（RPM＝ $120 \times$ reference frequency／the number of motor pole．The number of motor pole is set by 16－03）			
$\begin{gathered} 00040 \\ - \\ 39999 \end{gathered}$	Set the decimal point by using the fifth place．			
	16－03	Display	Display unit	Display example
	$\begin{gathered} 00040 \\ -\quad \\ 09999 \end{gathered}$	믐	use 16－04 setting	Example： 100 \％speed is 0200   ＞set 16－03＝00200（from 05－01，06－01 to 06－15，set range from 0040 to 9999）．   ＞set 16－04＝0（no unit）
	$\begin{gathered} 10001 \\ -\quad \\ 19999 \end{gathered}$	므․ $\square$		```Example: 100 \% speed is 200.0 CFM > set \(16-03=12000\) ( \(05-01,06-01\) to \(06-15\), set range from 0000 to 9999). > set 16-04=2 (CFM) \(>60 \%\) speed will be displayed as 120.0 CFM```
	$\begin{gathered} 20001 \\ - \\ 29999 \end{gathered}$	ㅁ．．미		```Example: \(100 \%\) speed is \(65.00^{\circ} \mathrm{C}\) > set 16-03=26500 (05-01, 06-01 to 06-15, set range from 0000 to 9999) \(>\) set \(16-04=20\left({ }^{\circ} \mathrm{C}\right)\) \(>60 \%\) of speed is displayed as \(39.00^{\circ} \mathrm{C}\)```
	$\begin{gathered} 30001 \\ - \\ 39999 \end{gathered}$	ㅁ．믐		Example： $100 \%$ speed is $2.555 \mathrm{~m} / \mathrm{s}$   $>$ set 16－03＝32555   ＞set 16－04＝14（m／s）   $>60 \%$ speed is displayed as $1.533 \mathrm{~m} / \mathrm{s}$


$16-05$	LCD Backlight
Range	$【 0 \sim 7 】$

Adjust the screen contrast of the digital operator．If it is set to 0 ，the screen backlight is turned off．

$16-06$	Automatic Return Time
Range	$【 0 \sim 120 】$ Sec

If the digital operator is not pressed within the time specified in 16－06（returning time of automatic back button），the digital operator will automatically return to the mode screen．

When it is set to 0 ，the automatic return function is turned off．Press the back button to return to the
previous directory．

$16-07$	Copy Function Selection
Range	【0】：Do not copy parameters
	【1】：Read inverter parameters and save to the operator．
	【2】：Write the operator parameters to inverter．
	【3】：Compare parameters of inverter and operator．
$16-08$	Selection of Allowing Reading
Range	【0】：Do not allow to read inverter parameters and save to the operator．
	$【 1 】:$ Allow to read inverter parameters and save to the operator．

LCD digital operator with built－in memory（EEPROM）can be used to store and retrieve parameters：
（1）Read：Save inverter parameters to the digital operator（INV $\rightarrow$ OP）．
（2）Write：Write the parameters from the digital operator to the inverter and save（OP $\rightarrow$ INV）．
（3）Verify：Compare the inverter parameters against the parameters in the digital operator．
16－07＝0：No action
16－07＝1：Read（all parameters are copied from the inverter to the keypad）．
16－07＝2：Write（all parameter are copied from the keypad to the inverter）．
16－07＝3：Verify（Compare the set value of the inverter to the parameter of the digital operator）．
Set 16－08＝0，to prevent the saved parameter data stored in the digital operator from accidentally being overwritten．

When parameter 16－08＝0 and the read operation is executed（16－07＝1）a warning message of＂RDP Read Prohibited＂will be displayed on the keypad and the read operation is cancelled．

Refer to the following steps for copy function operation．
For the write－in operation requires the following items to match．
（1）Software version
（2）Control method
（3）Inverter type
（4）Inverter rated capacity and voltage

Set one of the parameters 03－00 to 03－05（multi－function digital input selection）to 49 （Enable the parameter write－in function）to enable or disable the parameter write－in function．

When terminal is active，parameters can be copied from the digital operator to the inverter．When the terminal is not active inverter parameters are prohibited from write－in，excluding the reference frequency （00－05）．
-READ : Copy inverter parameters to the keypad

Steps	LCD Display (English)	Description
1	Group   14 PLC Setting   15 PLC Monitor   16 LCD Keypad Func.	Select the copy function group (16) from the group menu.
2	PARA   $-07:$ Copy Sel   $-08:$ READ Sel   $-09:$ Keypad Loss Sel	Press the Read / Enter key and select parameter (16-07) copy sel.
3		Press the Read / Enter key to display the data setting / read screen (LCD display is inversed).
4		Change the set value to 1 (read) by using the up arrow key.
5	-ADV-  	- Use Read / Enter key to enable the read operation, the display is shown as the left.   - The bottom of LCD display will show a bar to indicate the read progress s.
	-ADV-   READ COMPLETE	"READ COMPLETE" will be displayed on the keypad when reading was successful.
6	RDP   Read Prohibited	- The error message of "RDP Read Prohibited" may occur on the keypad when reading parameters from the inverter is prohibited.   - If the error is displayed, press any key to remove the error message and go back to parameter 16-07.
7		When DSP/FUN key is pressed, the display returns to parameter 16-07.

- WRITE: Copy Keypad parameters to the Inverter

Steps	LCD Display (English)	Description
1	Group   14 PLC Seting   15 PLC Monitor   16 LCD Keypad Func.	Select the copy function group (16) from the group menu.
2	PARA   $-07:$ Copy Sel   $-8:$ REAR Sel   $-09:$ Keypad Loss Sel	Press the Read / Enter key and select parameter (16-07) copy sel.
3		Press the Read / Enter key to display the data setting / read screen (LCD display is inversed).
4		Change the set value to 2 (write) by using the up arrow key.


Steps	LCD Display (English)	Description
5	- ADV-   WRITE   INV $\rightarrow$ OP	- Use Read / Enter key to enable the read operation, the display is shown as the left.   - The bottom of LCD display will show a bar to indicate the read progress.
6	-ADV-   WRITE COMPLETE	"WRITE COMPLETE" will be displayed on the keypad when writing was successful.
	WRE Write Error	- The error message of "WRE Write Error " may occur on the keypad when writing parameters to the inverter is prohibited.   - If the error is displayed, press any key to remove the error message and go back to parameter 16-07.
7		When DSP/FUN key is pressed, the display returns to parameter 16-07.

## - Verify: Compare Inverter Parameters against Keypad Parameters.

Steps	LCD Display (English)	Description
1	Group   14 PLC Setting   15 PLC Monitor   16 LCD Keypad Func.	Select the copy function group (16) from the group menu.
2	PARA   $-07:$ Copy Sel   $-08:$ READ Sel   -09 : Keypad Loss Sel	Press the Read / Enter key and select parameter (16-07) copy sel.
3		Press the Read / Enter key to display the data setting / read screen (LCD display is inversed).
4		Change the set value to 3 (verify) by using the up arrow key.
5	-ADV-   VERIFY   INV $\rightarrow$ OP	- Use Read / Enter key to enable the read operation, the display is shown as the left.   - The bottom of LCD display will show a bar to indicate the read progress.
	-ADV-   VERIFY COMPLETE	"VERIFY COMPLETE" will be displayed on the keypad when writing was successful.
6	VERY   Verify Error	- The error message of "VRYE Verify Error " may occur on the keypad when writing parameters to the inverter is prohibited.   - If the error is displayed, press any key to remove the error message and go back to parameter 16-07.
7		When DSP/FUN key is pressed, the display returns to parameter 16-07.


$16-09$	Selection of Operator Removed（LCD）
Range	$【 0 】:$ Keep operating when LCD operator is removed．
	【1】：Display fault to stop when LCD operator is removed

16－09＝0：Continue operating when keypad is removed．

16－09＝1：Trip inverter when keypad is removed while operating in local mode．

$16-10$	RTC Time Display Setting
Range	【0】：Hide     【1】 Display
$16-11$	RTC Date Setting
Range	【12．01．01 $\sim 99.12 .31 】$
$16-12$	RTC Time Setting
Range	$【 00: 00 \sim 23: 59 】$

Set the internal clock before using the function of Real Time Clock（RTC）．
RTC date setting is determined by parameter 16－11 and RTC time setting is determined by parameter 16－12．

RTC is displayed in the top of the keypad and refer to Figure 4.4 .85 for the selection of RTC time display（16－10）is set to 1 ．

```
Monitor 00:00
 Freq Ref
 12-16 = 000.00 Hz
12-17 = 000.00 Hz
12-18 = 0000.0A
```

Figure 4．4．85 RTC Time Display（Example）

Notes：
－RTC is not enabled if keypad does not connect with the inverter．
－The counting time continues running regardless of the function being hide or display in the paramerer 16－10（RTC Time Display Setting）．

Users can apply the parameters 12－72 and 12－73 to monitor the specific RTC date and time．
RTC has the following characteristics：
－Four times a day
－Four weeks
－Timer offset function（preset time）
－Timrer enables via multi－function digital input
－Selection for contant time and speed
－Timer enables multi－function digital output

16－13	RTC Timer Function
Range	【0】 ：Disable   【1】 ：Enable   【2】 ：Set by DI
16－14	P1 Start Time
16－15	P1 Stop Time
16－18	P2 Start Time
16－19	P2 Stop Time
16－22	P3 Start Time
16－23	P3 Stop Time
16－26	P4 Start Time
16－27	P4 Stop Time
Range	【00：00～23：59】
16－16	P1 Start Date
16－17	P1 Stop Date
16－20	P2 Start Date
16－21	P2 Stop Date
16－24	P3 Start Date
16－25	P3 Stop Date
16－28	P4 Start Date
16－29	P4 Stop Date
Range	【1】 ：Mon   【2】：Tue   【3】：Wed   【4】：Thu   【5】：Fri   【6】：Sat   【7】：Sun
16－30	Selection of RTC Offset
Range	【0】 ：Disable   【1】 ：Enable   【2】 ：Set by DI
16－31	RTC Offset Time Setting
Range	【00：00～23：59】
16－32	Source of Timer 1
16－33	Source of Timer 2
16－34	Source of Timer 3
16－35	Source of Timer 4
Range	【0～31】 ：Refer to Table 4．4．13
16－36	Selection of RTC Speed
Range	【0】 ：Off   【1】：By Timer 1   【2】：By Timer 2   【3】：By Timer 3   【4】：By Timer 4   【5】：By Timer 1＋2
16－37	Selection of RTC Rotation Direction
Range	【xxx0 B】 ：RTC Run1 Forward Rotation【xxx1 B】 ：RTC Run1 Reverse Rotation


	【xx0x B】：RTC Run2 Forward Rotation【x0xx B】：RTC Run3 Forward Rotation【0xxx B】 ：RTC Run4 Forward Rotation	【xx1x B】 ：RTC Run2 Reverse Rotation   【x1xx B】 ：RTC Run3 Reverse Rotation   【1xxx B】 ：RTC Run4 Reverse Rotation

Source of timer can be selected to link multiple time periods and one time period can be set to multiple timers．

Timer is set by the following steps：

## （1）Start the timer：

Timer starts via the setting of RTC timer function（16－13）．
（2）Set the time period：
Set the start \＆stop time and date．If the setting of start time is equal to that of stop time，timing period is off．
（3）The timer is enabled：
Arrange time period to the specific timer（16－32～16－35）．

## （4）Link to parameters：

The timer can be linked to the relay output．One relay output can be only linked to one timer（ ex．03－11， 03－12 and 03－39，16－36）．

Refer to Figure 4．4．86 for RTC structure．


Figure 4．4．86 RTC structure
Refer to the following Table 4．4．13 for the selection of timer operation cycle．

Table 4．4．13 Arrange time period to the timer function

$\mathbf{1 6 - 3 2}$   $\mathbf{1 6 - 3 5}$	$\mathbf{O}$	P4	P3	P2	P1	Timer Function	Display
0	0	0	0	0	0	Without the selection of timer	None
1	0	0	0	0	1	Time Period 1	P 1
2	0	0	0	1	0	Time Period 2	P 2
3	0	0	0	1	1	Time Period 1 and 2	$\mathrm{P} 1+\mathrm{P} 2$
4	0	0	1	0	0	Time Period 3	P 3
5	0	0	1	0	1	Time Period 1 and 3	$\mathrm{P} 1+\mathrm{P} 3$
6	0	0	1	1	0	Time Period 2 and 3	$\mathrm{P} 2+\mathrm{P} 3$
7	0	0	1	1	1	Time Period 1 ，2 and 3	$\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3$
8	0	1	0	0	0	Time Period 4	P 4
9	0	1	0	0	1	Time Period 1 and 4	$\mathrm{P} 1+\mathrm{P} 4$
10	0	1	0	1	0	Time Period 2 and 4	$\mathrm{P} 2+\mathrm{P} 4$
11	0	1	0	1	1	Time Period 1 ，2 and 4	$\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 4$
12	0	1	1	0	0	Time Period 3 and 4	$\mathrm{P} 3+\mathrm{P} 4$
13	0	1	1	0	1	Time Period 1，3 and 4	$\mathrm{P} 1+\mathrm{P} 3+\mathrm{P} 4$


$\mathbf{1 6 - 3 2}$   $\sim$   $\mathbf{1 6 - 3 5}$	$\mathbf{O}$	$\mathbf{P 4}$	$\mathbf{P 3}$	$\mathbf{P 2}$	$\mathbf{P 1}$	Timer Function	Display
14	0	1	1	1	0	Time Period 2, 3 and 4	$\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4$
15	0	1	1	1	1	Time Period 1, 2, 3 and 4	$\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4$
16	1	0	0	0	0	Offset selection	Offset (O)
17	1	0	0	0	1	Offset and time period 1	$\mathrm{O}+\mathrm{P} 1$
18	1	0	0	1	0	Offset and time period 2	$\mathrm{O}+\mathrm{P} 2$
19	1	0	0	1	1	Offset and time period 1 and 2	$\mathrm{O}+\mathrm{P} 1+\mathrm{P} 2$
20	1	0	1	0	0	Offset and time period 3	$\mathrm{O}+\mathrm{P} 3$
21	1	0	1	0	1	Offset and time period 1 and 3	$\mathrm{O}+\mathrm{P} 1+\mathrm{P} 3$
22	1	0	1	1	0	Offset and time period 2 and 3	$\mathrm{O}+\mathrm{P} 2+\mathrm{P} 3$
23	1	0	1	1	1	Offset and time period 1, 2 and 3	$\mathrm{O}+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3$
24	1	1	0	0	0	Offset and time period 4	$\mathrm{O}+\mathrm{P} 4$
25	1	1	0	0	1	Offset and time period 1 and 4	$\mathrm{O}+\mathrm{P} 1+\mathrm{P} 4$
26	1	1	0	1	0	Offset and time period 2 and 4	$\mathrm{O}+\mathrm{P} 2+\mathrm{P} 4$
27	1	1	0	1	1	Offset and time period 1, 2 an 4	$\mathrm{O}+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 4$
28	1	1	1	0	0	Offset and time period 3 and 4	$\mathrm{O}+\mathrm{P} 3+\mathrm{P} 4$
29	1	1	1	0	1	Offset and time period 1, 3 and 4	$\mathrm{O}+\mathrm{P} 1+\mathrm{P} 3+\mathrm{P} 4$
30	1	1	1	1	0	Offset and time period 2, 3 and 4	$\mathrm{O}+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4$
31	1	1	1	1	1	Offset and time period 1 , 2 , 3   and 4	$\mathrm{O}+\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4$

Reference frequency and motor rotation direction are controlled by RTC function.
$16-36=0$ : RTC speed selection is disabled.

16-36=1: Timer 1 is enabled.

Reference frequency $=$ Frequency Setting of Speed-Stage 0 (05-01)
16-36=2: Timer 2 is enabled.
Reference frequency $=$ Frequency Setting of Speed-Stage 0 (05-01)
16-36=3: Timer 3 is enabled.

Reference frequency $=$ Frequency Setting of Speed-Stage 0 (05-01)
16-36=4: Timer 4 is enabled.

Reference frequency $=$ Frequency Setting of Speed-Stage 0 (05-01)
16-36=4: Timer 1 and 2 are enabled.

Reference frequency is enabled by the simultaneous operation of timer 1 and 2.

## Notes:

- The inverter runs via the start of the specific timer without the influence of other timers
- The selection of RTC speed setting (16-36) is affected by the action of time period 1 to 4 (P1~P4) which is corresponding to the selection of RTC rotation direction (16-37).
For example:
When the selection of RTC speed is set to 5 (by timer $1+2$ ), source of run command (00-02) and source of frequecny command $(00-05)$ are required to set to RTC. Thus, reference frequency is controlled by RTC timer 1 and 2 and the inverter continues running.

Refer to Table 4.4.14 for the control of reference frequency.

Table 4.4.14 Reference frequency is determined by timer 1 and 2

Timer 1	Timer 2	Main Frequency Command Source Selection (00-05)	Source of frequency setting	Selection of rotation direction
0	0	O(Keypad)	Set by frequency setting of speed-stage 0 (05-01)	By RTC 1 (16-37)
0	0	1(Analog external terminal)	Set by Al1 terminal	
1	0	O(Keypad)	Set by frequency setting of speed-stage 1 (06-01)	By RTC 2 (16-37)
1	0	1(Analog external terminal)	Set by Al2 terminal	
0	1	O(Keypad)	Set by frequency setting of speed-stage 2 (06-02)	By RTC 3 (16-37)
0	1	1(Analog external terminal)	None	
1	1	O(Keypad)	Set by frequency setting of speed-stage 3 (06-03)	By RTC 4 (16-37)
1	1	1(Analog external terminal)	None	

RTC function can not run normally when:

- when multi-function terminal (03-00~03-05) is set to the fire mode.
- When KEB function is enabled
- Source of main frequency of RTC function is according to Table 4.4.14 and also can refer to main and alternative frequency command modes (00-07).
- If main run command source selection (00-02) is set to 0~3 (0: keypad, 1: external terminal, 2: communication control, 3: PLC), refer to Table 4.4.15 for the relationship between main run command and RTC timer status.

Table 4.4.15 Relationship between main run command and RTC timer status

Main run command   $\mathbf{0 0 - 0 2}$	RTC timer $\mathbf{x}$ status	Inverter status
$0 \sim 3$	0	Inverter can not run (without run command)
$0 \sim 3$	1	Inverter can not run (without run command)
4	0	Inverter can not run (RTC timer is disabled)
4	1	Inverter runs and rotates depending on the function   of 16-37.

Take an example for RTC timer connecting with different parameters:

The work time on Monday is 6:00 AM to 10:00 PM.
The work time on Tuesday to Friday is 8:00 AM to 8:00 PM.
The work time on Saturday is 8:00 AM to 6:00 PM.
The work time on Sunday is 8:00 AM to 12:00 PM.
Motor runs on weekdays (Mon. to Fri.) at speed 1 and on weekends at speed 2.


Figure 4.4.87 RTC timer (example)
(1) Start up the timer in the parameter group 16 (Set the internal time first to enable this function).

Set the correct date and time in the parameters 16-11 and 16-12 and set parameter 16-13 to 1(enable RTC timer function).
(2) Set time period 1 (P1)

Start time 1: 16-14 = 06:00:00 (6:00 AM)
Stop time 1: 16-15 = 22:00:00 (10:00 PM)
Start date 1: 16-16 = 1 (Monday)
Stop date 1: 16-17 = 1 (Monday)
(3) Set time period 2 (P2)

Start time 2: 16-18 = 08:00:00 (8:00 AM)
Stop time 2: 16-19 = 20:00:00 (8:00 PM)
Start date 2: $16-20=2$ (Tuesday)
Stop date 2: 16-21 = 5 (Friday)
(4) Set time period 3 (P3)

Start time 3: 16-22 = 08:00:00 (8:00 AM)
Stop time 3: 16-23 = 18:00:00 (6:00 PM)
Start date 3: 16-24 = 6 (Saturday)
Stop date 3: 16-25 = 6 (Saturday)

## Set time period 4 (P4)

Start time 4: 16-26 = 08:00:00 (8:00 AM)
Stop time 4: 16-27 = 12:00:00 (12:00 AM)
Start date 4: 16-28 = 7 (Sunday)
Stop date 4: 16-29 = 7 (Sunday)
(6) Timer 1 is enabled to set all the time periods ( $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4$ )

16-32 = 15: Source of timer $1=\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4)$
(7) Selection of RTC speed is determined by timer 1
$16-36=1$ : Timer 1 is enabled.
Frequency setting is speed-stage 0 (05-01).
Rotation direction (16-37) is set to 0000b.
Then, the rotation direction of time period 1~4 (P1~P4) is corresponding to the setting of 16-37.
(8) Choose two constant speeds (speed 1 \& speed 2)
$16-36=5$ : Timer $1+2$ is enabled.
When timer 1 is enabled, frequency setting is speed-stage 1 ; while timer 2 is enabled, frequency setting is speed-stage 2.
Rotation direction (16-37) is set to 0000b.
Then, when timer 1 and timer 2 are active, direction of motor rotation is forward rotation.

## Note:

Select RTC offset (16-30) and set RTC offset time (16-31) to enable the offset time. Inverter runs depending on the arranging time period to timer function. Refer to the following Figure 4.4.88.


Figure 4.4.88 Operation of offset time

## For example:

## Inverter runs at the time period exclusive P1:

When 16-36=1 (selection of RTC speed is set to timer 1 ) and 16-32=17 (offset + PI), RTC offset (16-30) is set by DI and the offset time is set via 16-31. Switch on DI and RTC will immediately start up.

If the source of timer is set to 15 (P1+P2+P3+P4), press "STOP" key at the time period 1 (P1). Normally, RTC will start automatically at the next time period (P2) but it can also start via the setting of 16-30 to 2 (set by DI). Inverter re-runs when switching on DI and RTC will immediately start up.

## Notes:

If press "STOP" key at the time period and inverter can re-run at this time, user can:

- Set the selection of RTC offset (16-30) to 2 (set by DI) and set DI to 56 (RTC Offset Enable).
- Switch the selection of RTC offset (16-30) to be enabled.


## Group 17：IM Motor Automatic Tuning Parameters

17－00	Mode Selection of Automatic Tuning
Range	【0】：Rotation Auto－tune   【1】：Static Auto－tune   【2】：Stator Resistance Measurement   【4】：Loop Tuning
17－01	Motor Rated Output Power
Range	【0．00～600．00】 KW
17－02	Motor Rated Current
Range	$\mathbf{1 0 \%} \mathbf{2 0 0 \%}$ of the inverter rated current in V／F control mode 25\％～200\％of the inverter rated current in SLV control mode
17－03	Motor Rated Voltage ${ }^{* 1}$
Range	$\begin{aligned} & 【 0.0 \sim 255.0 】 \mathrm{~V}: 200 \mathrm{~V} \\ & 【 0.0 \sim 510.0 】 \mathrm{~V}: 400 \mathrm{~V} \end{aligned}$
17－04	Motor Rated Frequency ${ }^{*}$
Range	【10．0～400．0】 Hz
17－05	Motor Rated Speed
Range	【0～24000】 rpm
17－06	Pole Number of Motor
Range	【2，4，6，8】 pole
17－08	Motor No－load Voltage
Range	【50～240】 V：220V 【100～480】 V：440V
17－09	Motor Excitation Current
Range	【0．01～600．00】 A （15\％${ }^{\text {a }}$ 70\％motor rated current）
17－10	Automatic Tuning Start
Range	【0】：Disable   【1】：Enable
17－11	Error History of Automatic Tuning
Range	【0】：No Error   【1】 ：Motor Data Error   【2】：Stator Resistance Tuning Error   【3】：Leakage Induction Tuning Error   【4】：Rotor Resistance Tuning Error   【5】：Mutual Induction Tuning Error   【6】：Reserved   【7】：DT Error   【8】：Motor Acceleration Error   【9】：Warning

＊1．Values of motor rated voltage are for 200 V class，double the values for 400 V class．
＊2．The setting range of motor rated frequency is 0.0 to 400.0 Hz ．

## Auto－tuning

Based on the motor nameplate set the motor rated output power（17－01），motor output rated current （17－02），motor rated voltage（17－03），motor rated frequency（17－04），motor rated speed（17－05）and number of motor poles（17－06）to perform an auto－tune．

- Automatic tuning mode selection (17-00)

17-00=0: Perform rotational auto-tune (High performance auto-tune)
17-00=1: Perform a static non-rotational auto-tune
17-00=2: Perform stator resistance non-rotational auto-tune (V/F mode) when using long motor leads
17-00=3: Reserved
17-00=4: Performance improvement for in vector control mode

- Motor rated output power (17-01)

Set by inverter capacity (13-00)

- Motor rated current (17-02)

Set by inverter capacity (13-00)
Set the range to $10 \% \sim 200 \%$ of the inverter rated current.

- Motor rated voltage (17-03)
- Motor rated frequency (17-04)
- Motor rated speed (17-05)

When tuning a special motor (e.g. constant power motor, high-speed spindle motor), with a motor rated voltage or rated motor frequency that is lower than a standard AC motor, it is necessary to confirm the motor nameplate information or the motor test report.

Prevent the inverter output voltage from saturation when the motor rated voltage is higher than the inverter input voltage (see Example 1).

Example 1: Motor rated voltage $(440 \mathrm{~V} / 60 \mathrm{~Hz})$ is higher than the inverter input voltage $(380 \mathrm{~V} / 50 \mathrm{~Hz})$.


Figure 4.4.89 Rated voltage and frequency settings

Step 1: Set motor rated voltage, 17-03=440V.
Step 2: Set no-load voltage, 17-08=360V, lower the input voltage by 20 V when operating in torque control. Step 3: Set motor rated frequency:
$17-04=$ (Rated frequency of motor nameplate) $\times \frac{\text { (Inverter input power voltage) }}{(\text { Rated frequency of motor nameplate) }}=60 \mathrm{~Hz} \times \quad \frac{380 \mathrm{~V}}{440 \mathrm{~V}}=51.8 \mathrm{~Hz}$

Step 4: Automatically tuning
Parameter 01-12 (Fbase) is automatically set during auto-tuning. Parameter 01-12 (Fbase) is set to the motor rated frequency.

Step 5: Set the 01-12 (Fbase) to the motor rated frequency on the motor nameplate. If the maximum output frequency (01-02, Fmax) and base frequency (01-12, Fbase) are different, set the maximum output frequency when the auto- tuning (01-02, Fmax) is completed.

When the inverter input voltage (or frequency) is higher than the motor rated voltage (or frequency), set the motor rated voltage (17-03) and the motor rated frequency (17-04) to the rated frequency on the motor nameplate.

Example 2: The inverter input voltage and frequency $(440 \mathrm{~V} / 50 \mathrm{~Hz})$ are higher than the motor rated voltage and frequency $(380 \mathrm{~V} / 33 \mathrm{~Hz})$, set $17-03$ to 380 V (rated motor voltage) and $17-04$ to 33 Hz (motor rated frequency).

- Number of poles (17-06)

Set the motor pole number with its range is $2,4,6$ and 8 poles

- Motor no-load voltage (17-08)
a) Motor no-load voltage is mainly used in SLV mode, set to value $10 \sim 50 \mathrm{~V}$ lower than the input voltage to ensure good torque performance at the motor rated frequency.
b) Set to $85 \sim 95 \%$ of the motor rated voltage. In general, the no-load voltage can be closer to the motor rated voltage for larger motors, but cannot exceed the motor rated voltage.
c) The motor no-load voltage can be set to a value greater than the actual input voltage. In this case, the motor can only operates under relatively low frequency. If the motor operates at the rated frequency an over voltage condition may occur.
d) The higher the motor power is, the higher the no-load voltage is.
e) A smaller no-load voltage will reduce the no-load current.
f) When load is applied the magnetic flux is weakened and the motor current increases.
g) A higher no-load voltage results in a higher the no-load current.
h) When load is applied the magnetic flux weakens and the motor current increases. Increasing the magnetic flux generates back EMF and results in poor torque control.
- Motor excitation current (17-09)
a) Motor excitation current is used for rotational auto-tune.
b) Set motor excitation current to $30 \%$ of the motor rated current.
c) If this parameter is not set, the inverter will calculate the motor related parameters.
d) Only the static-type automatic tuning (17-00=1) can be set.
- Automatic tuning start (17-10)

Set parameter 17-10 to 1 and press ENTER the inverter will display "Atrdy" for Auto-tune ready. Next, press RUN to start the auto-tune procedure. During auto-tune the keypad will display "Atune "for Auto-tune in progress. When the motor is successfully tuned, the keypad shows "AtEnd".

- Error history of automatic tuning (17-11)

If auto-tuning fails the keypad will display the AtErr" message and the auto-tune cause is shown in parameter 17-11. Refer to section 5 for troubleshooting and possible automatic tuning error causes.

Note: The motor tuning error history (17-11) shows the tuning result of the last auto-tune. No error is displayed when auto-tune is aborted or when the last auto-tune was successful.

Perform the "Stator resistance measurement" (17-00=2) auto-tune if the inverter/motor leads are longer than 167ft (50m).

For the best performance in vector control perform the rotary-type automatic tune (17-00 = 0) first (using short motor leads between the inverter and motor) and a "Stator resistance measurement" (17-00=2) next.

If a rotary auto-tune $(17-00=0)$ cannot be performed, manually enter the mutual induction (02-18), excitation current (02-09), core saturation compensation factor 1-3 (02-11-02-13).

Perform the＂Stator resistance measurement＂（17－00＝2）in V／F control when inverter／motor leads are longer than 167ft（50m）．

## Group 18：Slip Compensation Parameters

$18-00$	Slip Compensation Gain at Low Speed
Range	$【 0.00 \sim 2.50 】$
$18-01$	Slip Compensation Gain at High Speed
Range	【－1．00～1．00】
$18-02$	Slip Compensation Limit
Range	【0～250】\％
$18-03$	Slip Compensation Filter Time
Range	【0．0～10．0】 sec
$18-04$	Regenerative Slip Compensation Selection
Range	【0】：Disable   【1】：Enable   $18-05$   ROC Delay Time   Range   $18-06$   Range   FOC Gain   $0.0002 .00 】$

Slip compensation automatically adjusts the output frequency based on the motor load to improve the speed accuracy of the motor mainly in V／F mode．

The slip compensation function compensates for the motor slip to match the actual motor speed to the reference frequency．

## Slip compensation adjustment in V／F mode

18－00：Slip compensation gain at low speed
The adjustment of slip compensation gain at low speed follows the below procedure：
1．Set the rated slip and the motor no－load current（02－00）．
2．Set the slip compensation（18－00）to 1.0 （factory default setting is $0.0 \mathrm{in} \mathrm{V} / \mathrm{F}$ control mode）
3．For the operation with a load attached，measure the speed and adjust the slip gain（18－00） accordingly（increase in steps of 0．1）．
－If the motor speed is lower than frequency reference，increase the value of 18－00．
－If the motor speed is higher than frequency reference，decrease the value of 18－00．
When the output current is greater than the no－load current（02－00），the slip compensation is enabled and the output frequency increases from f1 to f2．Refer to Figure 4．4．90．，the slip compensation value is calculated as follows：
［Output current（12－08）－motor no－load current（02－00）］
Slip compensation value $=$ Motor rated sync induction rotation difference $\mathbf{X}$


Figure 4．4．90 Slip compensation output frequency

18-02: Slip compensation limit
Sets slip compensation limit in constant torque and the constant power operation (figure 4.4.91). If $18-02$ is $0 \%$, the slip compensation limit is disabled.


Figure 4.4.91 Slip compensation limit
When the slip compensation gain 18-00 at low speed is adjusted, and the actual motor speed is still lower than the reference frequency, the motor may be limited by the slip compensation limit.

Note: Make sure that the slip compensation limit 18-02 does not exceed the maximum allowed system limit.

18-03: Slip compensation filter
Set slip compensation filter time in V/F mode
18-04: Regenerating slip compensation selection
The selections to enable or disable the slip compensation function during regeneration.
To enable slip compensation during regeneration caused by deceleration (SLV mode), set 18-04 to 1 in case speed accuracy is required. When the slip compensation function is used regenerative energy might increase temporarily $(18-04=1)$ therefore a braking module might be required.

## SLV mode adjustment

18-00: Slip compensation gain
a) Slip compensation can be used to control the full rang speed accuracy under load condition.
b) If the speed is lower than 2 Hz and the motor speed decreases, increase the value of 18-00.
c) If the speed is lower than 2 Hz and the motor speed increases, reduce the value of 18-00.

Slip compensation gain uses a single value for the whole speed range. As a result the slip compensation accuracy at low speed is high but slight inaccuracies might occur at high speeds.

Adjust parameter 18-02 together with the compensation value or continue to adjust 18-00 if the speed accuracy at higher speed is not acceptable. Please note adjusting these parameters might impact the accuracy at lower speeds.

The impact of 18-00 on the torque and the speed are shown in figure 4.4.92.


Figure 4.4.92 18-00 Effect on the torque and speed

## 18-01: Slip compensation gain at high speed

It is not required to adjust the Slip compensation gain at high speed if the motor is loaded. After adjusting parameter 18-00 it is recommended to increase the reference frequency and check the motor speed. In case of a speed error increase the value of 18-01 to adjust the compensation. Increase the motor rated frequency ( $01-12$ base frequency) and increase the value of $18-01$ to reduce the speed error. If the speed accuracy becomes worse due to an increase in motor temperature it is recommended to use a combination of 18-00 and 18-01 for adjustment.

Compared to 18-00, 18-01 serves as a variable gain for the full speed range. Parameter 18-01 determines the slip compensation at the motor rated speed and is calculated follows:
[Slip compensation gain at high speed x frequency reference]
Slip compensation gain = Slip compensation gain at low speed $\boldsymbol{+}$
[Motor rated frequency]


Figure 4.4.93 18-00/18-01 Slip compensation gain versus frequency reference


Figure 4.4.94 18-01 Effect on torque speed curve
18-05: FOC (Flux Orient Control) delay time

In the SLV mode, the slip compensation of the magnetic flux depends on the torque current and excitation current. If the motor load rises above $100 \%$ while running at the motor rated frequency, the motor voltage and resistance drops sharply, which may cause the inverter output to saturate and current jitter occur. The magnetic flux slip compensation will independently control the torque current and the excitation current to prevent current jitter. For slow speed or fixed speed operation, 18-05 may be increased. For fast operation adjust 18-06.

## 18-06: Slip compensation gain

If the motor is jittering at the rated frequency under full load, the value of 18-06 may gradually be reduced to zero to reduce current jitter.

## Group 20 Speed Control Parameters

20－00	ASR Gain 1
Range	【0．00～250．00】
20－01	ASR Integral Time 1
Range	【0．001～10．000】 Sec
20－02	ASR Gain 2
Range	【0．00～250．00】
20－03	ASR Integral Time 2
Range	【0．001～10．000】 Sec
20－04	ASR Integral Time Limit
Range	【0～300】\％
20－07	Selection of Acceleration and Deceleration of P／PI
Range	【0】：PI speed control will be enabled only in constant speed．For accel／decel， only use $\mathbf{P}$ control．   【1】：Speed control is enabled either in constant speed or accel／decal．
20－08	ASR Delay Time
Range	【0．000～0．500】Sec
20－09	Speed Observer Proportional（P）Gain 1
Range	【0．00～2．55】
20－10	Speed Observer Integral（I）Time 1
Range	【0．01～10．00】 Sec
20－11	Speed Observer Proportional（P）Gain 2
Range	【0．00～2．55】
20－12	Speed Observer Integral（I）Time 2
Range	【0．01～10．00】 Sec
20－13	Low－pass Filter Time Constant of Speed Feedback 1
Range	【1～1000】 mSec
20－14	Low－pass Filter Time Constant of Speed Feedback 2
Range	【1～1000】 mSec
20－15	ASR Gain Change Frequency 1
Range	【0．0～400．0】 Hz
20－16	ASR Gain Change Frequency 2
	【0．0～400．0】 Hz
20－17	Torque Compensation Gain at Low Speed
Range	【0．00～2．50】
20－18	Torque Compensation Gain at High Speed
Range	【－10～10】 \％

The following figure an overview of the automatic speed regulator（ASR）block．

## SLV control mode：

The ASR function adjusts the output frequency to control the motor speed to minimize the difference between the frequency reference and actual motor speed．

The ASR controller in SLV mode uses a speed estimator to estimate the motor speed．In order to reduce speed feedback signal interference，a low－pass filter and speed feedback compensator can be enabled．

The ASR integrator output can be disabled or limited．The ASR output is passed through a low－pass filter．


Figure 4.4.95 ASR block diagram (SLV mode)

## ASR setting (SLV control mode)

In SLV mode the ASR gain is divided into a high-speed and low-speed section. The speed controller has a high-speed gain 20-00/20-01 and a low-speed gain 20-02/20-03 that can be set independently.
a) The high/low switch frequency can be set with parameter 20-15 and 20-16. Similar to the ASR gain, the speed estimator has a high-speed gain 20-09/20-10 and a low-speed gain 20-11/20-12.
b) The speed estimator has a low-pass filter to reduce the speed feedback interference, parameter 20-13 and 20-14 are active at high speed as well as low speed. The switch between the high-speed and the low-speed is set by parameter 20-15 and 20-16.
c) 20-17 sets the low-speed compensation gain of the speed feedback.
d) 20-18 sets the high-speed compensation gain of the speed feedback.
e) When the frequency reference is rises above the value set in 20-16, the ASR gain used is set by parameters 20-00 and 20-01.
f) When the frequency reference falls below the value set in 20-15, the ASR gain used is set by parameters 20-02 and 20-03.
g) Gain time constant is adjusted linearly when the speed command falls within the range of 20-15 to 20-16, for a smooth operation.


Figure 4.4.96 ASR gain setting (SLV mode)

## Tune the speed control gain

During ASR gain tuning, the multi-function analog output (AO1 and AO2 terminal) can be used to monitor the output frequency and motor speed (as shown in figure 4.4.96).

SLV mode gain tuning (20-00~20-03, 20-09~20-18)
a) Complete the parameter tuning in normal operation.
b) Increase ASR proportional gain 1 (20-00), ASR proportional gain 2 (20-02), carefully monitor system stability.
Use parameter 20-00 and 20-02 to adjust the speed response for each cycle. Tuning the settings of 20-00, 20-02 can increase system response, but may cause system instability. See figure 4.4.97.


Figure 4.4.97 System response of ASR proportion gain
a) Reduce ASR integral time 1 (20-01), ASR integral time 2 (20-02) and carefully monitor system stability.

1. A long integral time will result in poor system response.
2. If the integral time setting is too short, the system may become unstable Refer to the following figure.

While tuning ASR P and I gain the system may overshoot and an over voltage condition can occur. A braking unit (braking resistor) can be used to avoid an over voltage condition.


Figure 4.4.98 The response of ASR integral time
Both low-speed ASR gain and the high-speed gain can be set to the same values and only require to be adjusted in case of system instability.

In case tuning of the ASR $P$ and $I$ gain 20-00~20-03 does not improve the system response, reduce the low-pass filter time constant 20-13~20-14 to increase the bandwidth of the feedback system and re-tune the ASR gain.

- Tune low-speed low-pass filter time constant 20-14, make sure the reference frequency is below parameter $20-15$ value
- Tune high-speed low-pass filter time constant 20-13 at frequency reference, make sure the reference frequency is above parameter 20-16 value.

■ Increasing the low-pass filter time constant can limit the bandwidth of the speed feedback system and may reduce the system response. Increasing the low-pass time reduces the speed feedback signal interference but may results in sluggish system response when the load suddenly changes. Adjust the low-pass filter time if the load stays fairly constant during normal operation. The low bandwidth of the speed feedback must be supported by the low gain of ASR to ensure the stable operation.

- Decreasing the low-pass filter time constant may increase the bandwidth of the speed feedback and the system response. Decreasing the low-pass time may increase the speed feedback interference resulting in system instability when the load suddenly changes. Decrease the low-pass filter time is a quick system response is required for rapidly changing loads. The high bandwidth of the speed feedback allows for a relative high ASR gain.
■ In case tuning 20-00 ~ 20-03 and the low-pass filter time constant 20-13 do not improve the system response time, tuning the PI gain 20-09~20-12 of the speed estimator may be required.
- Setting a high gain for the speed estimator (high proportion ( P ) gain and small integral (I) time) increases the bandwidth of the speed feedback, but may cause speed feedback interference resulting in system instability.
■ Setting a low gain for the speed estimator (small proportion ( P ) gain and high integral (I) time) decreases the bandwidth of the speed feedback, may improve speed feedback interference resulting in a more stable system.
■ The default values for the ASR can be used in most applications, no adjustment is required. Adjusting the low-pass filter time and speed estimator gains requires a good understanding of the overall system.
- Parameter 20-15 sets the gain switch frequency at low-speed and parameter 20-16 sets the gain switch frequency at high-speed.
■ Operating at a speed below 20-15 will result in a larger excitation current for low-speed operation accuracy. When the frequency reference rises above 20-16, the inverter will output the rated excitation current at the no-load voltage (02-19).
■ For general purpose applications parameter $20-15$ should be set to a value of $5 \sim 50 \%$ of the motor base frequency.
- If this value is too high, the inverter output may saturate. Parameter 20-16 should be set to a value of 4 Hz or more above the value of 20-08.
- When experiencing speed jitter at high speed and stable operation during mid-range speed while operating a heavy load (>100\%), it is recommended to reduce the no-load voltage (02-19) or tune the FOC parameters (18-05~18-06).
■ Parameter 20-17 and 20-18 are for compensating speed feedback at low speed and high speed.
■ Use parameter 20-17 to adjust the torque compensation gain for the low speed range. By tuning 20-17an offset is added to the torque-speed curve. Increase 20-17 when the no-load speed is lower than the frequency reference. Decrease 20-17 when the no-load speed is higher than the frequency reference. The effect on the torque-speed curve from 20-17 is shown as the following figure:


Figure 4.4.99 Effect on the torque-speed curve from 20-17

- Use parameter 20-18 to adjust the torque compensation gain for middle to high speed range. For most general purpose applications it is not necessary to adjust the 20-18. By tuning 20-18an offset is added to the torque-speed curve. Increase 20-18 when the no-load speed is lower than the frequency reference. Decrease 20-18 when the no-load speed is higher than the frequency reference. The effect on the torque-speed curve from 20-18 is shown as the following figure 4.4.100.


Figure 4.4.100 Effect on the torque-speed curve from 20-17
(1). ASR main delay time (20-08).
a) Does not required to be adjusted for general purpose applications
b) When the set value of 20-08 is set high, the speed response will and therefore system response will decrease improving system stability.
(2). ASR integral limit (20-04)
a) Setting a small value may prevent system response when the load suddenly changes.

## Group 21 Torque Control Parameters

$21-05$	Positive Torque Limit
Range	$【 0 \sim 160 】 \%$
$21-06$	Negative Torque Limit
Range	【0～160】\％
$21-07$	Forward Regenerative Torque Limit
Range	【0～160】\％
$21-08$	Reversal Regenerative Torque Limit
Range	【0～160】\％

Torque limit can be set in two ways：
－Use torque limit parameters（21－05 to 21－08）to set a fixed torque limit．
－Set the torque limit by using the multi－function analog input（AI2）．

There are four torque limits that can be set separately，one for each quadrant：
（I）Positive torque limit in forward direction（21－05 positive torque limit）
（II）Positive torque limit of reverse direction（21－08 negative torque limit）
（III）Negative torque limit in reverse direction（21－06 forward regenerating torque limit）
（IV）Negative torque limit in forward direction（21－07 reversal regenerating torque limit）

Refer to Figure 4．4．101．


Figure 4．4．101 Torque limit setting
Torque limit setting by using multi－function analog input Al2（04－05）

Table 4．4．16 Torque limit analog input

$\mathbf{0 4 - 0 5} \mathbf{( A I 2 )}$	Function
11	Positive torque limit
12	Negative torque limit
13	Regenerative torque limit（for both forward and reversal directions）．
14	Positive／negative torque limit（positive and negative detection torque limit ）

Set the analog input terminal（AI2）signal level（04－00），gain（04－07）and bias（04－08）

The default setting for the analog input Al 2 is $0-10 \mathrm{~V}$ representing $0-100 \%$ of the motor rated torque）．

Figure 4．4．102 shows the relationship between the output torque and the torque limit．


Figure 4.4.102 Analog input torque limit (A12)
When the analog input is set to positive torque limit (value $=11$ ) the torque limit is active in the third and fourth quadrant.in the reverse direction (regenerative torque in the second quadrant).

When the analog input is set to negative torque limit (value $=12$ ) the torque limit is active in the third and fourth quadrant.

When the analog input is set to regenerative torque limit (value $=13$ ) the torque limit is active in the second and fourth quadrant can be controlled.

When the analog input is set to positive/negative torque limit (value $=14$ ) the torque limit is active in all four quadrants.

When the analog input is at maximum ( 10 V or 20 mA ), the torque limit is $100 \%$ of the motor rated torque. In order to increase the torque limit above $100 \%$ the analog input gain (04-07) has to set to a value greater than $100 \%$. For example: $160.0 \%$ of the gain will result in the torque limit of $160 \%$ of motor rated torque at $10 \mathrm{~V}(20 \mathrm{~mA})$ analog input level.

## Group 22：PM Motor Parameters－ only available when PM Control Mode is selected

22－00	Rated Power of PM Motor
Range	【0．00～600．00】 Kw
22－01	Rated Voltage of PM Motor
Range	【50～240】 V：200V 【100～480】V：400V
22－02	Rated Current of PM Motor
Range	25\％～200\％of inverter＇s rated current
22－03	Pole Number of PM Motor
Range	【2～96】 Poles
22－04	Rated Rotation Speed of PM Motor
Range	【0～60000】 rpm
22－05	Maximum Rotation Speed of PM Motor
Range	【0～60000】 rpm
22－06	PM Motor Rated Frequency
Range	【0．0～400．0】 Hz
22－07	PM Motor Type
Range	【0】 SPM   【1】IPM
22－09	PM SLV Start Mode
Range	【0】 Forced to Start   【1】 Static to Start
22－10	PM SLV Start Torque Current
Range	【0．0～120．0】 \％
22－11	DC Injection Current
Range	【0．0～100．0】 \％
22－13	Speed Estimation Gain
Range	【4～16】
22－14	PM Armature Resistance
Range	【0．001～32．767】 $\Omega$
22－15	PM Motor D－axis Inductance
Range	【0．001～32．767】 mH
22－16	PM Motor Q－axis Inductance
Range	【0．001～32．767】 mH
22－17	PM EMF Coefficient
Range	【 0.1 ～3276．7】 mV／rad／s

The PM parameter group can be restored to factory default be initializing the inverter（13－08）．
PM motor rated power（22－00）
Set the motor power according to the motor nameplate．
PM motor rated voltage（22－01）
Set the motor voltage according to the motor nameplate．
PM motor rated current（22－02）
Set the motor full load according to the motor nameplate．

## PM motor pole number (22-03)

Set the number of motor poles according to the motor nameplate.

## PM motor rated speed (22-04)

Set parameter 22-04 or 22-06, the inverter will automatically calculate the one or the other.
Set the motor rated speed in rpm according to the motor nameplate.

## Note:

Only set parameter 22-04 or 22-06, the inverter will automatically calculate the other one. Formula: $\mathrm{n}(22-04)=120 \star f(22-06) / P(22-03)$

## PM motor maximum rotation speed (22-05)

Set the maximum motor rated speed in rpm according to the motor nameplate.

## PM motor rated frequency (22-06)

Set the motor rated frequency according to the motor nameplate.

## PM Motor Type (22-07)

Set the motor type to IPM or SPM.

## PM SLV Start Mode (22-09)

22-09=0: Forced to Start
Motor directly runs without magnetic pole search.
The start current is set by parameter 22-10 and 22-12.
The run current is the combination setting of 22-10 and 22-12. The formula is as follows:

$$
I_{s}=\sqrt{(22-10)^{2}+(22-12)^{2}}
$$

## 22-09=1: Static to Start

Motor rotor status requires being in a stationary state before starting.
Motor runs after searching for magnetic poles. Start current is set by 22-10 and 22-12.
Different from being forced to start, run current can be applied to the above formula when the setting value of 22-10 is higher than that of 22-12. Run current is dominated by the magnetic current (22-12) and torque current setting (22-10) is disabled when the setting value of 22-10 is lower than that of 22-12.

## PM SLV Start Torque Current (22-10)

Set the torque current at start up and the unit is \% of motor rated current.

## DC Injection Current (22-11)

Set the auto-tuning DC injection current of the permanent magnet (PM) motor and the unit is \% of motor rated current.

## Speed Estimation Gain（22－13）

Adjust the performanace of speed response．
The higher the setting value，the smaller the speed deviation．But the controlled object will be jittered and unstable when the value is excessively higher．

The lower the setting value，the larger the speed deviation．So adjust the appropriate setting value depending on the available devices．

## PM Armature Resistance（22－14）

Set the moto rresistance per phase in unit of $0.001 \Omega$ ．This parameter is automatically set under the motor auto－tuning（22－21）．

Note：The motor resistance is different from the line resistance．

## PM Motor D－axis Inductance（22－15）

Set motor D－axis inductance in unit of 0.001 mH ．This parameter is automatically set under the motor auto－tuning（22－21）．

PM Motor Q－axis Inductance（22－16）
Set motor Q－axis inductance in unit of 0.001 mH ．This parameter is automatically set under the motor auto－tuning（22－21）．

## PM EMF Coefficient（22－17）

Set the peak value of motor induction voltage in unit of $1 \mathrm{mV} /(\mathrm{rad} / \mathrm{s})$［electrical angle］．This parameter is automatically set under the motor auto－tuning（22－21）．

22－21	SLV PM Motor Tuning
Range	【0】：Disable
	【1】：Enable
$22-22$	Fault History of SLV PM Motor Tuning
	【0】：No Error
	$【 1 】 \sim$ 【8】：Reserved
Range	【9】：Current Abnormity Occurs while Loop Adjustment
	$【 10 】:$ Reserved
	$【 11 】:$ Stator Resistance Measurement is Timeout
	$【 12 】:$ Reserved

## SLV PM motor tuning（22－21）

## WARNING！

Sudden start：The inverter and motor may start unexpectedly during Auto－Tuning，which could result in death or serious injury．Make sure the area surrounding of the motor and load are clear before proceeding with Auto－Tuning．

## WARNING！Electric Shock Hazard

High voltage is supplied to the motor when performing an auto－tune，even when the motor is stopped， which could result in death or serious injury．Do not touch the motor before performing the auto－tuning procedure is completed．

## WARNING！Holding Brake

Do not perform an auto－tuning procedure when the motor is connected to a brake this may result in incorrect motor data calculation．Disconnect the motor and the load and confirm that the motor can freely run．
a) Use parameter 22-21 to select tuning mode.
b) Next press the enter key to go to the PM motor tuning screen. The keypad will display the message of "IPrdy" (Ready to Tune).
c) Press run to start the PM motor tuning. The keypad will display the "IPtun" message during auto-tune.
d) If the motor is successfully tuned, the message of "IPEnd " will be displayed. If auto-tune is aborted with the stop key, the operator will display the message of " IPbrd " (PM motor tuning aborted).

## Fault History of SLV PM Motor Tuning (22-22)

Parameter 22-22 shows the PM motor tuning fault history. If PM motor tuning has failed, the "IPErr" message is shown on the keypad (PM motor tuning failure). Refer to section 10 for the possible error causes and trouble shooting.

PM motor tuning fault history (22-22) only stores the result of the last auto-tune performed .If auto-tuning was successful or aborted no error will be displayed.

## Group 23 Pump \＆HVAC Function Parameters

$23-00$	Function Selection
Range	【0】：Disable
	【1】：Pump
	【2】：HVAC

Select function of pump or HVAC via parameter 23－00．This function is enabled if the source of reference frequency（00－05）is set to 5 （PID given）and PID control mode（10－03）is enabled．Function of pump of HVAC affects PID target value and if parameter group 23 are enabled．

23－01	Setting of Single \＆Multiple Pumps and Master \＆Alternative
Range	【0】：Single Pump
	【1】：Master
	【2】：Slave 1
	【3】：Slave 2
	【4】：Slave 3

Set the inverter as the Master or Slave 1～3 via parameter 23－01．Refer to figure 4．4．111 for the functional process of dual pump start to enable multiple pumps in parallel．

23－02	Target Pressure Setting
Range	$【 0.1 \sim 255.0 】 \mathrm{PSI}$

Set the pressure value depending on the pressure transmitter of pump system after setting 10－00 to 0 （keypad given）．

$23-03$	Maximum Pressure Setting
Range	$【 0.1 \sim 255.0 】 \mathrm{PSI}$

Set the maximum preesure value depending on the pressure transmitter of pump system．Parameter 23－02 is limited to this maximum value．

$23-04$	Pressure Command Source
Range	【0】：Set by 23－02
	【1】：Set by AI

Pressure command source is given the value set by 23－02（Operation Pressure Setting）or AI．

$23-05$	Display Mode Selection
	【0】：Display of Target and Feedback Preesure（with LED keypad，setting of
23－03 needs to be lower than 9．9 PSI）	
Range	【1】：Only Display Target Pressure
	【2】：Only Display Feedback Pressure

This function can select the common display of target and feedback pressure or separate display．
（1）when 15－9＝0000 ：Led keypad displays pressure setting value and feedback pressure value．


Two－digit in the left is the pressure value setting and two－digit in the right is the feedback pressure value in the seven－segment monitor．
（2）when 15－9＝0001：Led keypad only displays the pressure setting value．

（3）when 15－9＝0002 ：Led keypad only displays the feedback pressure value．


$23-06$	Proportion Gain（P）
Range	$【 0.00 \sim 10.00 】$
$23-07$	Integral Time（I）
Range	$【 0.0 \sim 100.0 】$ Sec
$23-08$	Differential Time（D）
Range	$【 0.0 \sim 100.0 】$ Sec



Figure 4．4．103 Diagram of feedback pressure value

Table 4．4．17 Guide for PID parameter adjustment

	Increase Setting Value	Decrease Setting Value	Main Feature
Proportional Gain（P）	（adv．）Increase response time	（adv．）Reduce jittering	Increase stabilized time
	（disadv．）Might cause pump jittering	（disadv．）Slow down response	
Integral Time（I）	（adv．）Smooth output frequency	（adv．）Fast response	For smooth feedback variations
	（disadv．）Slow down response	（disadv．）Change rapidly output frequency．	
Differential Time（D）	（adv．）Avoid overshooting	（adv．）System stability	Respond to system rapid variations
	（disadv．）System instability or motor jittering	（disadv．）Overshooting easily	

## Notes：

－PID parameters can be modified during the inverter is running．
－（disadv．）means disadvantage，（adv．）means advantage．


Figure 4．4．104 Diagram for PID parameter adjustment

$23-09$	Sleep Tolerance Range
Range	$【 0.1 \sim 255.0 】 \mathrm{PSI}$
$23-10$	Sleep Frequency
Range	$【 0.0 \sim 180.0 】 \mathrm{~Hz}$
$23-11$	Sleep DelayTime
Range	$【 0.0 \sim 255.5 】$ Sec



Figure 4．4．105 Diagram for stop time of constant pressure

Note：The purpose of stop time of constant pressure is energy saving．

$23-12$	Maximum Pressure Limit
Range	$【 0.1 \sim 255.0 】$ PSI
$23-15$	Minimum Pressure Limit
Range	$【 0.1 \sim 255.0 】$ PSI



Figure 4．4．106 Diagram for pressure feedback limit
Note：The pressure under the control of PID is between the maximum pressure limit（23－12）and minimum pressure limit（23－15）．

$23-13$	Warning Time of High Pressure
Range	$【 0.1 \sim 255.0 】$ Sec
$23-14$	Stop Time of High Pressure
Range	$【 0.1 \sim 255.0 】$ Sec



Figure 4．4．107 Diagram for warning to stop under the limit of high pressure

$23-16$	Warning Time of Low Pressure
Range	$【 0.1 \sim 255.0 】$ Sec
$23-17$	Fault Stop Time of Low Pressure
Range	$【 0.0 \sim 600.0 】$ Sec



Figure 4．4．108 Diagram for warning to stop under the limit of low pressure

$23-18$	Detection Time of Loss Pressure
Range	$【 0.0 \sim 600.0 】$ Sec
$23-19$	Detection Proportion of Loss Pressure
Range	$【 0 \sim 100.0 】 \%$

23－19＝0：Disable
$23-19>0$ ：If the feedback pressure value is lower than the value of 【（23－02）$\times(23-19)$ 】and the detection time of loss pressure（23－18）pass，the inverter jumps fault signal（FBLSS）．

$23-23$	Direction of Water Pressure Detection
Range	【0】：Upward Detection   【1】：Downward Detection
$23-24$	Range of Water Preesure Detection
Range	【0．1 $\sim 2.50 】$ PSI
$23-25$	Period of Water Preesure Detection
Range	【0．0 $\sim 200.0 】$ Sec
$23-26$	Acceleration Time of Water Pressure Detection
Range	$【 0.0 \sim 600.0 】$ Sec
$23-27$	Deceleration Time of Water Pressure Detection
Range	$【 0.0 \sim 600.0 】$ Sec

Note：The warning time of low pressure（23－16）is corresponding to the acceleration time $2(00-16)$ so the setting of $23-16$ changed with the setting of $00-16$ ，and the stop time of low pressure（23－17）is also corresponding to the deceleration time $2(00-17)$ ．Thus，avoid multi－speed application function while PUMP function is enabled．


Figure 4．4．109 Diagram for upward detection of water pressure

## Notes:

- 23-25 = 0.0 (sec), Stop the function of water pressure detection.
- When function of water pressure detection is enabled, it can shorten the time of inverter jumping into sleep when user stops using water or uses a small amout of water.
- If user frequenctly continues using water, to avoid the occurance of fluttering or instability extending the cycle of water pressure detection is suggested to reduce detection times.
- When function of upward detection of water pressure starts, it will slightly increase the pressure. It may cause shortly pressure fluttering or instability under the situation of contuning using water. It is suggested to reduce the range of water pressure detection (23-24) but it will extend the time of inverter jumping into sleep status when user stops using water or uses a small amout of water.


Figure 4.4.110 Diagram for downward detection of water pressure

## Notes:

- 23-25 = 0.0 (sec), Stop the function of water pressure detection.
- When function of water pressure detection is enabled, it can shorten the time of inverter jumping into sleep when user stops using water or uses a small amout of water.
- If user frequenctly continues using water, to avoid the occurance of fluttering or instability extending the cycle of water pressure detection is suggested to reduce detection times.
- When function of upward detection of water pressure starts, output frequency will decelerate depending on the deceleration time of water pressure detection (23-27). It may cause shortly pressure fluttering or instability when pressure decreases with the reduced speed and then increase to the target pressure value with the increased speed under the situation of contuning using water. It depends on the pressure feedback value being lower than the gap between the target pressure value (23-02) and range of water pressure detection (23-24),
- Range of water pressure detection (23-24) should have appropriate adjustment to prevent pressure from fluttering too much.

For example, when a trace of water-leaking leads to pressure decreasing during deceleration, the inverter jumps to sleep status or reacceleration depending on the fisrt reach of sleep frequency or the pressure being first lower than the gap between the target pressure value ( $23-02$ ) and range of water pressure detection (23-24).

Table 4．4．18 Guide for comparison of water pressure detection direction

	Advantage	Disadvantage
Upward detection of water pressure	－Keep the pressure above the target pressure during this process．   －For strict and precise applications	Operating frequency is higher caused from too high＂Head＂under the situation of stopping using water or using a small amount of water．So this detection effect is restricted to be more difficult to sleep．   Energy－saving of water used is not obvious and Slave is not easy to sleep under the multiple pumps in parallel．
Downward detection of water pressure	Jump into sleep status under the situation of stopping using water or using a small amount of water．   －For energy－saving purpose，under the multiple pumps in parallel regulate the pumps to the optimum operation state during this process．   Startup sequency is by Master，Slave 1，Slave 2，and Slave 3．Sleep sequency is by Slave 1， Slave 2，and Slave 3 and Master．After the switching time is allowable，alternate Master and Slave reach the average of life expectancy．	－Pressure fluctuations may occur during this process if user inappropriately regulates the range of water pressure detection（23－24） and the deceleration time of water pressure detection（23－27）．


23－28	Foreced Run Command
Range	$【 0.0 \sim 200.0 】 \mathrm{~Hz}$

This function is enabled when the source of frequency command（00－05）is set to 5 （PID given）and PID mode（10－03）is enabled．

Pump will not depend on the feedback to make any PID output adjustment when multi－function digital input（S1～S6）is set to 16 （PID control disable）．

And when the other digital input is set to 57 （forced frequency run），inverter sets the frequency run depending on the parameter 23－28（forced run command）．If DI is removed，the inverter sops output．

It is applied to the situation when pressure sensor disconnects，control inverter output via the external pressure sensor（ex．differential pressure switch）．

23－29	Switching Time of Multiple Pumps in Parallel
Range	$【 0 \sim 240 】$ hour
$23-30$	Detection Time of Water Flow with Multiple Pumps in Parallel
Range	$【 0.0 \sim 30.0 】$ Sec
$23-31$	Synchronous Selection of Multiple Pumps in Parallel
	【0】：Disable
Range	【1】：Pressure Setting and Run／Stop
	【2】：Pressure Setting
	【3】：Run／Stop



Figure 4.4.111 Double pumps start up process
A : When double pumps are enabled, Master starts up first and Slave is out of power standby to enter constant-pressure operation.
B : Higher water used results in the higher operation frequency of Master. If water pressure do not reach the error range of constant-pressure and the operation time is not over the detection time (23-30), Slave is still out of power standby.
C : If it is over the detection time (23-30), Master informs Slave of auxiliary kicking water. After Slave operates, the operation frequency of Master and Slave reduces to the operation of constant-pressure if water used is stable.
D : If water used is lower, the operation frequency of Master and Slave reduces. Because the water is less than that under the operation of double pumps, Slave stop to sleep and only Master runs to reach constant-pressure operation.
Note: Requirements of Slave sleeping under the operation of double pumps is referred to the descriptions of 23-32 and 23-33.

## Notes:

- If the operation time is over the switching time (23-29) under the operation of double pumps, the dominance of Master and Slave reverses to operate.
- When $23-01 \neq 0$, the parameter $23-01$ of these two inverters can not be simultaneously set to 1 or 2 . That is, the parameter 23-01 of one inverter is set to 1 and that of the other inverter should be set to 2 and vice versa.

$23-41$	Local／Remote Key
Range	【0】：Disable
	【1】：Enable

User can switch reference frequency of the inverter and give the run command in the local or remote mode．

Input source selection is determined by the source of frequency command $(00-05)$ and the operation modes（00－02）．

## 23－41＝0：Disable

Frequency command is controlled by terminal AI1 and AI2 when SEQ and REFsignal light up and run command is controlled by terminal S1，S2 or RS485．

## 23－41＝1：Enable

User can control FWD／REV key for the switch of Local／Remote key．
Frequency command is controlled by the keypad when SEQ and REF signal light off．
Note：Local mode is controlled by the keypad and remote mode is controlled by control circuit terminals or RS485 connection．

$23-42$	Energy Recaculating
Range	【0】：Disable（Energy Accumulating）   【1】：Enable
$23-43$	Electricity Price per kWh
Range	【0．000～5．000】

When the inverter starts up，user can learn the motor accumulative output energy from parameter 12－67 （unit： kWHr ）and 12－68（unit：MWHr）．User recalculates energy via the setting of parameter 23－42 to 1.

User caculates electricity price via the setting of electricity price per kWh（23－43）and learn the accumulative electricity price from parameter 12－69 and 12－70．

$23-44$	Selection of Accumulative Electricity Pulse Output Unit
Range	【0】：Disable
	【1】：Unit for 0.1 kWh
	【2】：Unit for 1 kWh
	【3】：Unit for 10 kWh
	【4】：Unit for 100 kWh
	【5】：Unit for 1000 kWh

Unit of accumulative electricity pulse output signal（23－44）is for kWh．When accumulating the electricity to the setting unit of parameter 23－44，the pulse output signal of the electric meter or PLC is on lasting 200 msec．


Figure 4．4．112 Diagram for accumulative electricity pulse output

$23-45$	Given Modes of Flow Meters Feedback
	【0】：Disable
Range	【1】：Analog Input
	【2】：Pulse Input
$23-46$	Maximum Value of Flow Meters
Range	【1～50000】GPM
$23-47$	Target Value of Flow Meters
Range	【1～50000】 GPM

## 23－00＝2：HVAC

HVAC is enabled when the source of main frequency command（00－05）is set to 5 （PID given）and PID mode is enabled（10－03）．

## 23－45：Given Modes of Flow Meters Feedback

Modes of flow meters feedback is given by analog input（AI）or pulse input（PI）and flow meter （12－71）displays feedback value．

## 23－46：Maximum Value of Flow Meters

Maximum value of flow meters is the maximum value set by the target value of flow meters for HVAC system．

## 23－47：Target Value of Flow Meters

This function sets the target value of flow meters for HVAC system depending on the setting of $10-00$ to 0 （PID target value source is set by keypad．）

$23-48$	Maximum Flow Value of Feedback
Range	$【 0.01 \sim 99.00 】 \%$
$23-49$	Maximum Flow Warning Time of Feedback
Range	【0～255】Sec
$23-50$	Maximum Flow Stop Time of Feedback
Range	【0～255】Sec



Figure 4．4．113 Diagram for high flow limited warning of stop

23－51	Minimum Flow Value of Feedback
Range	$【 0.01 \sim 99.00 】 \%$
$23-52$	Minimum Flow Warning Time of Feedback
Range	$【 0 \sim 255 】$ Sec
$23-53$	Minimum Flow Stop Time of Feedback
Range	$【 0 \sim 255 】$ Sec



Figure 4．4．114 Diagram for low flow limited warning of stop

23－54	Detection Function of Low Suction
Range	【0】 ：Disable   【1】 ：PID Error Value   【2】 ：Current   ［3］：Current and PID Error Value
23－55	Detection Time of Low Suction
Range	【0～30．0】 Sec
23－56	PID Error Level of Low Suction
Range	【0～30】 \％
23－57	Current Level of Low Suction（Motor Rated Current）
Range	【0～100】 \％
23－58	Reaction of Low Suction
Range	【0】：Disable   【1】 ：Warning   【2】 ：Fault   【3】 ：Fault \＆Restart

The hydraulic application can detect insufficient water in the tank resulting in low suction via HVAC function．User can select the reaction of low suction（23－58）to run command．Low suction is detected by parameter 23－54．Refer to Figure 4．4．115 for the process of low suction．


Figure 4．4．115 Diagram for the process of low suction

When 23－54＝0，detection function of low suction is disabled．
And refer to Table 4．4．19 for the detection logic of parameter 23－54 to select PID error of output current as The detection signal．

Table 4．4．19 the detection logic of low suction

$23-54$	Detection Signal	
	PID Error	Output Current
$\mathbf{1}$	1	0
2	0	1
3	1	1

The detection level is required to be set by PID error level of low suction（23－56）and output current signal （23－57）after selecting the detection signal．

The state of low suction experiences the detection time of low suction（23－55）；when it is over the detection time，low suction is active．

The reaction of low suction（23－58）is set by user to act．Refer to Table 4．4．20 for the detection signal of
water used．
Table 4．4．20 Detection signal of water used

$23-58$	Inverter Status	Keypad Signal	Error Signal
$\mathbf{0}$	Continous Running	None	None
$\mathbf{1}$	Continous Running	LSCFT（Flash）	Warning of Low Suction
$\mathbf{2}$	Stop	LSCFT	Jump to Error for Low   Suction
$\mathbf{3}$	Stop and Restart	LSCFT	Jump to Error for Low   Suction and Restart

## Note：

－Low suction state is detected by if the signal is higher than PID error level or lower than output current．

## Group 241 to 8 Pump Card Function Parameters

24－00	Selection of 1 to 8 Pump Card Function
	【0】：Function of 1 to 8 Pump Card is Disabled．
	【1】：Fixed Modes of Inverter Pump：First on and Last off；then Stop All．
	【2】：Fixed Modes of Inverter Pump：Only Stop Inverter Pump．
Range	【3】：Fixed Modes of Inverter Pump：First on and First Off；then Stop All．
	【4】：Cycle Modes of Inverter Pump：First on and First Off；then Stop All．
	【5】：Cycle Modes of Inverter Pump：Only Stop Inverter Pump．
	【6】：1 to 3 Cycle Modes of Inverter Pump：First on and First off；then Stop All．

The inverter with built－in PID controller and simple programmable logic controller（PLC）is widely applied to water supply industry． 1 to 8 pump card，mainly applied to the situation of water supply of constant pressure，dispenses the inverter from the need of an external controller．

The inverter provides the power supply of variable frequency for pump to implement the continuously variable transmission（CRT）and makes the water pressure being satbly controlled via the built－in PID controller．

There are two basic operation modes in 1 to 8 pump card：

## （1）Fixed modes of inverter pump：

Pump drived by the inverter is fixed to 1 set and maximum to 8 sets．


Figure 4.4.116 Fixed modes of inverter pump

## (2) Cycle modes of inverter pump:

Pump drived by the inverter is not fixed to 1 set and maximum to 4 sets.


Figure 4.4.117 Cycle modes of inverter pump

## 24-00=0: Function of 1 to 8 pump card is disabled.

$\mathbf{2 4 - 0 0}=\mathbf{1}$ : in the fixed modes of inverter pump, first on and last off; then stop all.
Pump (motor) drived by the inverter is fixed. Switching off the pump (motor) is by the sequence of the last on and this mode is applicable to different pump (motor) ratings.

24-00=2: only inverter pump stops in the fixed modes of inverter pump.
When the inverter sends the stop command, only the pump (motor) stops but the Relay keeps on.

## 24-00=3: in the fixed modes of inverter pump, first on and first off; then stop all.

Switching off the pump (motor) is by the sequence of the first on (longer operation time) to make the pump (motor) be used for the equal frequency and this mode is applicable to the same pump (motor) ratings.

## 24-00=4: in the cycle modes of inverter pump, first on and first off; then stop all.

All the motors besides the pump are drived by the inverter and switching off the pump (motor) is by the sequence of the first on.

24-00=5: only inverter pump stops in the cycle modes of inverter pump.

When the inverter sends the stop command, only the pump (motor) stops but the Relay keeps on.

## Notes:

- When 1 to 8 pump card is not installed, it is forced to be disabled (24-00=0)
- 1 to 8 pump card enabled or disabled and the selection modes of water supply are determined by parameter 24-00.

24－01	Selection of Relay 2－4 Function
Range	【xxx0b】：Reserved 【xxx1b】：Reserved   【xx0xb】：relay 2 Disable 【xx1xb】：relay 2 Enable    【x0xxb】：relay 3 Disable 【x1xxb】：relay 3 Enable    【0xxxb】：relay 4 Disable 【1xxxb】：relay 4 Enable
24－02	Selection of Relay 5－8 Function
Range	【xxx0b】 ：relay 5 Disable 【xxx1b】：relay 5 Enable   【xx0xb】 ：relay 6 Disable 【xx1xb】：relay 6 Enable   【x0xxb】 ：relay 7 Disable 【x1xxb】 ：relay 7 Enable   【0xxxb】 ：relay 8 Disable 【1xxxb】 ：relay 8 Enable

## Fixed modes of inverter pump：

In the fixed modes of inverter pump，RY2～RY8 is arbitrarily selected to be used．

Inverter decelerates／accelerates to lower／upper limit frequency when user increases／decreases pumps and function of PID is temporarily disabled．When the inverter reaches lower／upper limit frequency， function of PID restores and the inverter output is determined by the feedback．

## Cycle modes of inverter pump：

In the cycle modes of inverter pump，RY2 and RY1 are always used．The rest（RY3～RY8）is a group of two， RY3／RY4，RY5／RY6，and RY7／RY8．If any one of the group is set to be disabled，this group is disabled．

The inverter output disconnects when user increases pumps．When a motor originally drived by the inverter is switched by commercial AC power supply，it requires the switching time of magnetic contactor $(24-05)$ to allow the AC power supply input．Then the inverter output drives the next motor，which is determined by the feedback．

Switch off the motor of the first on when user decreases pumps to make the pump（motor）be the equal using frequency．

$24-03$	Duration of Upper Limit Frequency
Range	$【 1.0 \sim 600.0 】$ Sec

Set the inverter output frequency controlled by PID reaches the upper limit frequency（the proportion setting by parameter $00-12$ ）via parameter 24－03． 1 to 8 pump card controls the time required for increasing pumps．

The setting value of duration of upper limit frequency（24－03）is determined by the changing time speed of system pressure．The setting value of $24-03$ is the fewer the better in the range without producing oscillation of system pressure．

$24-04$	Duration of Lower Limit Frequency
Range	$【 1.0 \sim 600.0 】$ Sec

Set the inverter output frequency controlled by PID reaches the lower limit frequency（the proportion setting by parameter $00-13$ ）via parameter $24-04$ ． 1 to 8 pump card controls the time required for decreasing pumps．

The setting value of duration of lower limit frequency（24－04）is determined by the changing time speed of system pressure．The setting value of 24－04 is the fewer the better in the range without producing oscillation of system pressure．

$24-05$	Switch Time of Magnetic Contactor
Range	$【 0.1 \sim 2.00 】$ Sec

When a motor originally drived by the inverter is switched by the commercial AC power supply or originally drived by the commercial AC power supply is switched by the inverter，function of parameter 24－05 is used to avoid the delay of external magnetic contactor resulting in a short circuit of the inverter output and AC power supply．

The setting value of 24－05 requires being larger than the time from the switch of the inverter Relay signal to the action of external magnetic contactor．Generally，the off to on time of magnetic contactor is longer than the on to off time．Set parameter 24－05 depending on the longer time．


Figure 4．4．118 Diagram for the single cycle modes of inverter pump

24－06	Allowable Bias of Pump Switch
Range	$【 0.0 \sim 20.0 】 \%$

When increasing or decreasing pumps with PID control to operate in coordination with Relay card，user has to determine if it is required to increase or decrease allowable value of pump in the situation of inverter output frequency being closed to upper limit frequency $(00-12)$ or lower limit frequency $(00-13)$ ．

The setting unit is $0.1 \%$ and if the setting is $0.0 \%$ ，inverter output frequency needs to reach the upper limit or lower limit value to increase or decrease pump（motor）．

For example，00－12＝80\％，and 00－13＝20\％，then：
－If $24-06=0 \%$ ，the output frequency needs to reach $80 \%$ of the maximum frequency to increase the pump（motor）；the output frequency needs to reach $20 \%$ of the minimum frequency to decrease the pump（motor）．
－If $24-06=5 \%$ ，the output frequency needs to reach $75 \%$ of the maximum frequency to increase the pump（motor）；the output frequency needs to reach $25 \%$ of the minimum frequency to decrease the pump（motor）．

### 4.5 Built-in PLC Function

The PLC ladder logic can be created and downloaded using the TECO drive link software.

### 4.5.1 Basic Command

	L	A	$\checkmark$	P	Hト	$\cdots$	NO / NC
Inputs					1	i	11~16 / i1~i6
Outputs	Q	Q	Q	Q	Q	q	Q1~Q2 / q1~q2
Auxiliary command	M	M	M	M	M	m	M1~MF / m1~mF
Special registers							V1~V7
Counter function	C				C	c	C1~C8 / c1~c8
Timer function	T				T	t	T1~T8 / t1~t8
Analog comparison function	G				G	g	G1~G8 / g1~g8
Operation control function	F				F	f	F1~F8 / f1~f8
summation and subtraction function	AS						AS1~4
Multiplication and division function	MD						MD1~4

## Description of registers

V1 : Set frequency	Range $: 0.1 \sim 400.0 \mathrm{~Hz}$
V2 : Operation frequency	Range $: 0.1 \sim 400.0 \mathrm{~Hz}$
V3 : Al1 input value	Range $: 0 \sim 1000$
V4 : Al2 input value	Range $: 0 \sim 1000$
V5 : Keypad input value	Range $: 0 \sim 1000$
V6 : Operation current	Range $: 0.1 \sim 999.9 \mathrm{~A}$
V7 : Torque value	Range $: 0.1 \sim 200.0 \%$


Command	Upper Differential	Lower Differential	Other command   symbol
Differential command	D	d	
SET command			A
RESET command			$\vee$
P command			P


Open circuit	"" "	
Short circuit	"--"	


Connection symbol	
-	Connect components on the left and right side
$\perp$	Connects components on the left , right and top side
+	Connects components on the left , right, top and bottom side
$工$	Connects components on the left , right and bottom side

### 4.5.2 Basic Command Function

© D (d) command function
Example 1: I1-D - [ Q1

I1	OFF	ON	OFF	
On	OFF	ON	OFF	
Q1	OFF	ON	New scanning cycle	

Example 2 : i1-d-[ Q1

© NORMAL (-[) output
11-[Q1

I1	OFF	ON
Q1 OFF   ON	OFF	

© SET ( $A$ ) output
11 - A Q1

11	OFF	ON
Q1 OFF	ON	

## © RESET ( $\vee$ ) output

11- $\vee$ Q1

11	OFF	ON
Q1 ON	OFF	

(0) Poutput
i1-PQ1

11'	OFF	ON	OFF	ON	OFF	ON	OFF
$11^{\prime}$ is the inverse logic of i1							
$i 1$							
Q1	ON		O		ON		OFF

### 4.5.3 Application Functions

## 1: Counter Function



Symbol	Description
(1)	Counter mode (1 ~ 4)
(2)	UP/Down counting modes can be set by ( $11 \sim$ f8).
	OFF: Count up (0, 1, 2, 3...)
	ON: Count down (...3,2,1,0)
(3)	Use (11~f8) to reset counting value
	ON: Internal count value is reset and counter output (6) is OFF
	OFF: Internal counter value retained
(4)	Internal counter value
(5)	Counter compare value (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant)
(6)	Counter output ( C 1 to C 8 , there are a total of 8 counters)

## Counter modes:

Mode 1: Counter value is locked to the set value. The value will not be retained when the power is cut off. Mode 2: Counter value is not locked. The value will not be retained when the power is cut off.
Mode 3: Counter value is locked. The value will be retained when the power is cut off.
Mode 4: Counter value is not locked. The value will be retained when the power is cut off.

## Counter mode 1

## Example:




## Counter mode 2

| $(5)$ | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(4)$ | 0 | 19 | 19 | 20 | 20 | 21 | 21 | 20 | 20 | 19 | 20 | 18 | 18 | 19 | 19 | 20 | 0 | 20 | 20 |



Note: In this mode the internal counter may increase past the counter compare value, unlike mode 1 where the internal counter value is limited to the counter compare value.
(1) Counter mode 3 is similar to the counter mode 1, with the exception that the counter value is saved when the drive is powered down and reloaded at power up.
(2) Counter mode 4 is similar to the counter mode 2, with the exception that the counter value is saved when the drive is powered down and reloaded at power up.


## Counter input pulse

$\square$

## Power switch

$\qquad$

## 2: Timer Function



Symbol	
(2)	Timer mode (1-7)
	2:0~9999 second
	$3: 0 \sim 9999$ minute
3	Use (I1~f8) to reset timing value
	ON: Internal timing value is reset and timer output © is OFF
	OFF: Internal timer stays running
(5)	Internal timer value
(6)	Timer set value (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7,constant)

Timer mode description :
(1) Timer mode 1 (ON-delay Timer mode 1)


## Example:


(2) Timer mode 2 (ON-delay Timer mode 2)

(3) Timer mode 3 (OFF-delay Timer mode 1)

$\mathrm{T}=$ timer set value

$\mathrm{T}=$ timer set value
(4) Timer mode 4 (OFF-delay Timer mode 2)


T= timer set value
(5) Timer mode 5 (FLASH Timer mode 1)

(6) Timer mode 6 (FLASH Timer mode 2)

(7) Timer mode 7 (FLASH Timer mode 3)


## 3: Analog comparator function



Symbol	Description
$(1)$	Analog comparator mode (1~3)
$(2)$	Input comparison value selection (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7)
$(3)$	Current analog input value
(4)	Set the reference comparison value (Upper limit)   (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant )
(5)	Set the reference comparison value (lower limit)   (AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant )
(6)	Comparator output (G1 to G8, there are a total of 8 comparators)

The description of analog comparison mode:
(1) Analog comparison mode 1 (3) $\leq$ (5), (6) ON)
(2) Analog comparison mode 2 (3) $\geq$ (4), (6) ON)
(3) Analog comparison mode 3 ( ${ }^{(5) \leq(3) \leq(4) \text {, (6) ON) }}$

## Input comparison value selection (V1~V7)

(1) Input comparison value selection $=\mathrm{V} 1$ : Set frequency
(2) Input comparison value selection $=\mathrm{V} 2$ : Operation frequency
(3) Input comparison value selection = V3: Al1 input value
(4) Input comparison value selection $=\mathrm{V} 4$ : Al2 input value
(5) Input comparison value selection = V5: Keypad input value
(6) Input comparison value selection = V6: Operation current
(7) Input comparison value selection $=\mathrm{V} 7$ : Torque value

## 4: Operation control function



Symbol	Description
(1)	Forward /Reversal control can be set by (I1~f8) OFF: Forward(FWD)   ON: Reversal(REV)
(2)	Speed terminal control can be set by ( $11 \sim f 8$ )
	OFF: Operation based on (3) set frequency
	ON: Operation based on frequency of speed (4)
(3)	Set frequency (can be constant or V3, V4, V5 )
(4)	Speed frequency (can be constant or V3, V4, V5)
(5)	Acceleration time (ACC Time)
(6)	Deceleration time (DEC Time)
(7)	Operation command output (F1 to F8, there are a total of 8 operation control functions)

## Example:

Input from the Ladder Program


## 5: Summation and subtraction functions



RESULT (calculation result) $=\mathrm{V} 1+\mathrm{V} 2-\mathrm{V} 3$

Symbol	Description
$(1)$	Calculation result : RESULT
$(2)$	Addend V1(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant )
$(3)$	Addend V2(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant )
$(4)$	Subtrahend V3(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant )
$(5)$	Coil output of error signal (M1~MF)
$(6)$	Addition and subtraction modes number (AS1~AS4)

## 6: Multiplication and division modes



RESULT ( calculation result) =V1*V2/V3

Symbol	Description
$(1)$	Calculation result : RESULT
$(2)$	Multiplier V1(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant )
$(3)$	Multiplier V2(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant )
$(4)$	Divisor V3(AS1~AS4,MD1~MD4,T1~T8,C1~C8,V1~V7, constant )
$(5)$	Coil output of error signal (M1~MF )
$(6)$	Multiplication and division modes number

### 4.6 Modbus Protocol Descriptions

### 4.6.1 Communication Connection and Data Frame

The inverter can communicate with a PC or PLC via RS485 or RS232 using the Modbus RTU or Modbus ACSII protocol. The maximum frame length is 80 bytes.

## - Network Connection

Controller (PLC / HMI or PC )	F510NodeAddress 01		F510NodeAddress 02		F510   Node   Address 03		F510   Node   Address 1F	
	CN6		CN6		CN6		CN6	
RS-485   Interface	S(+)	S(-)	S(+)	S(-)	S(+)	S(-)	S(+)	S(-)
Receiver Sender								
$120 \Omega$ $1 / 4 \mathrm{w}$								

**The distance of communication line with above 200 m should have terminal resistor, which ought to be at both ends, so as to eliminate reflection. **

■ Use S (+) and S (-) terminals (only for RS-485) or CN6 connector to connect.

- CN6 Connector:

	Pin	Signal	Pin	Signal
	1	RS-485 S+ signal	5	Tx signal
	2	RS-485 S- signal	6	RS-485 S- signal
	3	RS-485 S+ signal	7	VCC of isolated 5 V power supply
	4	Rx signal	8	GND of isolated 5 V power supply

- For RS-485 communication, use pin 1 or pin 3 for $S(+)$ and pin 2 or pin 6 for $S(-)$.


## - Data Format Frame

- Data Frame for ASCII Mode

STX(3AH)	Start Bit $=3 \mathrm{AH}$
Address Hi	Communication Address (Station):   2-digit ASCII Code
Address Lo	
Function Hi	Function Code (command): 2-digit ASCII Code
Function Lo	
Command Start Address	Command Start Byte: 4-digit ASCII Code
Command Start Address	
Command Start Address	
Command Start Address	
Data length	The length of the command: 4-digit ASCII Code
Data length	
Data length	
Data length	
LRC Check Hi	LRC Check Code: 2-digit ASCII Code
LRC Check Lo	
END Hi	End Bit:   END Hi $=\mathrm{CR}(0 \mathrm{DH}) \quad, \quad \mathrm{END} \mathrm{Li}=\mathrm{LF}(0 \mathrm{AH})$
END Lo	

- Data Frame for RTU Mode

Master (PLC etc.) sends request to follower (inverter), and the follower sends a response to the master (PC, PLC). The data received is illustrated here.
The data length varies depending on the command (Function).

Node Address
Function Code
DATA
CRC CHECK
Signal Interval

** The inverter response time is 10 ms .

## - Node Address

00H: Broadcast to all the drivers
01H: to the No. 01 inverter
0FH: to the No. 15 inverter
10H: to the No. 16 inverter and so on...., max to No. 254 (FEH)

## - Function Code

03H: Read the register contents
06H: Write a WORD to register
08H: Loop test
10H: Write several data to register (complex number register write)

- Checksum Calculation
- LRC
ex. NODE ADDRESS 01H
FUNCTION 03H
COMMAND 01H
+ DATA LENGTH OAH

		$0 \mathrm{FH}--------2 '$ complement
Checksum	$=$	F1H
CS(H)	$=$	$46 \mathrm{H}($ ASCII $)$
CS(L)	$=$	$31 \mathrm{H}($ ASCII $)$

## CRC

CRC Check: CRC code covers the content from Slave address to DATA. Please calculate it according to the following methods.
(1) Load a 16-bit register with FFFF hex (all1's). Call this CRC register.
(2) Exclusive OR the first 8-bit byte of the message, the low-order byte of the 16-bit CRC register, putting the result in the CRC register.
(3) Shift the CRC register one bit to the right (toward the LSB), Zero-filling the MSB, Extract and examines the LSB.
(4) (If the LSB was 0): Repeat Steps (3) (another shift)
(If the LSB was 1): Exclusive OR the CRC register with the polynomial value A001 hex (1010 00000000 0001), putting the result in CRC register.
(5) Repeat Steps (3) and (4) until 8 shifts been performed. When this is done, a complete 8 -bit byte will be processed.
(6) Repeat Steps (2) through (5) for next 8-bit byte of the message, Continue doing this until all bytes have been processed. The final content in the CRC register is the CRC value. When sending the CRC value, the Low-order byte should be sent firstly, then the High-order byte. For example, CRC value: 1241 Hex, the high-order byte should be set to 41 hex and low-order byte 12hex.

## - CRC Calculate Program (C language)

```
 UWORD ch_sum (UBYTE long, UBYTE *rxdbuff) {
 BYTE i = 0;
 UWORD wkg = 0xFFFF;
 while (long--) {
 wkg ^= rxdbuff++;
 for (i = 0; i < 8; i++) {
 if (wkg & 0x0001) {
 wkg = (wkg >> 1)^ 0xa001;
 }
 else {
 wkg = wkg >> 1;
 }
 }
 }
 return(wkg);
}
```

- Exception Code

ASCII Mode	
STX	$\ddots '$
Address	'0'
	'1'
Function	'8'
	'6'
Exception   code	$' 5 '$
	'1'
END	'2'


RTU Mode		
SLAVE Address		02 H
Function	83 H	
Exception code		52 H
CRC-16	High	COH
	Low	CDH

During a communication error, the inverter will respond with an Exception Code and send a message back to the main system consisting of a Function Code that is "ANDED (and 80h)" with 80 Hex.

Exception Code	Content
01	Function code error
02	Register number error
03	Number error
04	DATA setting error

### 4.6.2 Register and Data Format

- Command Data (Read / Write)


Note: Write a zero into the register for not used bit; do not write data to a reserved register.

## - Monitor Data (Read only)




Note: Do not write data to a reserved register.

## - Read Holding Register [03H]

Read consecutive holding registers. The address of the first holding register is specified in the protocol.
Example: Read frequency command from the inverter with node address 1.

## ASCII Mode

Command message	
3AH	STX
30H	Node Address
31H	
30 H	Function Code
33 H	
30 H	Starting   Register
43 H	
31H	
30 H	
30 H	Number of Registers
30 H	
30 H	
31H	
44 H	LRC CHECK
46H	
ODH	END
OAH	


3AH	STX
30 H	Node Address
31H	
30 H	Function Code
33 H	
30 H	DATA Length
32 H	
31H	Data
37H	
37H	
30H	
37H	LRC CHECK
33H	
ODH	END
OAH	

Response Message (Error)

3 AH	STX
30 H	Node Address
31 H	
38 H	Function Code
33 H	
30 H	Exception Code
34 H	
34 H	LRC CHECK
30 H	
0 OH	END
0 OHH	

RTU Mode

## Command Message

Node Address		01 H
Function Code		03 H
Starting   Register	High	0 CH
	Low	10 H
Number of	High	00 H
Registers	Low	01 H
CRC-16	High	86 H
	Low	9 FH

Response Message (Normal)

Node Address	01 H	
Function Code	03 H	
DATA Length		02 H
Data	High	17 H
	Low	70 H
CRC-16	High	B 6 H
	Low	50 H

Response Message (Error)

Node Address	01 H	
Function Code	83 H	
Exception Code	04 H	
CRC-16	High	40 H
	Low	F3H

## - Loop Back Test [08H]

Check the communication between the master and the follower (inverter). The data used can be arbitrary.

■ ASCII Mode

Command Message	
3AH	STX
30H	Node Address
31H	
30 H	Function Code
38 H	
30 H	Test Code
30 H	
30 H	
30 H	
41H	DATA
35H	
33H	
37H	
31H	LRC CHECK
42H	
ODH	END
OAH	


3AH	STX
30H	Node Address
31 H	
30 H	Function Code
38 H	
30 H	Test Code
30 H	
30 H	
30 H	
41H	DATA
35H	
33H	
37H	
31H	LRC CHECK
42H	
ODH	END
OAH	

Response Message (Error)

3 AH	STX
30 H	Node Address
31 H	
38 H	Function Code
38 H	
30 H	Exception Code
33 H	
30 H	LRC CHECK
36 H	
0 ODH	END
0 AH	

- RTU Mode
Command Message

Node Address	01 H	
Function Code		08 H
Test Code	High	00 H
	Low	00 H
DATA	High	A5H
	Low	37 H
CRC-16	High	DAH
	Low	8 DH

Response Message (Normal)

Node Address	01 H	
Function Code		08 H
Test Code	High	00 H
	Low	00 H
DATA	High	A5H
	Low	37 H
CRC-16	High	DAH
	Low	8 DH


Response Message (Error)		
Node Address 01 H    Function Code 88 H    Exception Code  03 H   CRC-16 High 06 H    Low 01 H		

## - Write Single Holding Register [06H]

Write single holding register. The register address of the holding register is specified in the message.
Example: Write a 60.00 Hz frequency command to node address 1 .
■ ASCII Mode

Command Message	
3AH	STX
30 H	Node Address
31H	
30 H	Function Code
36H	
32 H	Starting   Register
35H	
30H	
32H	
31H	DATA
37H	
37H	
30 H	
34H	LRC CHECK
42H	
ODH	END
OAH	



## - RTU Mode

Command Message

Node Address		01 H
Function Code	06 H	
Starting	High	25 H
	Low	02 H
DATA	High	17 H
	Low	70 H
CRC-16	High	2 DH
	Low	12 H

Response Message (Normal)

Node Address		01 H
Function Code	06 H	
Starting   Register	High	25 H
	Low	02 H
DATA	High	17 H
	Low	70 H
CRC-16	High	2 DH
	Low	12 H

Response Message (Error)

Node Address		01 H
Function Code	86 H	
Exception Code		03 H
CRC-16	High	02 H
	Low	61 H

## - Write Multiple Holding Register [10H]

Write multiple holding registers. The address of the first holding register is specified in the message.
Example: Write a 60.00 Hz frequency command to node address 1 and enable FWD run command.

■ ASCII Mode

Command Message		Response Message (Normal)		Response Message (Error)	
3AH	STX	3AH	STX	ЗAH	STX
30H	Node Address	30H	Node Address	30H	Node Address
31H		31H		31 H	
31H	Function Code	31H	Function Code	39H	Function Code
30 H		30 H		30H	
32 H	Starting Register	32 H	Starting Register	30H	Exception Code
35 H		35H		33H	
30H		30 H		30 H	IRC CHECK
31H		31H		43H	
30 H	Number of Registers	30 H	Number of Registers	ODH	END
30 H		30 H		OAH	
30H		30H			
32H		32H			
30H	Number of Bytes *	43H	LRC CHECK		
34 H		37H			
30 H	DATA 1	ODH	END		
30H		OAH			
30 H					
31H					
31H	DATA 2				
37H					
37H					
30H					
33H	LRC CHECK				
42H					
ODH	END				
OAH					

* Number of bytes is register amount x 2 .
- RTU Mode
Command Message

Node Address		01 H
Function Code	10 H	
Starting   Register	High	25 H
	Low	01 H
	High	00 H
Number of Bytes		02 H
DATA 1	High	00 H
	Low	01 H
DATA 2	High	17 H
	Low	70 H
CRC-16	High	60 H
	Low	27 H

Response Message (Normal)

Node Address	01 H	
Function Code	10 H	
Starting   Register	High	25 H
	Low	01 H
	High	00 H
Registers	Low	02 H
CRC-16	High	1 BH
	下位	04 H


Response Message (Error)		
Node Address 01 H    Function Code 90 H    Exception Code  03 H   CRC-16 High 0 CH    Low 01 H		

* Number of bytes is register amount x 2 .
- Parameter Data and Corresponding Register No.

Function Code	Register No.	Function Code	Register No.	Function Code	Register No.


Group 0		Group 0		Group 1	
0-00	0000H	0-45	002DH	1-00	0100H
0-01	0001H	0-46	002EH	1-01	0101H
0-02	0002H	0-47	002FH	1-02	0102H
0-03	0003H	0-48	0030H	1-03	0103H
0-04	0004H	0-49	0031H	1-04	0104H
0-05	0005H	0-50	0032H	1-05	0105H
0-06	0006H	0-51	0033H	1-06	0106H
0-07	0007H	0-52	0034H	1-07	0107H
0-08	0008H	0-53	0035H	1-08	0108H
0-09	0009H	0-54	0036H	1-09	0109H
0-10	000AH	0-55	0037H	1-10	010AH
0-11	000BH	0-56	0038H	1-11	010BH
0-12	000CH			1-12	010CH
0-13	000DH			1-13	010DH
0-14	000EH			1-14	010EH
0-15	000FH			1-15	010FH
0-16	0010H				
0-17	0011H				
0-18	0012H				
0-19	0013H				
0-20	0014H				
0-21	0015H				
0-22	0016H				
0-23	0017H				
0-24	0018H				
0-25	0019H				
0-26	001AH				
0-27	001BH				
0-28	001CH				
0-29	001DH				
0-30	001EH				
0-31	001FH				
0-32	0020H				
0-33	0021H				
0-34	0022H				
0-35	0023H				
0-36	0024H				
0-37	0025H				
0-38	0026H				
0-39	0027H				
0-40	0028H				
0-41	0029H				
0-42	002AH				
0-43	002BH				
0-44	002CH				


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.
Group 2		Group 3		Group 3	
2-00	0200H	3-00	0300H	3-33	0321H
2-01	0201H	3-01	0301H	3-34	0322H
2-02	0202H	3-02	0302H	3-35	0323H
2-03	0203H	3-03	0303H	3-36	0324H
2-04	0204H	3-04	0304H	3-37	0325H
2-05	0205H	3-05	0305H	3-38	0326H
2-06	0206H	3-06	0306H	3-39	0327H
2-07	0207H	3-07	0307H		
2-08	0208H	3-08	0308H		
2-09	0209H	3-09	0309H		
2-10	020AH	3-10	030AH		
2-11	020BH	3-11	030BH		
2-12	020CH	3-12	030CH		
2-13	020DH	3-13	030DH		
2-14	020EH	3-14	030EH		
2-15	020FH	3-15	030FH		
2-16	0210H	3-16	0310H		
2-17	0211H	3-17	0311H		
2-18	0212H	3-18	0312H		
2-19	0213H	3-19	0313H		
		3-20	0314H		
		3-21	0315H		
		3-22	0316H		
		3-23	0317H		
		3-24	0318H		
		3-25	0319H		
		3-26	031AH		
		3-27	031BH		
		3-28	031CH		
		3-29	031DH		
		3-30	031EH		
		3-31	031FH		
		3-32	0320H		

Function Code $\quad$ Register No. $\quad$ Function Code $\quad$ Register No. $\quad$ Function Code $\quad$ Register No.

Group 4		Group 5		Group 5	
4-00	0400H	5-00	0500H	5-33	0521H
4-01	0401H	5-01	0501H	5-34	0522H
4-02	0402H	5-02	0502H	5-35	0523H
4-03	0403H	5-03	0503H	5-36	0524H
4-04	0404H	5-04	0504H	5-37	0525H
4-05	0405H	5-05	0505H	5-38	0526H
4-06	0406H	5-06	0506H	5-39	0527H
4-07	0407H	5-07	0507H	5-40	0528H
4-08	0408H	5-08	0508H	5-41	0529H
4-09	0409H	5-09	0509H	5-42	052AH
4-10	040AH	5-10	050AH	5-43	052BH
4-11	040BH	5-11	050BH	5-44	052CH
4-12	040CH	5-12	050CH	5-45	052DH
4-13	040DH	5-13	050DH	5-46	052EH
4-14	040EH	5-14	050EH	5-47	052FH
4-15	040FH	5-15	050FH	5-48	0530H
4-16	0410H	5-16	0510H		
4-17	0411H	5-17	0511H		
4-18	0412H	5-18	0512H		
4-19	0413H	5-19	0513H		
		5-20	0514H		
		5-21	0515H		
		5-22	0516H		
		5-23	0517H		
		5-24	0518H		
		5-25	0519H		
		5-26	051AH		
		5-27	051BH		
		5-28	051CH		
		5-29	051DH		
		5-30	051EH		
		5-31	051FH		
		5-32	0520H		


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.
Group 6		Group 6		Group 7	
6-00	0600H	6-33	0621H	7-00	0700H
6-01	0601H	6-34	0622H	7-01	0701H
6-02	0602H	6-35	0623H	7-02	0702H
6-03	0603H	6-36	0624H	7-03	0703H
6-04	0604H	6-37	0625H	7-04	0704H
6-05	0605H	6-38	0626H	7-05	0705H
6-06	0606H	6-39	0627H	7-06	0706H
6-07	0607H	6-40	0628H	7-07	0707H
6-08	0608H	6-41	0629H	7-08	0708H
6-09	0609H	6-42	062AH	7-09	0709H
6-10	060AH	6-43	062BH	7-10	070AH
6-11	060BH	6-44	062CH	7-11	070BH
6-12	060CH	6-45	062DH	7-12	070CH
6-13	060DH	6-46	062EH	7-13	070DH
6-14	060EH	6-47	062FH	7-14	070EH
6-15	060FH			7-15	070FH
6-16	0610H			7-16	0710H
6-17	0611H			7-17	0711H
6-18	0612H			7-18	0712H
6-19	0613H			7-19	0713H
6-20	0614H			7-20	0714H
6-21	0615H			7-21	0715H
6-22	0616H			7-22	0716H
6-23	0617H			7-23	0717H
6-24	0618H			7-24	0718H
6-25	0619H			7-25	0719H
6-26	061AH			7-26	071AH
6-27	061BH			7-27	071BH
6-28	061CH			7-28	071CH
6-29	061DH				
6-30	061EH				
6-31	061FH				
6-32	0620H				


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.
Group 8		Group 9		Group 10	
8-00	0800H	9-00	0900H	10-00	OAOOH
8-01	0801H	9-01	0901H	10-01	0A01H
8-02	0802H	9-02	0902H	10-02	0A02H
8-03	0803H	9-03	0903H	10-03	0A03H
8-04	0804H	9-04	0904H	10-04	0A04H
8-05	0805H	9-05	0905H	10-05	0A05H
8-06	0806H	9-06	0906H	10-06	0A06H
8-07	0807H	9-07	0907H	10-07	0A07H
8-08	0808H	9-08	0908H	10-08	0A08H
8-09	0809H	9-09	0909H	10-09	0A09H
8-10	080AH	9-10	090AH	10-10	OAOAH
8-11	080BH			10-11	OAOBH
8-12	080CH			10-12	OAOCH
8-13	080DH			10-13	OAODH
8-14	080EH			10-14	OAOEH
8-15	080FH			10-15	OAOFH
8-16	0810H			10-16	OA10H
8-17	0811H			10-17	0A11H
8-18	0812H			10-18	0A12H
8-19	0813H			10-19	0A13H
8-20	0814H			10-20	0A14H
8-21	0815H			10-21	0A15H
8-22	0816H			10-22	0A16H
8-23	0817H			10-23	0A17H
8-24	0818H			10-24	0A18H
8-25	0819H			10-25	OA19H
8-26	081AH			10-26	0A1AH
8-27	081BH			10-27	0A1BH
8-28	081CH			10-28	0 A 1 CH
8-29	081DH			10-29	0A1DH
8-30	081EH			10-30	0A1EH
8-31	081FH			10-31	0A1FH
8-32	0820H			10-32	OA20H
8-33	0821H			10-33	0A21H
8-34	0822H			10-34	0A22H
8-35	0823H			10-35	0 A 23 H
8-36	0824H			10-36	0A24H
8-37	0825H			10-37	0A25H
8-38	0826H			10-38	0A26H
8-39	0827H				


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.
Group 11		Group 11		Group 12	
11-00	OB00H	11-33	0B21H	12-00	OCOOH
11-01	0B01H	11-34	0B22H	12-01	0C01H
11-02	0B02H	11-35	0B23H	12-02	0C02H
11-03	0B03H	11-36	0B24H	12-03	0C03H
11-04	0B04H	11-37	0B25H	12-04	0C04H
11-05	0B05H	11-38	0B26H	12-05	0C05H
11-06	0B06H	11-39	0B27H	12-06	0C06H
11-07	0B07H	11-40	0B28H	12-07	0C07H
11-08	0B08H	11-41	0B29H	12-08	0 CO 0 H
11-09	0B09H	11-42	0B2AH	12-09	0С09H
11-10	OBOAH	11-43	OB2BH	12-10	ОСОАН
11-11	OBOBH	11-44	OB2CH	12-11	OCOBH
11-12	OBOCH	11-45	OB2DH	12-12	0COCH
11-13	OBODH	11-46	OB2EH	12-13	OCODH
11-14	OBOEH	11-47	0B2FH	12-14	OCOEH
11-15	OBOFH	11-48	OB30H	12-15	OCOFH
11-16	OB10H	11-49	0B31H	12-16	0 C 10 H
11-17	0B11H	11-50	OB32H	12-17	0C11H
11-18	0B12H	11-51	0B33H	12-18	0 C 12 H
11-19	0B13H	11-52	0B34H	12-19	0 C 13 H
11-20	0B14H	11-53	0B35H	12-20	0C14H
11-21	0B15H	11-54	0B36H	12-21	0C15H
11-22	OB16H	11-55	0B37H	12-22	0 C 16 H
11-23	0B17H	11-56	0B38H	12-23	0C17H
11-24	0B18H	11-57	0B39H	12-24	0C18H
11-25	OB19H	11-58	ОВ3AH	12-25	0C19H
11-26	OB1AH			12-26	0C1AH
11-27	OB1BH			12-27	0C1BH
11-28	OB1CH			12-28	0 C 1 CH
11-29	0B1DH			12-29	0C1DH
11-30	0B1EH			12-30	0 C 1 EH
11-31	0B1FH			12-31	0C1FH
11-32	OB2OH			12-32	OC20H


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.
Group 12		Group 13		Group 14	
12-33	0C21H	13-00	ODOOH	14-00	OEOOH
12-34	0 C 22 H	13-01	0D01H	14-01	0E01H
12-35	0C23H	13-02	0D02H	14-02	0E02H
12-36	0 C 24 H	13-03	0D03H	14-03	0E03H
12-37	0C25H	13-04	0D04H	14-04	0E04H
12-38	0C26H	13-05	0D05H	14-05	0E05H
12-39	0C27H	13-06	0D06H	14-06	0E06H
12-40	0C28H	13-07	0D07H	14-07	0E07H
12-41	0C29H	13-08	0D08H	14-08	0E08H
12-42	0C2AH	13-09	0D09H	14-09	0E09H
12-43	0C2BH	13-10	ODOAH	14-10	OEOAH
12-44	0C2CH			14-11	OEOBH
12-45	0C2DH			14-12	OEOCH
12-46	0C2EH			14-13	OEODH
12-47	0C2FH			14-14	OEOEH
12-48	0 C 30 H			14-15	OEOFH
12-49	0 C 31 H			14-16	0E10H
12-50	0C32H			14-17	0E11H
12-51	0C33H			14-18	0E12H
12-52	0 C 34 H			14-19	0E13H
12-53	0C35H			14-20	0E14H
12-54	0C36H			14-21	0E15H
12-55	0C37H			14-22	0E16H
12-56	0 C 38 H			14-23	0E17H
12-57	0С39H			14-24	0E18H
12-58	ОСЗАН			14-25	0E19H
12-59	0С3BH			14-26	0E1AH
12-60	0 C 3 CH			14-27	0E1BH
12-61	0C3DH			14-28	0E1CH
12-62	OC3EH			14-29	0E1DH
12-63	0C3FH			14-30	0E1EH
12-64	0 C 40 H			14-31	0E1FH
12-65	0 C 41 H			14-32	0E20H
12-66	0 C 42 H			14-33	0E21H
12-67	0C43H				
12-68	0 C 44 H				
12-69	0 C 45 H				
12-70	0 C 46 H				
12-71	0C47H				
12-72	0 C 48 H				
12-73	0C49H				


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.


Group 14		Group 15		Group 16	
14-34	0E22H	15-00	OFOOH	16-00	1000 H
14-35	0E23H	15-01	0F01H	16-01	1001H
14-36	0E24H	15-02	0F02H	16-02	1002H
14-37	0E25H	15-03	0F03H	16-03	1003 H
14-38	0E26H	15-04	0F04H	16-04	1004H
14-39	0E27H	15-05	0F05H	16-05	1005H
14-40	0E28H	15-06	0F06H	16-06	1006H
14-41	0E29H	15-07	0F07H	16-07	1007H
14-42	0E2AH	15-08	0F08H	16-08	1008H
14-43	0E2BH	15-09	0F09H	16-09	1009H
14-44	0E2CH	15-10	OFOAH	16-10	100AH
14-45	0E2DH	15-11	OFOBH	16-11	100BH
14-46	0E2EH	15-12	OFOCH	16-12	100CH
14-47	0E2FH	15-13	OFODH	16-13	100DH
		15-14	OFOEH	16-14	100EH
		15-15	OFOFH	16-15	100FH
		15-16	0 F 10 H	16-16	1010 H
		15-17	0F11H	16-17	1011H
		15-18	0F12H	16-18	1012H
		15-19	0F13H	16-19	1013H
		15-20	0F14H	16-20	1014H
		15-21	0F15H	16-21	1015H
		15-22	0F16H	16-22	1016H
		15-23	0F17H	16-23	1017H
		15-24	0F18H	16-24	1018H
		15-25	0F19H	16-25	1019H
		15-26	0F1AH	16-26	101AH
		15-27	0F1BH	16-27	101BH
		15-28	0F1CH	16-28	101CH
		15-29	0F1DH	16-29	101DH
		15-30	0F1EH	16-30	101EH
		15-31	0F1FH	16-31	101FH
		15-32	0F20H	16-32	1020 H
				16-33	1021H
				16-34	1022H
				16-35	1023H
				16-36	1024H
				16-37	1025H


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.
Group 17		Group 18			
17-00	1100 H	18-00	1200 H		
17-01	1101H	18-01	1201H		
17-02	1102H	18-02	1202H		
17-03	1103H	18-03	1203H		
17-04	1104H	18-04	1204H		
17-05	1105H	18-05	1205H		
17-06	1106H	18-06	1206H		
17-07	1107H				
17-08	1108 H				
17-09	1109 H				
17-10	110AH				
17-11	110BH				


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.
Group 20		Group 21		Group 22	
20-00	1400H	21-00	1500H	22-00	1600H
20-01	1401H	21-01	1501H	22-01	1601H
20-02	1402H	21-02	1502H	22-02	1602H
20-03	1403H	21-03	1503H	22-03	1603H
20-04	1404H	21-04	1504H	22-04	1604H
20-05	1405H	21-05	1505H	22-05	1605H
20-06	1406H	21-06	1506H	22-06	1606H
20-07	1407H	21-07	1507H	22-07	1607H
20-08	1408H	21-08	1508H	22-08	1608H
20-09	1409H			22-09	1609H
20-10	140AH			22-10	160AH
20-11	140BH			22-11	160BH
20-12	140 CH			22-12	160CH
20-13	140DH			22-13	160DH
20-14	140EH			22-14	160EH
20-15	140FH			22-15	160FH
20-16	1410 H			22-16	1610 H
20-17	1411H			22-17	1611H
20-18	1412H			22-18	1612 H
				22-19	1613H
				22-20	1614H
				22-21	1615H
				22-22	1616H


Function Code	Register No.	Function Code	Register No.	Function Code	Register No.


Group 23		Group 23		Group 24	
23-00	1700H	23-47	172FH	24-00	1800H
23-01	1701H	23-48	1730H	24-01	1801H
23-02	1702H	23-49	1731H	24-02	1802H
23-03	1703H	23-50	1732H	24-03	1803H
23-04	1704H	23-51	1733H	24-04	1804H
23-05	1705H	23-52	1734H	24-05	1805H
23-06	1706H	23-53	1735H	24-06	1806H
23-07	1707H	23-54	1736H		
23-08	1708H	23-55	1737H		
23-09	1709H	23-56	1738H		
23-10	170AH	23-57	1739H		
23-11	170BH	23-58	173AH		
23-12	170CH				
23-13	170DH				
23-14	170EH				
23-15	170FH				
23-16	1710 H				
23-17	1711H				
23-18	1712H				
23-19	1713H				
23-20	1714H				
23-21	1715H				
23-22	1716H				
23-23	1717H				
23-24	1718H				
23-25	1719H				
23-26	171AH				
23-27	171BH				
23-28	171CH				
23-29	171DH				
23-30	171EH				
23-31	171FH				
23-32	1720H				
23-33	1721H				
23-34	1722H				
23-35	1723H				
23-36	1724H				
23-37	1725H				
23-38	1726H				
23-39	1727H				
23-40	1728H				
23-41	1729H				
23-42	172AH				
23-43	172BH				
23-44	172CH				
23-45	172DH				
23-46	172EH				

### 4.7 BacNET Protocol Descriptions

BACnet is in compliance with four-layer of seven-layer structure models in OSI (Open Systems Interconnection) of International Standard Organization (ISO). These four-layer structure models are application layer, network layer, data link layer and physical layer. Besides, BACnet is definced by the view of standard "object" and "property." All BACnet devices are controlled via the property of objects. Every controller with BACnet devices is considered an object collector so that every controller device can execute different kinds of functions of objects to achieve the communication control and monitor control.


### 4.7.1 BACnet Services

Services provide some commands to save or control information and some functions to achieve the purpose of monitoring and control. Namely, one BACnet device reveive certain information or command to complete specific work from other BACnet device so the two devices need to support the same service to complete communication. To complete the exchange of these service messages, these communication requirements are specified in the communication protocol of application layer by BACnet. Thus, services are parts of the communication protocol data unit (PDU) in the application layer and build the communication modes via the relationship of Server Client. Client will send the message of sevice requirements to Server and Server needs to respond to Client to execute this service. Refer to the following fugure.


All BACnet devices have the application programs to manage the requirements of device motion and executing services. Take work station for example, the application program needs to keep the display value of every input so it requires sending the service request to the object of other device to update the display value of input. The application program of the device needs to respond to the service requiremtents. Refer to the following fugure.


### 4.7.2 BACnet Protocol Structure

BACnet is the communication protocol by way of protocol stack so the pocket is composed of stacked layer types. Refer to the following figure.


When application program sends the BACnet service request for the pocket, it requires requesting for executing BACnet request program in the application layer via application program interface. The requirements of the program are sent to the application layer and application protocol data unit (APDU) consists of Application Protocol Control Information (APCI) and Servie Data of application program. Then APDU passes its messages downward to BACnet request program in the network layer. APDU becomes Network Layer Protocol Data Unit (NPDU) composed of Network Service Data Unit (NSDU) and Network Protocol Control Information (NPCI). And so forth for the data link layer and physical layer to complete the full service for the packet.

### 4.7.3 BACnet Specifications

Inverter F510 model is built-in standard BACnet MS/TP communication protocol structure to meet the demand of automatic communication equipment. Control or monitor F510 via BACnet to be allowable to read and modify specific parameter. F510 includes the following supports of standard objects:

$\square$ Inverter Objects		
Analog Input	$\square$ Analog Output	$\square$ Analog Value
Digital Input	$\square$ Digital Output	$\square$ Digital Value

Refer to Table 4.7.3.1 for F510 supporting the property information of object classification. User can collect related properties of objects required via the dedicated communication software of BACnet to give control or monitor command for each object.

Table 4.7.3.1 Object and property supporting list

Proerty	Inverter (DEV)	Analog Input (AI)	Analog Output (AO)	Analog Value (AV)	Digital Input (BI)	Digital Output (BO)	Digital Value (BV)
Object_Identifier	V	V	V	V	V	V	V
Object_Name	V	V	V	V	V	V	V
Object_Type	V	V	V	V	V	V	V
System_Status	V						
Vendor_Name	V						
Vendor_Identifier	V						
Model_Name	V						
Firmware_Revision	V						
Applocation_Software_Supported	V						
Protocol_Version	V						
Protocol_Revision	V						
Protocol_Services_Supported	V						
Protocol_Object_Type_Supported	V						
Object_List	V						
Max_APDU_Length_Accepted							
Segmentation_Supported							
APDU_Timeout							
Number_Of_APDU_Retries							
Max_Masters	V						
Max_Info_Frames	V						
Device_Address_Binding							
Location	V						
Presnent_Value		V	V	V	V	V	V
Status_Flags							
Event_State							
Relibility							
Out_Of_Service							
Units		V	V	V			
Priority Array							
Relinquish_Default							
Polarity							
Inactive_Text							
Active_Text							

### 4.7.4 BACnet Object Properties

This section provides the predetermined configuration of the inverter. User can achieve the optimizazed situation at any necessary modification.

Refer to Table 4.7.4.1 for the property information of inverter objects and user can learn the inverter messages from the inverter objects.

Refer to Table 4.7.4.2 ~ Table 4.7.4.7 for the related object information that inverter supports. User can control/ read each object with the application requirements.

Table 4.7.4.1 - Inverter property list

Property	Inverter
Object_Identifier	DEV
Object_Name	TECO F510
Object_Type	8
System_Status	0
Vendor_Name	TECO F510
Vendor_Identifier	461
Model_Name	TECO.Inc
Firmware_Revision	0.14
Applocation_Software_Supported	0.14
Protocol_Version	1
Protocol_Revision	5
Protocol_Services_Supported	\{ readProperty, writeProperty, who is \}
Protocol_Object_Type_Supported	\{ Analog_Input, Analog_Output, Analog_Value
Max_Masters	Rinary_Input, Binary_Output, Binary_Value, Device\}
Max_Info_Frames	127
Location	1

Table 4.7.4.2 Analog input property list (READ)

No.	Object Name	Description	Unit	Classification	Range
AIO	TM2 AIN	Al1 inpur	Volt	R	0-10
Al1	TM2 AIN2	Al2 input	Volt	R	0-10
AI2	Error code	Recent fault message	No Units	R	0-45
Al3	Freq cmd	Frequency command	HZ	R	0-60
Al4	Frequency	Output frequency	HZ	R	0-60
Al5	Current	Output current	Amps	R	
Al6	Control Mode	Control mode	No Units	R	0-2
AI7	Motor R-Volt	Motor rated voltage	Volt	R	
Al8	Motor R-HP	Motor rated power	horsepower	R	
Al9	Motor R-RPM	Motor rated rotation speed	No Units	R	
Al10	Motor R-Hz	Motor rated frequency	HZ	R	
Al11	CarrierFreq	Carrier frequency	KiloHertz	R	4-16
Al12	Comm Station	INV communication station	No Units	R	1-254
Al13	BaudRate	Baudrate setting	No Units	R	0-3
AI14	BacnetSel	Communication mode selection	No Units	R	0-1
Al15	DevInstance	Inverter number	No Units	R	1-254

Table 4.7.4.3 - Analog output property list (READ/ WRITE)

No.	Object Name	Description	Unit	Classification	Range
AOO	Set frequency	Frequency command	HZ	R/W	0-60
AO1	FM+	Output voltage	Volt	R	0-10
AO2	Motor R-Amp	Motor rated current	Amps	R/W	0-65535
AO3	PwrL Sel	Momentary stop and restart selection	No Units	R	0-2
AO4	RestartSel	Number of Fault Auto-Restart Attempts	No Units	R	0-10
AO5	RestartDelay	Fault Auto-Restart Time	seconds	R	0-800
AO6	FreqCommand1	Speed frequency setting-stage 0	HZ	R/W	0-400
A07	FreqCommand2	Speed frequency setting-stage 1	HZ	R/W	0-400
AO8	FreqCommand3	Speed frequency setting-stage 2	HZ	R/W	0-400
AO9	FreqCommand4	Speed frequency setting-stage 3	HZ	R/W	0-400
A010	FreqCommand5	Speed frequency setting-stage 4	HZ	R/W	0-400
A011	FreqCommand6	Speed frequency setting-stage 5	HZ	R/W	0-400
A012	FreqCommand7	Speed frequency setting-stage 6	HZ	R/W	0-400
A013	FreqCommand8	Speed frequency setting-stage 7	HZ	R/W	0-400
A014	FreqCommand9	Speed frequency setting-stage 8	HZ	R/W	0-400
A015	FreqCommand10	Speed frequency setting-stage 9	HZ	R/W	0-400
A016	FreqCommand11	Speed frequency setting-stage 10	HZ	R/W	0-400
A017	FreqCommand12	Speed frequency setting-stage 11	HZ	R/W	0-400
A018	FreqCommand13	Speed frequency setting-stage 12	HZ	R/W	0-400
AO19	FreqCommand14	Speed frequency setting-stage 13	HZ	R/W	0-400
AO20	FreqCommand15	Speed frequency setting-stage 14	HZ	R/W	0-400
A021	FreqCommand16	Speed frequency setting-stage 15	HZ	R/W	0-400
AO22	RunSource	Main run command source selection	No Units	R/W	0-2
AO23	ReverseOper	Direction locked command	No Units	R/W	0-1
AO24	StoppingSel	Stop modes selection	No Units	R/W	0-1
AO25	FrequenceComm	Main frequency command source	No Units	R/W	0-5


No.	Object Name	Description	Unit	Classification	Range
		selection			
AO26	FreqUpperLim	Upper limit frequency	HZ	R/W	$0-400$
AO27	FreqLowerLim	Lower limit   frequency	HZ	R/W	$0-400$
AO28	Acc Time1	Acceleration time 1	seconds	R/W	$0-3600$
AO29	Dec Time1	Deceleration time 1	seconds	R/W	$0-3600$

Table 4.7.4.4 Analog value property list (READI WRITE)

No.	Object Name	Description	Unit	Classification	Range
AV0	PID - P Gain	Proportional gain (P)	No Units	R/W	$0-10$
AV1	PID - I Time	Integral time (I)	No Units	R/W	$\mathbf{0 - 1 0 0}$
AV2	PID - D Time	Differential time (D)	No Units	R/W	$0-10$

Table 4.7.4.5 Digital input property list (READ)

No.	Object Name	Description	Unit	Classification	Range
BIO	Run/Stop	Operation status	Stop I Run	R	0-1
BI1	Direction	Operation direction	FWD/REV	R	0-1
BI2	ststus	Inverter status	OK/Fault	R	0-1
BI3	Abnormal	Error occurs	Closel Open	R	0-1
BI4	DI_1 status	S1 status	Closel Open	R	0-1
BI5	DI_2 status	S2 status	Closel Open	R	0-1
BI6	DI_3 status	S3 status	Closel Open	R	0-1
BI7	DI_4 status	S4 status	Closel Open	R	0-1
BI8	DI_5 status	S5 status	Closel Open	R	0-1
B19	DI_6 status	S6 status	Closel Open	R	0-1

Table 4.7.4.6 Digital output property list (READ/ WRITE)

No.	Object Name	Description	Unit	Classification	Range
BO0	RY1 status	Relay output 1   status	Close/Open	R	$0-1$
BO1	RY2 status	Relay output 2   status	Close/Open	R	$0-1$
BO2	RY3 status	Relay output 3   status	Close/Open	R	$0-1$

Table 4.7.4.7 Digital value property list (READ/ WRITE)

No.	Object Name	Description	Unit	Classification	Range
BV0	RUN/STOP	RUN/STOP	Stop I   Run	R/W	$0-1$
BV1	FWD/REV	FWD/REV	FWD/REV	R/W	$0-1$

### 4.8 MetaSys N2 Communication Protocol

### 4.8.1 Instroduction and Setting

This section mainly describes the communication modes of MetaSys N2 communication protocol. Connect terminal S+ and S- of hardware line RS485 and check if Baudrate setting of parameter $09-02$ is 9600 bps . If not, inverter requires reconnecting after the communication mode selection of parameter 09-01 is set to 2 (MetaSys).

### 4.8.2 MetaSys N2 Specification

Serial Communication Interface	RS-485
Maximum Numbers of Connection	255 MetaSys N2 slave standard
Communication Speed	9600 (BPS)
Data Format	- Data byte: 8 byte   - Stop byte: 1 byte   - No parity
Access to Data	- 15 Analog input   - 10 Digital input   - 34 Analog Output   - 5 Digital output
	Support the following command 0/0 : Time Setting Command 0/4, 0/5 : Poll Command 0/8 : Warm Reset Command   1 : Read Command   2 : Write Command   F : Identify Device Command
Supporting Command	- The following Override command is enabled but it will not clear automatically after 10 minutes.   7/2/3 : AO Override command   7/2/4 : BO Override command   - The following command will respond but not execute this action.   $7 / 3$ : Remove Override command   7/2/1 : Al Override command   7/2/2 : BI Override command

### 4.8.3 Definition of MetaSys N2 Communication Protocol

MetaSys N2 is the communication protocol developed by Johnson Control Company. MetaSys N2 communication protocol uses the configuration of Master/ Slave. Every N2 Slave device can set N2 address and the range is 1-255.

The data of N2 Slave is displayed by the object and Network Point Type (NPT) is classified to seven kinds of objects:

No.	NPT Name	NPT   (abbreviation)	Description
1	Analog input	AI	32-bit, IEEE- Standard floating-point
2	Binary input	BI	1-bit
3	Analog output	AO	32-bit, IEEE- Standard floating-point
4	Binary output	BO	1-bit
5	Internal   floating-point	ADF	32-bit, IEEE- Standard floating-point
6	Internal integer	ADI	16-bit
7	Internal Bytes	DB	8-bit

The input and output are mainly for N2 network. The input is the data from N2 Slave to N2 network and the output is the data from N 2 network to N 2 Slave.


The object of N2 Slave has grouping and every group data can set the address of 0-255, abbreviated for NPA (Network Point Address).

Every object has its property which includes data contens (AI and AO object), object status (BI and BI object data), planning approach (if COS can respond or not) and so on. The property can read or write command but the data value of analog output and digital output requires the Override command to write in.

The object of N 2 support function of COS (output in the change of status) and if COS starts, object of $\mathrm{AO}, \mathrm{BI}$, and BO will automatically record under the data change and respond under the poll.

N2 Slave device waits for the indentify command after the inverter starts and starts for the communication with network after receiving the indentify command.

### 4.8.4. MetaSys N2 Communication Protocol in F510 Model

F510 models support four NPT, AI, AO, BI and BO but DO NOT support the following functions:

- Do not support only for the property or field that JCl used.
- Do not support functions of Analog Alarm and Analog Warning in AI. The related fields can read or write but do not have corresponding action.
- Do not support functions of OverRide in Al and BI . The inverter does not have error message for giving the OverRide command in Al and BI but do not have corresponding action.
- Support functions of OverRide in AO and BO but values of AO and BO do not restore to defult value when removing OverRide function.

The followings are the supporting properties list in $\mathrm{AI}, \mathrm{AO}, \mathrm{BI}$ and BO for F 510 models:
(1) AI Property List
Property List

No.	Data Type	Description	Notes
1	Byte	Object Configuration	READ/ WRITE
2	Byte	Object Status	Only READ
3	Float	Analog Input Value	Only READ

(2) BI Property List

No.	Data Type	Description	Notes
1	Byte	Object Configuration	READ/ WRITE
2	Byte	Object Status	Only READ

(3) AO Property List

No.	Data Type	Description	Notes
1	Byte	Object Configuration	READ/ WRITE
2	Byte	Object Status	Only READ
3	Float	Current Value	READ/ OverRide

(4) BO Property List

No.	Data Type	Description	Notes
1	Byte	Object Configuration	READ/ WRITE
2	Byte	Object Status	READ/ OverRide
3	Integer	Minimum On-time	READ/ WRITE
4	Integer	Minimum On-time	READ/ WRITE
5	Integer	Maximum Cycles/Hour	READ/ WRITE

The followings are parameters F510 models can read and write via MetaSys communication.

Analog input property list (READ)					
No.	Object Name	F510 Parameters	Unit	Classification	Range
Al1	Motor R-RPM	02-03 Motor Rated Rotation Speed	No Units	R	$0 \sim 60000$
AI2	Motor R-Volt	02-04 Motor Rated Voltage	Volt	R	0~240.0/0~480.0
Al3	Motor R-HP	02-05 Motor Rated Power	horsepower	R	0~600.00
Al4	Motor R-Hz	02-06 Motor Rated Frequency	HZ	R	$0.00 \sim 400.00$
Al5	Comm Station	09-00 INV Communication   Station Address	No Units	R	1-254
Al6	CommSel	09-01 Communication Mode Selection	No Units	R	$0 \sim 3$
Al7	BaudRate	09-02 Baud Rate Setting	No Units	R	0~5
Al8	CarrierFreq	11-01 Carrier Frequency	KiloHertz	R	0~16
AI9	Freq cmd	12-16 Frequency Command	HZ	R	$0.00 \sim 400.00$
Al10	Frequency	12-17 Output Frequency	HZ	R	$0.00 \sim 400.00$
Al11	Current	12-18 Output Current	Amps	R	0.0~6553.5
Al12	Control Mode	12-24 Control Mode	No Units	R	0~5
Al13	TM2 AIN	12-25 Al1 Input	Volt	R	$0 \sim 100.0$
Al14	TM2 AIN2	12-26 AI2 Input	Volt	R	$0 \sim 100.0$
Al15	Error code	12-45 Recent Fault Message	No Units	R	$0 \sim 45$

Analog output property list (READ/ Write)

No.	Object Name	F510 Parameters	Unit	Classification	Range
AO1	Set frequency	Register 2502H	HZ	R/W	$0 \sim 400.00$
AO2	AO1	Register 2505H	Volt/   Amps	R	$0.00 \sim 100.00$
AO3	AO2	Register 2506H	Volt/   Amps	R	$0.00 \sim 100.00$
AO4	RunSource	00-02 Main Run Command   Source Selection	No Units	R/W	$0 \sim 4$
AO5	FrequenceComm	00-05 Main Frequency   Command Source   Selection	No Units	R/W	$0 \sim 6$
AO6	FreqUpperLim	00-12 Upper Limit   Frequency	HZ	R/W	$0-109$
AO7	FreqLowerLim	00-13 Lower Limit   Frequency	HZ	R/W	$0-109$
AO8	Acc Time1	00-14 Acceleration Time 1	seconds	R/W	$0 \sim 6000.0$
AO9	Dec Time1	00-15 Deceleration Time 1	seconds	R/W	$0 \sim 6000.0$
AO10	Motor R-Amp	02-01 Motor Rated Current	Amps	R/W	$1 \sim 999.9$
AO11	FreqCommand1	05-01 Frequency Setting of   Speed-Stage 0	HZ	R/W	$0 \sim 400.00$
AO12	FreqCommand2	06-01 Frequency Setting of   Speed-Stage 1	HZ	R/W	$0 \sim 400.00$
AO13	FreqCommand3	06-02 Frequency Setting of   Speed-Stage 2	HZ	R/W	$0 \sim 400.00$
AO14	FreqCommand4	06-03 Frequency Setting of	HZ	R/W	$0 \sim 400.00$


No.	Object Name	F510 Parameters	Unit	Classification	Range
		Speed-Stage 3			
AO15	FreqCommand5	06-04 Frequency Setting of Speed-Stage 4	HZ	R/W	$0 \sim 400.00$
AO16	FreqCommand6	06-05 Frequency Setting of Speed-Stage 5	HZ	R/W	$0 \sim 400.00$
AO17	FreqCommand7	06-06 Frequency Setting of Speed-Stage 6	HZ	R/W	$0 \sim 400.00$
AO18	FreqCommand8	06-07 Frequency Setting of Speed-Stage 7	HZ	R/W	$0 \sim 400.00$
AO19	FreqCommand9	06-08 Frequency Setting of Speed-Stage 8	HZ	R/W	$0 \sim 400.00$
AO20	FreqCommand10	06-09 Frequency Setting of Speed-Stage 9	HZ	R/W	$0 \sim 400.00$
AO21	FreqCommand11	06-10 Frequency Setting of Speed-Stage 10	HZ	R/W	$0 \sim 400.00$
AO22	FreqCommand12	06-11 Frequency Setting of Speed-Stage 11	HZ	R/W	$0 \sim 400.00$
AO23	FreqCommand13	06-12 Frequency Setting of Speed-Stage 12	HZ	R/W	$0 \sim 400.00$
AO24	FreqCommand14	06-13 Frequency Setting of Speed-Stage 13	HZ	R/W	$0 \sim 400.00$
AO25	FreqCommand15	06-14 Frequency Setting of Speed-Stage 14	HZ	R/W	$0 \sim 400.00$
AO26	FreqCommand16	06-15 Frequency Setting of Speed-Stage 15	HZ	R/W	$0 \sim 400.00$
AO27	PwrL Sel	07-00 Momentary Power Loss/Fault Restart Selection	No Units	R	$0 \sim 1$
AO28	RestartDelay	07-01 Fault Auto-Restart Time	seconds	R	$0 \sim 7200$
AO29	RestartSel	07-02 Number of Fault Auto-Restart Attempts	No Units	R	$0 \sim 10$
AO30	StoppingSel	07-09 Stop Mode Selection	No Units	R/W	0-1
AO31	PID - P Gain	10-05 Proportional Gain (P)	No Units	R/W	$0 \sim 10.00$
AO32	PID - I Time	10-06 Integral Time (I)	No Units	R/W	$0 \sim 100.00$
AO33	PID - D Time	10-07 Differential Time (D)	No Units	R/W	0-10.00
AO34	ReverseOper	11-00 Direction Lock Selection	No Units	R/W	$0 \sim 2$

Binary input property list (READ)

No.	Object Name	No Action /   Action	Classification	Range
BI1	Run/ Stop	Stop/ Run	$R$	$0-1$
BI2	Direction	Forward/   Reverse	R	$0-1$
BI3	Status	OK/ Fault	R	$0-1$
BI4	Abnormal	Off/ On	R	$0-1$
BI5	DI_1 Status	Off/ On	R	$0-1$
BI6	DI_2 Status	Off/ On	$R$	$0-1$
BI7	DI_3 Status	Off/ On	$R$	$0-1$
BI8	DI_4 Status	Off/ On	$R$	$0-1$
BI9	DI_5 Status	Off/ On	$R$	$0-1$
BI10	DI_6 Status	Off/ On	$R$	$0-1$

Binary output property list (READ/ WRITE)

No.	Object Name	No Action /   Action	Classification	Range
BO1	Run/ Stop	Stop/ Run	R/W	$0-1$
BO2	Forward/   Reverse	Forward/   Reverse	R/W	$0-1$
BO3	RY1 Status	Off/ On	R	$0-1$
BO4	RY2 Status	Off/ On	R	$0-1$
BO5	RY3 Status	Off/ On	R	$0-1$

## MetaSys N2 Error Code List

Error Code	Cause
00	Without receving Identify command at   power up
01	Receive the non-support command
02	Check Code occurs error
03	Receive the data of more than 256 bits
05	Incorrect command length
10	Data is out of the range
11	Save the undefined fields or the fields that   JCI dedicated
12	The parameter position is only for read   command.

## Chapter 5 Check Motor Rotation and Direction

This test is to be performed solely from the inverter keypad. Apply power to the inverter after all the electrical connections have been made and protective covers have been re-attached. At this point, DO NOT RUN THE MOTOR, the keypad should display as shown below in Fig. 5.1 and the speed reference $12-16=005.00 \mathrm{~Hz}$ should be blinking at the parameter code "12-16".

Important: Motor rotation and direction only applies to standard AC motors with a base frequency of 60 Hz . For 50 Hz or other frequency AC motors please set the max frequency and base frequency in group 01 accordingly before running the motors.


Fig 5.1: Keypad (Stopped)


Fig 5.2: Keypad (Running)

Next press the RUN key, see Fig 5.2. The motor should now be operating at low speed running in forward (clockwise) direction. The parameter code 12-17 shown at the bottom left corner of the screen will change from $12-17=000.00 \mathrm{~Hz}$ to $12-17=005.00 \mathrm{~Hz}$. Next press STOP key to stop the motor.

If the motor rotation is incorrect, power down the inverter.

After the power has been turned OFF, wait at least ten minutes until the charge indicator extinguishes completely before touching any wiring, circuit boards or components.

Using Safety precaution, and referring to section 3.8 exchange any two of the three output leads to the motor (U/T1, V/T2 and W/T3). After the wiring change, repeat this step and recheck motor direction.

## Chapter 6 Speed Reference Command Configuration

The inverter offers users several choices to set the speed reference source. The most commonly used methods are described in the next sections.

Frequency reference command is selected with parameter 00-05.

## 00-05: Main Frequency Command (Frequency Source)

This function sets the frequency command source.

Setting Range: 0 to 5

To set parameter 00-05:

- After power-up press the DSP/FUN key
- Select 00 Basic Fun
- Press READI ENTER key
- Select parameter -05 with the UPIDOWN $\boldsymbol{A}$ and $\boldsymbol{\nabla}$ keys and press the READ/ ENTER key.

In the parameter list move cursor to 00-05 with the UPIDOWN keys and press READ/ ENTER key to select.

$00-05$	Main Frequency Command Source Selection
	0: Keypad
	1: External control (analog)
Range	2: Terminal UP / DOWN
	3: Communication control
	4: Pulse input
	5: PID

### 6.1 Reference from Keypad

Speed reference from the keypad is the default setting. Press the READ/ ENTER key first and use the </RESET, $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys to change the speed reference.

### 6.2 Reference from External Analog Signal (0-10V / 4-20mA)

Analog Reference: 0-10 V (Setting 00-05 = 1)


Analog Reference: Potentiometer / Speed Pot (Setting 00-05 = 1)


Potentiometer
1 ~ 5K Ohm


### 6.3 Reference from Serial Communication RS485 (00-05=3)



To set the speed reference for the inverter via serial communication parameter 00-05 has be set to " 3 " for frequency command via serial communication.

Default Communication Setting is: Address "1", 9600 Bits/sec, 1 Start Bit, 1 Stop Bit, and No Parity

The serial communication link function uses RS485 Modbus RTU protocol and allows for:

1) Monitoring (data monitoring, function data check).
2) Frequency setting.
3) Operation command (FWD, REV, and other commands for digital input).
4) Write function data.

## Frequency Reference Command Register

Inverter Frequency Reference Register: 2502 (Hexadecimal) - Bit 0 - Bit 15: $0.00 \sim 400.00 \mathrm{~Hz}$

## Examples:

## Frequency Reference Command: $\mathbf{1 0 . 0 0 ~ H z ~ ( I n v e r t e r ~ N o d e ~ A d d r e s s : ~ 0 1 ) ~}$

Command String (hexadecimal): 0106250203 E8 23 B8
To set the frequency reference to 10.00 , a value of ' 1000 ' ( 03 E 8 h ) has to be send to the inverter.

Frequency Reference Command: $\mathbf{3 0 . 0 0} \mathrm{Hz}$ (Inverter Node Address: 01)
Command String (hexadecimal): 01062502 0B B8 2444

To set the frequency reference to 30.00 , a value of ' 3000 ' (0BB8h) has to be send to the inverter.

Frequency Reference Command: $\mathbf{6 0 . 0 0 ~ H z ~ ( I n v e r t e r ~ N o d e ~ A d d r e s s : ~ 0 1 ) ~}$

Command String (hexadecimal): 010625021770 2D 12

To set the frequency reference to 60.00, a value of ' 6000 ' (1770h) has to be send to the inverter
Note: The last 2 bytes of the command strings consist of a CRC16 checksum, please refer to section 4.5 of the instruction manual for additional information.

### 6.4 Reference from two Analog Inputs

Analog input Al1 is used as master frequency reference and analog input AI2 is used as auxiliary frequency reference.

Analog Reference Al1: 0-10 V (Setting 00-05 = 1)
Analog Reference AI2: $0-10 \mathrm{~V}$ (Setting 00-06 = 1, 04-05 = 1)

Al1 - Analog Input 1	Al2 - Analog Input 2	04-00 Setting   (Default = 1)	Dipswitch SW2   (Default 'V')
$0 \sim 10 \mathrm{~V}$	$0 \sim 10 \mathrm{~V}$	0	Set to 'V'
$0 \sim 10 \mathrm{~V}$	$4 \sim 20 \mathrm{~mA}$	1	Set to 'l'



### 6.5 Change Frequency Unit from Hz to rpm

Enter the number of motor poles in 16-03 to change the display units from Hz to rpm .

16-03	Display unit
	0: Display unit is Hz (Resolution is 0.01 Hz )
	1: Display unit is \% (Resolution is $0.01 \%$ )
	2~38: Display unit rpm, (uses number of motor poles to calculate)
Range	40~9999: $100 \%$ is XXXX with no decimals (integer only)
	10001~19999: $100 \%$ is $\mathrm{XXX} . \mathrm{X}$ with 1 decimal
	20001~29999: $100 \%$ is $\mathrm{XX.XX}$ with 2 decimals
	30001~39999: $100 \%$ is $\mathrm{X} . \mathrm{XXX}$ with 3 decimals

Example: Motor poles 4, 16-03 = 4 .

## Chapter 7 Operation Method Configuration (Run / Stop)

The inverter offers users several choices to run and stop from different sources. The most commonly used methods are described in the next sections.

Operation command is selected with parameter 00-02.

## 00-02: Run Command Selection

This function sets the frequency command source.
Setting Range: 0 to 3
To set parameter 00-01:

- After power-up press the DSPIFUN key
- Select 00 Basic Fun
- Press READI ENTER key
- Select parameter -01 with the UPIDOWN $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys and press the READI ENTER key.

In the parameter list move cursor to 00-01 with the UPIDOWN keys and press READI ENTER key to select.

$\mathbf{0 0 - 0 2}$	Run Command Selection
Range	0: Keypad control
	1: External terminal control
	2: Communication control
	3: PLC

### 7.1 Run/Stop from the Keypad (00-02=0) - Default Setting

Use the RUN key to run the drive in forward direction and the FWDIREV key to change the motor direction. (Note: to disable reverse direction set parameter 11-01 to 1)

Press STOP key to stop the inverter. (Note: Stop method can be set with parameter 07-09, default is deceleration to stop).


### 7.2 Run/Stop from External Switch / Contact or Pushbutton

 (00-02=1)Use an external contact or switch to Run and Stop the inverter.

Permanent Switch / Contact


### 7.3 Run/Stop from Serial Communication RS485 (00-02=3)



To control (Run/Stop) the inverter via serial communication parameter 00-02 has be set to either a " 3 " for communication control.

Default Communication Setting is: Address "1", 9600 Bits/sec, 1 Start Bit, 1 Stop Bit, and No Parity

The serial communication link function uses RS485 Modbus RTU protocol and allows for:

1) Monitoring (data monitoring, function data check).
2) Frequency setting.
3) Operation command (FWD, REV, and other commands for digital input).
4) Write function data.

## Command Register

Inverter Command Register: 2501 (Hexadecimal)
Bit 0: Run Forward
Bit 1: Run Reverse
Bit 2 ~ Bit 15: Refer to the chapter XX of this manual

## Examples:

## Run Forward Command (Inverter Node Address: 01)

Command String (hexadecimal): 01062501000112 C6

Run Reverse Command (Inverter Node Address: 01)

Command String (hexadecimal): 0106250100039307

Stop Command (Inverter Node Address: 01)

Command String (hexadecimal): 010625010000 D3 06

Note: The last 2 bytes of the command strings consist of a CRC16 checksum, please refer to section 4.5 of the instruction manual for additional information.

## Chapter 8 Motor and Application Specific Settings

It is essential that before running the motor, the motor nameplate data matches the motor data in the inverter.

### 8.1 Set Motor Nameplate Data (02-01, 02-05)

## 02-05 Rated power of motor 1

The nominal motor rated capacity is set at the factory. Please verify that the motor name plate data matches the motor rated capacity shown in parameter 02-05. The setting should only be changed when driving a motor with a different capacity.

Range: 0.00 to $600.00 \mathrm{~kW}(1 \mathrm{HP}=0.746 \mathrm{~kW})$
To set parameter 02-05:

- After power-up press the DSP/FUN key
- Select 02 Motor Parameter
- Press READI ENTER key
- Select parameter -01 with the UPIDOWN $\boldsymbol{\Delta}$ and $\nabla$ keys and press the READ/ ENTER key.

Default values vary based on the inverter model.

## 02-01 Rated current of motor 1

The motor rated current is set at the factory based on the inverter model. Enter the motor rated current from the motor nameplate if it does not match the value shown in parameter 02-01.

Setting range: 0.01 to 600.00 A

To set parameter 02-01:

- After power-up press the DSP/FUN key
- Select 02 Motor Parameter
- Press READI ENTER key
- Select parameter -01 with the UPIDOWN $\mathbf{\Delta}$ and $\nabla$ keys and press the READ/ ENTER key.


### 8.2 Acceleration and Deceleration Time (00-14, 00-15)

Acceleration and Deceleration times directly control the system dynamic response. In general, the longer the acceleration and deceleration time, the slower the system response, and the shorter time, the faster the response. An excessive amount of time can result in sluggish system performance while too short of a time may result in system instability.

The default values suggested normally result in good system performance for the majority of general purpose applications. If the values need to be adjusted, caution should be exercised, and the changes should be in small increments to avoid system instability.

## 00-14 Acceleration time 1

00-15 Deceleration time 1
These parameters set the acceleration and deceleration times of the output frequency from 0 to maximum frequency and from maximum frequency to 0 .

To set parameter 00-14 or 00-15:

- After power-up press the DSPIFUN key
- Select 00 Basic Fun
- Press READI ENTER key
- Select parameter -14 or -15 with the UPIDOWN $\mathbf{\Delta}$ and $\mathbf{\nabla}$ keys and press the READI ENTER key.

Acceleration and deceleration times are represented by the three most significant (high order) digits. Set acceleration and deceleration times with respect to maximum frequency. The relationship between the set frequency value and acceleration/deceleration times is as follows:


Set Frequency $=$ Maximum Frequency


Set Frequency < Maximum Frequency

Note: If the set acceleration and deceleration times are set too low, the torque limiting function or stall prevention function can become activated if the load torque and or inertia are relatively high. This will prolong the acceleration and or deceleration times and not allow the set times to be followed. In this case the acceleration and or the deceleration times should be adjusted.

### 8.3 Torque Compensation Gain (01-10)

This parameter sets the relationship between output frequency and output voltage. Constant torque applications have the same torque requirements at low speed as well as at high speed.

## Initial Setup

For Variable Torque / Normal Duty applications set parameter 01-10 to an initial value of 0.5.

For Constant Torque / Heavy Duty applications set parameter 01-10 to an initial value of 1.0.
01-10 Torque compensation gain
This parameter sets the torque boost for motor 1 .
Setting range: 0.0 to 2.0
To set parameter 01-10:

- After power-up press the DSPIFUN key
- Select 01 VIF Pattern
- Press READI ENTER key
- Select parameter -10 with the UPIDOWN $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys and press the READI ENTER key.

Increase value when:

- The wiring between the inverter and the motor very too long
- The motor size is smaller than the inverter size

Note: Gradually increase the torque compensation value and make sure the output current does not exceed inverter rated current.

Reduce value when:

- Experiencing motor vibration
- Over Current Fault
- Overload Fault

Important: Confirm that the output current at low speed does not exceed the rated output current of the inverter.
Warning: A larger than required torque compensation gain value creates over-excitation at low speeds, continued operation may cause the motor to overheat. Check the characteristics of the motor for additional information.

### 8.4 Automatic Energy Savings Function (11-19)

In the V/F control mode the automatic energy saving (AES) function automatically adjusts the output voltage and reduces the output current of the inverter to optimize energy savings based on the load.

The output power changes proportional to the motor load. Energy savings is minimal when the load exceeds $70 \%$ of the output power and savings become greater when the load decreases.

The parameter of automatic energy saving function has been set at the factory before shipment. In general, it is no need to adjust. If the motor characteristic has significant difference from TECO standard, please refer to the following commands for adjusting parameters:

## Enable Automatic Energy Savings Function

To set parameters 11-19 to 11-24:

- After power-up press the DSPIFUN key
- Select 11 Auxiliary Function Group
- Press READI ENTER key
- Select parameter -19 to - 24 with the UPIDOWN $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys and press the READI ENTER key.
(1) To enable automatic energy saving function set 11-19 to 1.
(2) Filter time of automatic energy saving (11-20)
(3) Commissioning parameter of energy saving (11-21 to 11-22)

In AES mode, the optimum voltage value is calculated based on the load power requirement but is also affected by motor temperature and motor characteristic.

In certain applications the optimum AES voltage needs to be adjusted in order to achieve optimum energy savings. Use the following AES parameters for manual adjustment:

11-21: Voltage limit value of AES commissioning operation
Sets the voltage upper limit during automatic energy saving. $100 \%$ corresponds to 230 V or 460 V depending on the inverter class used.


Voltage limit value of commissioning operation

11-22: Adjustment time of automatic energy saving
Sets sample time constant for measuring output power.
Reduce the value of 11-22 to increase response when the load changes.
Note: If the value of 11-22 is too low and the load is reduced the motor may become unstable.
11-23: Detection level of automatic energy saving
Sets the automatic energy saving output power detection level.
11-24: Coefficient of automatic energy saving
The coefficient is used to tune the automatic energy saving. Adjust the coefficient while running the inverter on light load while monitoring the output power. A lower setting means lower output voltage.

## Notes:

- If the coefficient is set to low the motor may stall.
- Coefficient default value is based on the inverter rating. Set parameter $13-00$. If the motor power does not match the inverter rating.


### 8.5 Emergency Stop

The emergency stop time is used in combination with multi-function digital input function \#14 (Emergency stop). When emergency stop input is activated the inverter will decelerate to a stop using the Emergency stop time (00-26) and display the [EM STOP] condition on the keypad.

Note: To cancel the emergency stop condition the run command has to be removed and emergency stop input deactivated.

Example: Emergency Stop Switch set for input terminal S5 (03-04 = 14).


$\mathbf{0 0 - 2 6}$	Emergency stop time
Range	$0.0 \sim 6000.0 \mathrm{Sec}$

### 8.6 Direct / Unattended Startup

The unattended startup function prevents the inverter from starting automatically when a run command is present at time of power-up. To use USP command set one of the multi-function digital input functions to \#50 (USP Startup).


Unattended Startup Protection

### 8.7 Analog Output Setup

Signal: Use parameter 04-11 to select the analog output signal for AO1 and parameter 04-16 to select the analog output signal for AO2.

Gain: Use parameter 04-12 to adjust the gain for AO1 and parameter 04-17 to adjust the gain for AO2. Adjust the gain so that the analog output ( $10 \mathrm{~V} / 20 \mathrm{~mA}$ ) matches $100 \%$ of the selected analog output signal (04-11 for AO1 and 04-16 for AO2).

Bias: Use parameter 04-13 to adjust the bias for AO1 and parameter 04-18 to adjust the bias for AO2. Adjust the bias so that the analog output ( $0 \mathrm{~V} / 4 \mathrm{~mA}$ ) matches $0 \%$ of the selected analog output signal (04-11 for AO1 and 04-16 for AO2).

Example: Analog Output 1 Wiring


04-11	AO1 function Setting	14: Reserved
	0: Output frequency	15: ASR output
	1: Frequency command	16: Reserved
	2: Output voltage	17: $q$-axis voltage
	3: DC voltage	18: d-axis voltage
	4: Output current	19: Reserved
	5: Output power	20: Reserved
Range	6: Motor speed	21: PID input
	7: Output power factor	22: PID output
	8: Al1 input	23: PID target value
	9: Al2 input	24: PID feedback value
	10: Torque command	25: Output frequency of the soft starter
	11: $q$-axis current	26: PG feedback
	12: d-axis current	13: Speed deviation


$04-12$	AO1 gain value
Range	$0.0 \sim 1000.0 \%$


$\mathbf{0 4 - 1 3}$	AO1 bias-voltage value
Range	$-100.0 \sim 100.0 \%$


$\mathbf{0 4 - 1 6}$	AO2 function Setting
Range	See parameter 04-11


04-17	AO2 gain value
Range	$0.0 \sim 1000.0 \%$


$\mathbf{0 4 - 1 8}$	AO2 bias-voltage value
Range	$-100.0 \sim 100.0 \%$



Analog output level adjustment

## Chapter 9 Using PID Control for Constant Flow / Pressure Applications

### 9.1 What is PID Control?

The PID function in the inverter can be used to maintain a constant process variable such as pressure, flow, temperature by regulating the output frequency (motor speed). A feedback device (transducer) signal is used to compare the actual process variable to a specified setpoint. The difference between the set-point and feedback signal is called the error signal.
The PID control tries to minimize this error to maintain a constant process variable by regulating the output frequency (motor speed).


The amplitude of the error can be adjusted with the Proportional Gain parameter 10-05 and is directly related to the output of the PID controller, so the larger gain the larger the output correction.

## Example 1:

Gain = 1.0
Set-Point = 80\%
Feedback $=78 \%$
Error $=$ Set-point - Feedback $=2 \%$
Control Error = Gain x Error = 2\%

Example 2:
Gain $=2.0$
Set-Point $=80 \%$
Feedback $=78 \%$
Error $=$ Set-point - Feedback $=2 \%$
Control Error = Gain x Error = 4\%

Please note that an excessive gain can make the system unstable and oscillation may occur.

The response time of the system can be adjusted with the Integral Gain set by parameter 10-06. Increasing the Integral Time will make the system less responsive and decreasing the Integral Gain Time will increase response but may result in instability of the total system.

Slowing the system down too much may be unsatisfactory for the process. The end result is that these two parameters in conjunction with the acceleration (00-14) and deceleration (00-15) times are adjusted to achieve optimum performance for a particular application.

For typical fan and pump applications a Proportional Gain (10-05) of 2.0 and an Integral Time $(10-06)$ of 5.0 sec is recommended.

## 10-03 PID control mode

PID control can be enabled by setting parameter 10-03 to ' $x x x 1 b$ '

$\mathbf{1 0 - 0 3}$	PID control mode
	xxx0b: PID disable
	xxx1b: PID enable
	xx0xb: PID positive characteristic
Range	xx1xb: PID negative characteristic
	x0xxb: PID error value of D control                           0xxx: $1 \times$ PID feedback value of $D$ control   1xxxb: PID output output +target value

## Commonly used PID control modes

0001b: Forward operation: PID operation enabled, motor speeds increases when feedback signal is smaller than set-point (most fan and pump applications)

0011b: Reverse operation: PID operation enabled, motor slows down when feedback signal is smaller than set-point (e.g. level control applications)

To set parameter 10-03:

- After power-up press the DSPIFUN key
- Select 10 PID Control
- Press READI ENTER key
- Select parameter -03 with the UPIDOWN $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys and press the READI ENTER key.

Important: To use the PID function parameter 00-05 (Main Frequency Command Source Selection) has to be set to 5 for PID reference.

### 9.2 Connect Transducer Feedback Signal (10-01)

The PID function in the inverter
Depending on the type of feedback transducer used, the inverter can be setup for either 0-10V or a $4-20 \mathrm{~mA}$ feedback transducer.

Feedback Signal $4-20 \mathrm{~mA}(10-01=2)-\mathrm{SW} 2=1$


Feedback Signal $0-10 \mathrm{~V}(10-01=1)-S W 2=V$


### 9.3 Engineering Units

The PID setpoint scaling can be selected with parameter 16-03 and 16-04.
Example: $0-200.0$ PSI Setpoint, set 16-03 to 12000 ( 1 decimal, range $0-200$ ) and $16-04$ to 2 (PSI).

### 9.4 Sleep / Wakeup Function

The PID Sleep function can be used to prevent a system from running at low speeds and is frequently used in pumping application. The PID Sleep function is turned on by parameter 10-29 set to 1 . The inverter output turns off when the PID output falls below the PID sleep level (10-17) for the time specified in the PID sleep delay time parameter (10-18).

The inverter wakes up from a sleep condition when the PID output (Reference frequency) rises above the PID wake-up frequency $(10-19)$ for the time specified in the PID wake-up delay time (10-20).

10-29 =0: PID Sleep function is disabled.
10-29 =1: PID sleep operation is based on parameters of 10-17 and 10-18.
10-29 =2: PID sleep mode is enabled by multi-function digital input

Refer to figure 4.4.74 (a) and (b) for PID sleep / wakeup operation.


PID Sleep Function

## Chapter 10 Troubleshooting and Fault Diagnostics

### 10.1 General

Inverter fault detection and early warning / self-diagnosis function. When the inverter detects a fault, a fault message is displayed on the keypad. The fault contact output energizes and the motor will coast to stop (The stop method can be selected for specific faults).

When the inverter detects a warning / self-diagnostics error, the digital operator will display a warning or self-diagnostic code, the fault output does not energize in this case. Once the warning is removed, the system will automatically return to its original state.

### 10.2 Fault Detection Function

When a fault occurs, please refer to Table 10.2.1 for possible causes and take appropriate measures.
Use one of the following methods to restart:

1. Set one of multi-function digital input terminals (03-00, 03-05) to 17 (Fault reset); activate input
2. Press the reset button on the keypad and clear fault message.
3. Power down inverter wait until keypad goes blank and power-up the inverter again.

When a fault occurs, the fault message is stored in the fault history (see group 12 parameters).
Table 10.2.1 Fault information and possible solutions

LED display	Description	Cause	Possible solutions
over current	The inverter output current exceeds the overcurrent level (200\% of the inverter rated current).	- Acceleration / Deceleration time is too short.   - Contactor at the inverter output side.   - A special motor or applicable capacity is greater than the inverter rated value.   - Short circuit or ground fault.	- Extend acceleration / deceleration time.   - Check the motor wiring.   - Disconnect motor and try running inverter.
SC short circuit	Inverter output short circuit or ground fault.	- Short circuit or ground fault (08-23 = 1).   - Motor damaged (insulation).   - Wire damage or deterioration.	- Check the motor wiring.   - Disconnect motor and try running inverter.
Ground fault	The current to ground exceeds $50 \%$ of the inverter rated output current (08-23 = 1, GF function is enabled).	- Motor damaged (insulation).   - Wire damage or deterioration.   - Inverter DCCT sensors defect.	- Replace motor.   - Check the motor wiring.   - Disconnect motor and try running inverter.   - Check resistance between cables and ground.   - Reduce carrier frequency.
OV Over voltage		- Deceleration time set too short, resulting in regenerative energy flowing back from motor to the inverter.   - The inverter input voltage is too high.   - Use of power factor correction capacitors.   - Excessive braking load.   - Braking transistor or resistor defective.   - Speed search parameters set incorrectly.	- Increase deceleration time   - Reduce input voltage to comply with the input voltage requirements or install an AC line reactor to lower the input voltage.   - Remove the power factor correction capacitor.   - Use dynamic braking unit.   - Replace braking transistor or resistor.   - Adjust speed search parameters.
	OV detection level:   410 Vdc : 200 V class   820 Vdc : 400V class   (For 400V class, if input voltage 01-14 is set lower than 400 V , the OV detection value will is decreased to 730 Vdc ).		


LED display	Description	Cause	Possible solutions
UV Under voltage	DC bus voltage is lower than the UV detection level or the pre-charge contactor is not active while the inverter is running. 190 Vdc : 200 V class; $380 \mathrm{Vdc}: 400 \mathrm{~V}$ class (The detection value can be adjusted by 07-13).	- The input voltage is too low.   - Input phase loss.   - Acceleration time set too short.   - Input voltage fluctuation.   - Pre-charge contactor damaged.   - DC bus voltage feedback signal value not incorrect.	- Check the input voltage.   - Check input wiring.   - Increase acceleration time.   - Check power source   - Replace pre-charge contactor   - Replace control board or complete inverter.
$\begin{gathered} \text { IPL } \\ \text { input phase } \end{gathered}$	Phase loss at the input side of the inverter or input voltage imbalance, active when 08-09 = 1 (enabled).	- IPL occurs.   - Terminal screws of R/L1, S/L2 or T/L3 are loose or lost.   - Input voltage fluctuation is too big.   - Input Voltage is imbalance per phase   - Aging of the capacity on main circuit inside inverter	- Check if the main wiring connection is correct.   - Check if the terminal screw gets loose.   - Make sure having stable input voltage or turn off IPL detection function.   - Replace the circuit board or inverter
OPL output phase loss	Phase loss at the output side of the inverter, active when $08-10=1$ (enabled).	- Wiring loose in inverter output terminal.   - Motor rated current is less than $10 \%$ of the inverter rated current.	- Check output wiring / faster screws.   - Check motor \& inverter rating.
OH1 Heatsink overheat	The temperature of the heat sink is too high.	- Ambient temperature too high.   - cooling fan failed   - Carrier frequency set too high.   - Load too heavy.	- Install fan or AC to cool surroundings.   - Replace cooling fan.   - Reduce carrier frequency.   - Reduce load / Measure output current
	Note: when OH1 fault occurs three times within five minutes, it is required to wait 10 minutes before resetting the fault.		
OH4 Motor overheating	Motor overheating : The input of PTC (Positive Temperature Coefficient ) exceeds the overheat protection level	- The surrounding temperature of motor is too high.   - The input of PTC ( PositiveTemperature Coefficient) exceeds the overheat protection level.	- Check the surrounding temperature of motor.   - Check MTand GND terminal wiring be correct.
OL1 Motor overload	Internal motor overload protection tripped, active when protection curve $08-05=x x x 1$.	- Voltage setting V/F mode too high, resulting in over-excitation of the motor.   - Motor rated current (02-01) set incorrectly.   - Load too heavy.	- Check V/f curve.   - Check motor rated current   - Check and reduce motor load, check and operation duty cycle.
OL2 Inverter overload	Inverter thermal overload protection tripped. If an inverter overload occurs 4 times in five minutes, it is required to wait 4 minutes before resetting the fault.	- Voltage setting V/F mode too high, resulting in over-excitation of the motor.   - Inverter rating too small.   - Load too heavy.	- Check V/f curve.   - Replace inverter with larger rating.   - Check and reduce motor load, check and operation duty cycle.
OT Over torque detection	Inverter output torque is higher than 08-15 (over torque detection level) for the time specified in 08-16 Parameter 08-14 = 0 or 2 to activate.	- Load too heavy.	- Check over torque detection parameters (08-15 / 08-16).   - Check and reduce motor load, check and operation duty cycle.


LED display	Description	Cause	Possible solutions
$\begin{gathered} \text { UT } \\ \hline \text { Under torque } \\ \text { detection } \end{gathered}$	Inverter output torque is lower than 08－19（under torque detection level）for the time specified in 08－20． Parameter 08－18 $=0$ or 2 to activate．	－Sudden drop in load．   －Belt break．	－Check under torque detection parameters（08－19／08－20）．   －Check load／application．
－1I			
CE   $\substack{\text { communication } \\ \text { error }}$	No Modbus communication received in for the time specified in 09－06 （communication error detection time）． Active when 09－07（ $=0$ to 2）．	－Connection lost or wire broken．   －Host stopped communicating．	－Check connection   －Check host computer／ software．
1三			
FB PID feedback loss	PID feedback signal falls below level specified in 10－12（PID feedback loss detection level）for the time specified in 10－13 （Feedback loss detection time）．Active when parameter（10－11＝2）．	－Feedback signal wire broken   －Feedback sensor broken．	－Check feedback wiring   －Replace feedback sensor．
1－1			
STO   Safety switch	Inverter safety switches open．	－Terminal board Input F1 and F2 are not connected．   － $08-30$ is set to 1 ：Coast to stop，and digital terminal switch（58）is turned on．	－Check F1 and F2 connection   －Check digital terminal（58）is turned on
SS1   Safety switch	Inverter safety switches open．	－When $08-30$ is set to 0 ： Deceleration to stop，and digital terminal switch（58）is turned on．	Check digital terminal（58）is turned on．
■口 1			


LED display	Description	Cause	Possible solutions
$\begin{array}{\|c} \hline \hline \text { EF1 } \\ \text { External fault } \\ \text { (S1) } \\ \hline \end{array}$	External fault（Terminal S1） Active when $03-00=25$ ，and Inverter external fault selection 08－24＝0 or 1.	－Multifunction digital input external fault active．	－Multi－function input function set incorrectly．   －Check wiring
EF 1			
$\begin{gathered} \text { EF2 } \\ \text { External fault } \\ \text { (S2) } \\ \hline \end{gathered}$	External fault（Terminal S2） Active when $03-01=25$ ，and Inverter external fault selection 08－24＝0 or 1 ．		
E上二			
EF3   External fault   （S3）   童	External fault（Terminal S3） Active when 03－02＝25，and Inverter external fault selection $08-24=0$ or 1 ．		
上下二			
	External fault（Terminal S4） Active when $03-03=25$ ，and Inverter external fault selection $08-24=0$ or 1 ．		
三巨－1			
$\begin{gathered} \text { EF5 } \\ \text { External fault } \\ (\mathrm{S} 5) \end{gathered}$	External fault（Terminal S5） Active when $03-04=25$ ，and Inverter external fault selection $08-24=0$ or 1 ．		
■上曰			


LED display	Description	Cause	Possible solutions
EF6 External fault （S6） （S6）	External fault（Terminal S6） Active when $03-05=25$ ，and Inverter external fault selection 08－24＝0 or 1.	－Multifunction digital input external fault active．	－Multi－function input function set incorrectly．   －Check wiring
■上曰			
CF07   Motor control   fault	Motor control fault	－SLV mode unable to run motor．	－Perform rotational or stationary auto－tune   －Increase minimum output frequency（01－08）
EEFI			
$\begin{gathered} \text { FU } \\ \text { fuse open } \end{gathered}$	DC bus fuse blown DC fuse（Models 230 V 50 HP and above， 460 V 75 HP and above）open circuit．	－IGBT damaged．   －Short circuit output terminals．	－Check IGBTs   －Check for short circuit at inverter output．   －Replace inverter．
I＿I			
LOPBT Low flow fault	Low flow fault	－The feedback signal is not   connected．   －Due to HVAC feedback value is lower than limit of minimum flow．	－Check feedback signal is correct and with right connection．   －Check if feedback value is lower than limit of minimum flow（23－51）．
¢「バームロー			
HIPBT   High flow fault	High flow fault	－Due to HVAC feedback value is lower than limit of maximum flow．	－Check feedback signal is correct．   －Check if feedback value is lower than limit of maximum flow（23－48）．
ーサーローロ			
LPBFT Low pressure fault	Low pressure fault	－The feedback signal is not connected．   －Due to feedback value of pump pressure is lower than limit of minimum flow．	－Check feedback signal is correct and with connection．   －Check if feedback value of pressure is lower than limit o minimum pressure（23－15）．
ローツロー！			
OPBFT High pressure fault	High pressure fault	－Due to feedback value of pump pressure is lower than limit of maximum flow．	－Check feedback signal is correct．   －Check if feedback value of pressure is lower than limit of maximum pressure（23－12）．
ロロ゙ロージロ			
$\begin{gathered} \text { LSCFT } \\ \text { Low suction } \\ \text { fault } \end{gathered}$	Low suction fault	－Insufficient water supply of effluent channel leads to insufficient suction   －PID difference is higher than its level or current is lower than output current level	－Check if water of effluent channel is enough，and water supply is regular．   －Check PID difference is higher than its level or current is lower than output current level
1 EI			

### 10.3 Warning / Self-diagnosis Detection Function

When the inverter detects a warning, the keypad displays a warning code (flash).
Note: The fault contact output does not energize on a warning and the inverter continues operation. When the warning is no longer active the keypad will return to its original state.

When the inverter detected a programming error (for example two parameters contradict each other of are set to an invalid setting), the keypad displays a self-diagnostics code.

Note: The fault contact output does not energize on a self-diagnostics error. While a self-diagnostics code is active the inverter does not accept a run command until the programming error is corrected.

Note: When a warning or self- diagnostic error is active the warning or error code will flash on the keypad. When the RESET key is pressed, the warning message (flash) disappears and returns after 5 sec . If the warning or self-diagnostic error still exists.

Refer to Table 10.3.1 for and overview, cause and corrective action for inverter warnings and self-diagnostic errors.

Table 10.3.1 Warning / self-diagnosis and corrective actions

LED display	Description	Cause	Possible solutions
$\begin{gathered} \text { OV } \\ \text { (flash) } \\ \text { Over voltag } \end{gathered}$		- Deceleration time set too short, resulting in	- Increase deceleration time   - Reduce input voltage to
$\begin{aligned} & 7! \\ & !! \end{aligned}$	DC bus voltage exceeds the OV detection level: 410 Vdc : 200 V class $820 \mathrm{Vdc}: 400 \mathrm{~V}$ class (for 440 V class, if input voltage 01-14 is set lower than 400 V , the OV detection value will is decreased to 700 Vdc )	back from motor to the inverter.   - The inverter input voltage is too high.   - Use of power factor correction capacitors.   - Excessive braking load.   - Braking transistor or resistor defective.   - Speed search parameters set incorrectly.	comply with the input voltage requirements or install an AC line reactor to lower the input voltage.   - Remove the power factor correction capacitor.   - Use dynamic braking unit.   - Replace braking transistor or resistor.   - Adjust speed search parameters.
$\underset{\substack{\text { UV } \\ \text { under voltage } \\ \text { under }}}{ }$	DC bus voltage is lower than the UV detection level or the pre-charge contactor is not active while the inverter is running.   190 Vdc : 200 V class; $380 \mathrm{Vdc}: 400 \mathrm{~V}$ class (the detection value can be adjusted by 07-13)	- The input voltage is too low.   - Input phase loss.   - Acceleration time set too short.   - Input voltage fluctuation.   - Pre-charge contactor damaged.   - DC bus voltage feedback signal value not incorrect.	- Check the input voltage.   - Check input wiring.   - Increase acceleration time.   - Check power source   - Replace pre-charge contactor   - Replace control board or complete inverter.
$4 \nabla$			
OH1   Heat sink overheating	Heat sink is overheating : The temperature of the heat sink is too high. If heat sink overheating fault has occurred with three times in five minutes, it is required to wait for 10 minutes before resetting the fault.	- Ambient temperature is too high.   - The cooling fan has stopped.   - Carrier frequency setting is too high.	- Check the ambient temperature of the inverter.   - Check the fan or dust and dirt in the heat sink.   - Check the carrier frequency setting.
$\Delta \nabla \nabla\rangle$			
OH2 (flash) Inverter over heating warning	Inverter overheat warning: Multi-function digital input set to 32. (Terminal S1~S6) Active when 03-00~03-05 $=31$ ).	- Multifunction digital input overheat warning active.	- Multi-function input function set incorrectly.   - Check wiring


LED display	Description	Cause	Possible solutions		
OT   （flash）   over torque   detection	Inverter output torque is   higher than 08－15（over   torque detection level）for the   time specified in 08－16．	• Load too heavy．	－Check over torque   detection parameters   $(08-15 / 08-16)$.		
Prameter 08－14 0 to to					
activate．				$\quad$	Check and reduce motor
:---					
load，check and operation					
duty cycle．					


LED display	Description	Cause	Possible solutions
bb1 （flash） External baseblock 4V7白白 1	External base block （Terminal S1）	－Multifunction digital input external baseblock active．	－Multi－function input function set incorrectly．   －Check wiring
bb2 （flash） External baseblock 4VV ロロテ	External base block （Terminal S2）		
bb3   （flash）   External baseblock 4VV bดコ	External base block （Terminal S3）		
bb4   （flash）   External baseblock 4 V／ b64	External base block （Terminal S4）		
	External base block （Terminal S5）		
bb6   （flash）   External baseblock 4VV ロロロ	External base block （Terminal S6）		


LED display	Description	Cause	Possible solutions
OL1   Motor overload   「11   111	Internal motor overload protection tripped, active when protection curve 08-05 $=x x x 1$.	- Voltage setting V/F mode too high, resulting in over-excitation of the motor.   - Motor rated current (02-01) set incorrectly.   - Load too heavy.   - Voltage setting V/F mode too high, resulting in over-excitation of the motor.   - Inverter rating too small.   - Load too heavy.	- Check V/f curve.   - Check motor rated current   - Check and reduce motor load, check and operation duty cycle.   - Check V/f curve.   - Replace inverter with larger rating.   - Check and reduce motor load, check and operation duty cycle
OL2 Inverter overload	Inverter thermal overload protection tripped.   If an inverter overload occurs 4 times in five minutes, it is required to wait 4 minutes before resetting the fault.		
- In			
CE (flash) communication error	No Modbus communication received for 2 sec.   Active when 09-07=3.	- Connection lost or wire broken.   - Host stopped communicating.	- Check connection   - Check host computer / software.
17			
CLB   over current protection level B	Inverter current reaches the current protection level B.	- Inverter current too high.   - Load too heavy.	- Check load and duty cycle operation.
Retry (flash) retry	Automatic reset has activated, and it displays before the period of 07-01 automatic reset terminates.	- The period of 07-01 automatic reset $=0$.   - The times of 07-02 automatic reset $\neq 0$.	- It will disappear after the period of automatic reset.


LED display	Description	Cause	Possible solutions
EF1 ( flash ) External fault (S1)	External fault (Terminal S1) Active when $03-00=25$, and Inverter external fault selection $08-24=2$.	- Multifunction digital input external fault active and parameter 08-24 = 2 for operation to continue.	- Multi-function input function set incorrectly.   - Check wiring   - Multi-function input function set incorrectly.   - Check wiring
EI			
EF2 (flash) External fault (S2)	External fault (Terminal S2) Active when 03-01= 25, and		
	selection 08-24=2.		
EF3 (flash) External fault (S3)	External fault (Terminal S3) Active when 03-02= 25, and		
	Inverter external fault selection 08-24=2.		



LED display	Description	Cause	Possible solutions
SE03   V/f curve error	V/f curve setting error.	- V/F curve setting error.   (1) 01-02 > 01-12 > 01-06 $>01-08$;   (Fmax) (Fbase) (Fmid1) (Fmin)   (2)01-16>01-24>01-20> 01-22;   (Fmax2) (Fbase2)(Fmid1)   (Fmin2)	- Check V/F parameters
SE05 PID selection error	PID selection error.	-10-00 and 10-01are set to the same analog input 1 (Al1) or 2 (Al2)	- Check parameters 10-00 and 10-01.
HPErr Model selection error	Inverter capacity setting error: Inverter capacity setting 13-00 does not match the rated voltage.	- Inverter capacity setting does not match voltage class (13-00).	- Check inverter capacity setting 13-00.
$\begin{gathered} \text { SE09 } \\ \text { PI setting error } \end{gathered}$	Inverter PI setting error	- Inverter pulse input selection (03-30) selection conflicts with PID source (10-00 and 10-01).	- Check pulse input selection (03-30) and PID source (10-00 and 10-01).
FB (flash) feedback breaking	PID feedback signal falls below level specified in 10-12 (PID feedback loss detection level) for the time specified in 10-13 (Feedback loss detection time). Active when parameter (10-11 = 1 ).	- Feedback signal wire broken   - Feedback sensor broken.	- Check feedback wiring   - Replace feedback sensor.
USP (flash) Unattended Start Protection	Unattended Start Protection (USP) is enabled (enabled at power-up.)	- USP at power-up (activated by multi-function digital input) is enabled. The inverter will not accept a run command.   - While the warning is active the inverter does not accept a run command. (See parameter 03-00 -$03-05=50$ ).	- Remove run command or reset inverter via multi-function digital input (03-00 to 03-07 = 17) or use the RESET key on the keypad to reset inverter.   - Activate USP input and re-apply the power.


LED display	Description	Cause	Possible solutions
LOPB   Low flow error	Low flow error	－The feedback signal is not connected．   －Due to HVAC feedback value is lower than limit of minimum flow．	－Check feedback signal is correct and with right connection．   －Check if feedback value is lower than limit of minimum flow．
HIPBT   High flow error	High flow error	－Due to HVAC feedback value is lower than limit of maximum flow．	－Check feedback signal is correct．   －Check if feedback value is lower than limit of maximum flow．
LPBFT Low pressure error	Low pressure error	－The feedback signal is not connected．   －Due to feedback value of pump pressure is lower than limit of minimum flow．	－Check feedback signal is correct and with connection．   －Check if feedback value of pressure is lower than limit of minimum pressure．
OPBFT   High pressure error	High pressure error	－Due to feedback value of pump pressure is lower than limit of maximum flow．	－Check feedback signal is correct．   －Check if feedback value of pressure is lower than limit of maximum pressure．
LSCFT Low suction error	Inadequate suction error	－Insufficient water of supply tank leads to insufficient suction．   －PID diference is higher than its level or current is lower than output current level．	－Check if water of supply tank is enough，and water supply is regular．   －Check PID diference is higher than its level or current is lower than output current level
FIRE   Fire override mode	Fire override mode	－Fire override mode is active	－None   －（Fire override mode is not a kind of warning）．
SE10 PUMP／HVAC Setting error 4Vリ・ EI コロー	PUMP／HVAC settings of inverter error	－PUMP selection of inverter （23－02）＞（23－03）．   －HVAC selection of inverter （23－46）＞（23－47）．	－Check pump selection of inverter（23－02）and （23－03）settings．   －Check HVAC selection of inverter（23－02）and （23－03）settings．
COPUP PUMP communication breaking error STV「Tロローロ	Breaking error of multiple pumps communication	－Communication breaking or disconnection of pump cascade control．	－Check if it has setting issue or is not properly connected．

### 10.4 Auto-tuning Error

When a fault occurs during auto-tuning of a standard AC motor, the display will show the "AtErr" fault and the motor stops. The fault information is displayed in parameter 17-11.

Note: The fault contact output does not energize with an auto-tuning fault. Refer to Table 10.4.1, for fault information during tuning, cause and corrective action.

Table 10.4.1 Auto-tuning fault and corrective actions

Error	Description	Cause	Corrective action
01	Motor data input error.	- Motor Input data error during auto-tuning.   - Inverter output current does not match motor rated current.	- Check the motor tuning data (17-00 to 17-09).   - Check inverter capacity
02	Motor lead to lead resistance R1 tuning error.	- Auto-tuning is not completed within the specified time   - Auto-tuning results fall outside parameter setting range.   - Motor rated current exceeded.   - Motor was disconnected.	- Check the motor tuning data (17-00 to 17-09).   - Check motor connection.   - Disconnect motor load.   - Check inverter current detection circuit and DCCTs.   - Check motor installation.
03	Motor leakage inductance tuning error.		
04	Motor rotor resistance R2 tuning error.		
05	Motor mutual inductance Lm tuning error.		
07	Deadtime compensation detection error		
08	Motor acceleration error (Rotational type auto-tuning only).	- Motor fails to accelerate in the specified time (00-14= 20 sec ).	- Increase acceleration time (00-14).   - Disconnect motor load.
09	Other	- No load current is higher than $70 \%$ of the motor rated current.   - Torque reference exceeds 100\%.   - Errors other than ATE01~ATE08.	- Check the motor tuning data (17-00 to 17-09).   - Check motor connection.

### 10.5 PM Motor Auto-tuning Error

When a fault occurs during auto-tuning of a PM motor, the display will show the "IPErr" fault and the motor stops. The fault information is displayed in parameter 22-22.

Note: The fault contact output does not energize with an auto-tuning fault. Refer to Table 10.5.1, for fault information during tuning, cause and corrective action.

Table 10.5.1 Auto-tuning fault and corrective actions for PM motor

Error	Description	Cause	Corrective action
01	Magnetic pole alignment tuning failure (static).	- Inverter output current does not match motor current.	- Check the motor tuning data (22-02).   - Check inverter capacity
$\begin{gathered} 02 \\ 1 \\ 08 \\ \hline \end{gathered}$	Reserved		
09	Current out of range during circuit tuning.	- Inverter output current does not match motor current.	- Check the motor tuning data (22-02).   - Check inverter capacity
10	Reserved		
11	Parameter tuning and detecting is overtime.	- Error relationship between voltage and current.	- Check whether (22-11) is too small, but its value cannot exceed 100\%.   - Check motor connection.

## Chapter 11 Inverter Peripheral devices and Options

## 11．1 Braking Resistors and Braking Units

Inverters ratings 200V 5～30HP／400V 5～40HP（IP20）and 400V 5～25HP（IP55）have a built－in braking transistor．For applications requiring a greater braking torque an external braking resistor can be connected to terminals B1／P and B2 in protection level of IP20 and to terminals B1 and B2 in protection level of IP55；for inverter ratings above 200V 40HP／400V 50HP（IP20）or 400V 30HP（IP55）， an external braking unit（connected to $\oplus-\ominus$ of the inverter）and a braking resistor（connected to two ends of the detection module B－P0）is required．

Table 11．1．1 List of braking resistors and braking units（IP20）

Inverter			Braking unit		Braking resistor				Braking torque （Peak／ Continues）	Minimum resistance	
v	HP	Rated   Current   （A）	Model	$\left\|\begin{array}{c} \text { Qty } \\ \text { Req } \end{array}\right\|$	Part Number	Resistor specification	$\begin{aligned} & \text { Qty } \\ & \text { Req. } \end{aligned}$	Resistor dimensions （L＊W＊H）mm		（ $\Omega$ ）	（W）
$\begin{gathered} 3 \phi \\ 200 \mathrm{~V} \end{gathered}$	5	14.5	－	－	JNBR－390W40	390W／40ת	1	395＊34＊78	126\％，10\％ED	25	680
	7.5	21	－	－	JNBR－520W30	$520 \mathrm{~W} / 30 \Omega$	1	400＊40＊100	114\％，10\％ED	21	800
	10	30	－	－	JNBR－780W20	$780 \mathrm{~W} / 20 \Omega$	1	400＊40＊100	126\％，10\％ED	18	900
	15	40	－	－	JNBR－2R4KW13R6	2400W／13．6	1	$\begin{array}{\|c\|} \hline 535 * 50 * 110 \\ (* 2 \mathrm{pcs}) \\ \hline \end{array}$	124\％，10\％ED	11	1500
	20	56	－	－	JNBR－3KW10	3000W／10	1	$\begin{array}{\|c\|} \hline 615 * 50 * 110 \\ (* 2 \mathrm{pcs}) \\ \hline \end{array}$	126\％，10\％ED	9.5	1800
	25	69	－	－	JNBR－4R8KW8	4800W／8』	1	$\begin{array}{\|c\|} \hline 535 * 50 * 110 \\ (* 4 \mathrm{pcs}) \\ \hline \end{array}$	126\％，10\％ED	7.2	2400
	30	79	－	－	JNBR－4R8KW6R8	4800W／6．8日	1	$\begin{array}{\|c\|} \hline 535 * 50 * 110 \\ (* 4 \mathrm{pcs}) \\ \hline \end{array}$	124\％，10\％ED	6.5	2400
	40	110	JNTBU－230	2	JNBR－3KW10	3000W／10	2	$\begin{array}{\|c\|} \hline 615 * 50 * 110 \\ (* 4 \mathrm{pcs}) \\ \hline \end{array}$	126\％，10\％ED	2.7	3000
	50	138	JNTBU－230	2	JNBR－3KW10	3000W／10	2	$\begin{array}{\|c\|} \hline 615 * 50 * 110 \\ (* 4 \mathrm{pcs}) \\ \hline \end{array}$	105\％，10\％ED	2.7	3000
	60	169	JNTBU－230	2	JNBR－4R8KW6R8	4800W／6．8日	2	$\begin{gathered} 535 * 50 * 110 \\ (* 8 \mathrm{pcs}) \end{gathered}$	124\％，10\％ED		ote1
	75	200	JNTBU－230	3	JNBR－4R8KW8	4800W／8』	3	$\begin{gathered} 535 * 50 * 110 \\ (* 12 \mathrm{pcs}) \\ \hline \end{gathered}$	124\％，10\％ED		ote1
	100	250	JNTBU－230	3	JNBR－4R8KW6R8	4800W／6．8日	3	$\begin{gathered} 535 * 50 * 110 \\ (* 12 \mathrm{pcs}) \\ \hline \end{gathered}$	116\％，10\％ED		ote1
	125	312	JNTBU－230	4	JNBR－4R8KW6R8	4800W／6．8日	4	$\left\|\begin{array}{c} 535 * 50 * 110 \\ (* 16 \mathrm{pcs}) \end{array}\right\|$	119\％，10\％ED		ote1
	150	400	JNTBU－230	5	JNBR－4R8KW8	4800W／8	5	$\begin{array}{\|c\|} \hline 535 * 50 * 110 \\ (* 20 \mathrm{pcs}) \\ \hline \end{array}$	108\％，10\％ED		ote1
	175	450	JNTBU－230	6	JNBR－4R8KW8	4800W／8	6	$\begin{gathered} 535 * 50 * 110 \\ (* 24 \mathrm{pcs}) \\ \hline \end{gathered}$	113\％，10\％ED		ote1


Inverter			Braking unit		Braking resistor				Braking torque （Peak／ Continues）	Minimum resistance	
v	HP	Rated   Current   （A）	Model	$\begin{gathered} \text { Qty } \\ \text { Req } \end{gathered}$	Part Number	Resistor specification	Qty Req.	Resistor dimensions （L＊W＊H）mm		（ $\Omega$ ）	（W）
$\begin{gathered} 3 \phi \\ 400 \mathrm{~V} \end{gathered}$	5	9.2	－	－	JNBR－400W150	400W／150	1	395＊34＊78	133\％，10\％ED	60	1200
	7.5	11.1	－	－	JNBR－600W130	600W／130ת	1	400＊40＊100	107\％，10\％ED	60	1200
	10	17.5	－	－	JNBR－800W100	$800 \mathrm{~W} / 100 \Omega$	1	535＊50＊110	105\％，10\％ED	43	1600
	15	23	－	－	JNBR－1R6KW50	1600W／50』	1	615＊50＊110	133\％，10\％ED	43	1600
	20	31	－	－	JNBR－1R5KW40	1500W／40ת	1	615＊50＊110	126\％，10\％ED	39	1600
	25	38	－	－	JNBR－4R8KW32	4800W／32	1	$\begin{gathered} 535 * 50 * 110 \\ (* 4 \mathrm{pcs}) \\ \hline \end{gathered}$	126\％，10\％ED	22	3000
	30	44	－	－	JNBR－4R8KW27R2	4800W／27．2 2	1	$\begin{gathered} 535 * 50 * 110 \\ (* 4 \mathrm{pcs}) \\ \hline \end{gathered}$	124\％，10\％ED	13.5	4800
	40	54	－	－	JNBR－6KW20	6000W／20』	1	$\begin{gathered} 615 * 50 * 110 \\ (* 4 \mathrm{pcs}) \\ \hline \end{gathered}$	124\％，10\％ED	13.5	4800
	50	72	JNTBU－430	2	JNBR－4R8KW32	4800W／32	2	$\begin{gathered} 535 * 50 * 110 \\ \left({ }^{*} 8 \mathrm{pcs}\right) \\ \hline \end{gathered}$	126\％，10\％ED	11	3000
	60	88	JNTBU－430	2	JNBR－4R8KW27R2	4800W／27．2ת	2	$\begin{gathered} 535 * 50 * 110 \\ \left({ }^{*} 8 \mathrm{pcs}\right) \\ \hline \end{gathered}$	124\％，10\％ED	11	3000
	75	103	JNTBU－430	2	JNBR－6KW20	6000W／20』	2	$\begin{gathered} 615 * 50 * 110 \\ \left({ }^{*} 8 \mathrm{pcs}\right) \end{gathered}$	133\％，10\％ED	11	3000
	100	145	JNTBU－430	3	JNBR－4R8KW27R2	4800W／27．2ת	3	$\begin{gathered} 535 * 50 * 110 \\ (* 12 \mathrm{pcs}) \\ \hline \end{gathered}$	113\％，10\％ED		ote1
	125	165	JNTBU－430	3	JNBR－6KW20	$6000 \mathrm{~W} / 20 \Omega$	3	$\begin{gathered} 615 * 50 * 110 \\ (* 12 \mathrm{pcs}) \end{gathered}$	121\％，10\％ED		ote1
	150	208	JNTBU－430	3	JNBR－6KW20	6000W／20』	3	$\begin{gathered} 615 * 50 * 110 \\ (* 12 \mathrm{pcs}) \end{gathered}$	104\％，10\％ED		ote1
	175	250	JNTBU－430	5	JNBR－4R8KW27R2	4800W／27．2ת	5	$\begin{gathered} 535 * 50 * 110 \\ (20 \mathrm{pcs}) \\ \hline \end{gathered}$	109\％，10\％ED		te1
	215	296	JNTBU－430	6	JNBR－4R8KW27R2	4800W／27．2	6	$\begin{gathered} 535 * 50 * 110 \\ \left({ }^{*} 24 \mathrm{pcs}\right) \\ \hline \end{gathered}$	107\％，10\％ED		te1
	250	328	JNTBU－430	5	JNBR－6KW20	$6000 \mathrm{~W} / 20 \Omega$	5	$\begin{gathered} 615 * 50 * 110 \\ \left({ }^{*} 20 \mathrm{pcs}\right) \end{gathered}$	105\％，10\％ED		te1
	300	435	JNTBU－430	6	JNBR－6KW20	$6000 \mathrm{~W} / 20 \Omega$	6	$\begin{gathered} 615 * 50 * 110 \\ \left({ }^{*} 24 \mathrm{pcs}\right) \end{gathered}$	105\％，10\％ED		te1
	375	515	JNTBU－430	7	JNBR－6KW20	$6000 \mathrm{~W} / 20 \Omega$	7	$\begin{gathered} 615 * 50 * 110 \\ \left({ }^{*} 28 \mathrm{pcs}\right) \\ \hline \end{gathered}$	100\％，10\％ED		te1
	425	585	JNTBU－430	8	JNBR－6KW20	$6000 \mathrm{~W} / 20 \Omega$	8	$\begin{gathered} 615 * 50 * 110 \\ (* 32 \mathrm{pcs}) \end{gathered}$	100\％，10\％ED		te1
	535	690	JNTBU－430	10	JNBR－6KW20	$6000 \mathrm{~W} / 20 \Omega$	10	$\begin{gathered} 615 * 50 * 110 \\ (* 40 \mathrm{pcs}) \end{gathered}$	99\％，10\％ED		te1
	670	840	JNTBU－430	11	JNBR－6KW20	$6000 \mathrm{~W} / 20 \Omega$	11	$\begin{array}{\|c\|} \hline 615 * 50 * 110 \\ (* 44 \mathrm{pcs}) \\ \hline \end{array}$	90\％，10\％ED		te1
	800	960	JNTBU－430	13	JNBR－6KW20	$6000 \mathrm{~W} / 20 \Omega$	13	$\begin{array}{\|c\|} \hline 615 * 50 * 110 \\ \left({ }^{*} 52 \mathrm{pcs}\right) \end{array}$	90\％，10\％ED		te1

＊note1：Refer to the recommended value in the instruction brochure of braking unit JNBTU－230／JNBTU－430．

Table 11.1.2 List of braking resistors and braking units (IP55)

Inverter			Braking unit		Braking resistor				Braking torque (Peak / Continues)	Minimum resistance	
v	HP	Rated   Current   (A)	Model	$\begin{gathered} \text { Qty } \\ \text { Req } \end{gathered}$	Part Number	Resistor specification	$\begin{gathered} \text { Qty } \\ \text { Req. } \end{gathered}$	Resistor dimensions (L*W*H)mm		( $\Omega$ )	(W)
$\begin{gathered} 3 \phi \\ 400 \mathrm{~V} \end{gathered}$	5	9.2	-	-	JNBR-400W150	400W/150ת	1	395*34*78	133\%, 10\%ED	65	1000
	7.5	11.1	-	-	JNBR-600W130	600W/130	1	400*40*100	107\% ,10\%ED	65	1000
	10	17.5	-	-	JNBR-800W100	800W/100	1	535*50*110	105\% ,10\%ED	39	1600
	15	23	-	-	JNBR-1R6KW50	1600W/50』	1	615*50*110	133\% ,10\%ED	39	1600
	20	31	-	-	JNBR-1R5KW40	$1500 \mathrm{~W} / 40 \Omega$	1	615*50*110	126\% ,10\%ED	20	3000
	25	38	-	-	JNBR-4R8KW32	$4800 \mathrm{~W} / 32 \Omega$	1	$\begin{gathered} 535 * 50 * 110 \\ (* 4 \mathrm{pcs}) \end{gathered}$	126\% ,10\%ED	20	3000
	30	44	JNTBU-430	1	JNBR-4R8KW27R2	4800W/27.2	1	$\begin{gathered} 535 * 50 * 110 \\ (* 4 \mathrm{pcs}) \end{gathered}$	124\% ,10\%ED	20	3000
	40	54	JNTBU-430	1	JNBR-6KW20	6000W/20』	1	$\begin{gathered} 615 * 50 * 110 \\ (* 4 \mathrm{pcs}) \end{gathered}$	126\% ,10\%ED	19	3600
	50	72	JNTBU-430	2	JNBR-4R8KW32	$4800 \mathrm{~W} / 32 \Omega$	2	$\begin{gathered} 535 * 50 * 110 \\ (* 8 \mathrm{pcs}) \\ \hline \end{gathered}$	126\%, 10\%ED	10	3000
	60	88	JNTBU-430	2	JNBR-4R8KW27R2	4800W/27.2	2	$\begin{gathered} 535 * 50 * 110 \\ (* 8 \mathrm{pcs}) \\ \hline \end{gathered}$	124\%, 10\%ED	10	3000
	75	103	JNTBU-430	2	JNBR-6KW20	$6000 \mathrm{~W} / 20 \Omega$	2	$\begin{gathered} 615 * 50 * 110 \\ (* 8 \mathrm{pcs}) \\ \hline \end{gathered}$	133\%, 10\%ED	9	3600
	100	145	JNTBU-430	3	JNBR-4R8KW27R2	4800W/27.2	3	$\begin{gathered} 535 * 50 * 110 \\ (* 12 \mathrm{pcs}) \\ \hline \end{gathered}$	113\%, 10\%ED	6.5	3000

Note 1: Options: 460V 50HP :( JUVPHV-0060+JNBR-9R6KW16) x 1, 460V 60HP:
(JUVPHV-0060+JNBR-9R6KW13R6) x 1

Note 2: JUVPHV-0060 not UL certified.

Note 3: Keep sufficient space between inverter, braking unit and braking resistor and ensure proper cooling is provided for.

### 11.2 AC Line Reactors

An AC line reactor can be used for any of the following:

- Capacity of power system is much larger than the inverter rating.
- Inverter mounted close to the power system (in 33ft / 10 meters).
- Reduce harmonic contribution (improve power factor) back to the power line.
- Protect inverter input diode front-end by reducing short-circuit current.
- Minimize overvoltage trips due to voltage transients.

Please select the AC line reactor based on the inverter rating according to the following table.
Table11.2.1 List of AC Line Reactors (IP20)

Model		AC reactor	
V	HP	Part Number	Specification ( $\mathrm{mH} / \mathrm{A}$ )
$\begin{gathered} 3 \phi \\ 200 \mathrm{~V} \end{gathered}$	5	3M200D1610048	$0.71 \mathrm{mH} / 15 \mathrm{~A}$
	7.5	3M200D1610056	$0.53 \mathrm{mH} / 20 \mathrm{~A}$
	10	3M200D1610064	$0.35 \mathrm{mH} / 30 \mathrm{~A}$
	15	3M200D1610072	$0.265 \mathrm{mH} / 40 \mathrm{~A}$
	20	3M200D1610081	$0.18 \mathrm{mH} / 60 \mathrm{~A}$
	25	3M200D1610099	$0.13 \mathrm{mH} / 80 \mathrm{~A}$
	30	3M200D1610102	$0.12 \mathrm{mH} / 90 \mathrm{~A}$
	40	3M200D1610111	$0.09 \mathrm{mH} / 120 \mathrm{~A}$
	50	3M200D1610269	$0.07 \mathrm{mH} / 160 \mathrm{~A}$
	60	3M200D1610277	$0.05 \mathrm{mH} / 200 \mathrm{~A}$
	75	3M200D1610285	$0.044 \mathrm{mH} / 240 \mathrm{~A}$
	100	3M200D1610293	$0.038 \mathrm{mH} / 280 \mathrm{~A}$
	125	3M200D1610307	$0.026 \mathrm{mH} / 360 \mathrm{~A}$
	150		$0.02 \mathrm{mH} / 500 \mathrm{~A}$
	175		$0.02 \mathrm{mH} / 560 \mathrm{~A}$
$\begin{gathered} 3 \phi \\ 400 \mathrm{~V} \end{gathered}$	5	3M200D1610161	$2.2 \mathrm{mH} / 10 \mathrm{~A}$
	7.5	3M200D1610170	$1.42 \mathrm{mH} / 15 \mathrm{~A}$
	10	3M200D1610188	$1.06 \mathrm{mH} / 20 \mathrm{~A}$
	15	3M200D1610196	$0.7 \mathrm{mH} / 30 \mathrm{~A}$
	20	3M200D1610196	$0.7 \mathrm{mH} / 30 \mathrm{~A}$
	25	3M200D1610200	$0.53 \mathrm{mH} / 40 \mathrm{~A}$
	30	3M200D1610218	$0.42 \mathrm{mH} / 50 \mathrm{~A}$
	40	3M200D1610226	$0.36 \mathrm{mH} / 60 \mathrm{~A}$
	50	3M200D1610234	$0.26 \mathrm{mH} / 80 \mathrm{~A}$
	60	3M200D1610242	$0.24 \mathrm{mH} / 90 \mathrm{~A}$
	75	3M200D1610251	$0.18 \mathrm{mH} / 120 \mathrm{~A}$
	100	3M200D1610315	$0.15 \mathrm{mH} / 150 \mathrm{~A}$
	125	3M200D1610323	$0.11 \mathrm{mH} / 200 \mathrm{~A}$
	150	3M200D1610331	$0.09 \mathrm{mH} / 250 \mathrm{~A}$
	175	3M200D1610340	$0.06 \mathrm{mH} / 330 \mathrm{~A}$
	215	3M200D1610340	$0.06 \mathrm{mH} / 330 \mathrm{~A}$
	250	4M200D0010008	$0.05 \mathrm{mH} / 400 \mathrm{~A}$
	300	4M200D0020008	$0.04 \mathrm{mH} / 500 \mathrm{~A}$
	375	4M200D0040004	$0.032 \mathrm{mH} / 670 \mathrm{~A}$
	425	4M200D0040004	$0.032 \mathrm{mH} / 670 \mathrm{~A}$
	535		$0.02 \mathrm{mH} / 862 \mathrm{~A}$
	670		$0.02 \mathrm{mH} / 1050 \mathrm{~A}$
	800		$0.02 \mathrm{mH} / 1200 \mathrm{~A}$

Table11.2.2 List of AC Line Reactors (IP55)

Model		AC reactor	
V	HP	Part Number	$\begin{gathered} \text { Specification } \\ (\mathrm{mH} / \mathrm{A}) \\ \hline \end{gathered}$
$\begin{gathered} 3 \phi \\ 400 \mathrm{~V} \end{gathered}$	5	3M200D1610161	$2.2 \mathrm{mH} / 10 \mathrm{~A}$
	7.5	3M200D1610170	$1.42 \mathrm{mH} / 15 \mathrm{~A}$
	10	3M200D1610188	$1.06 \mathrm{mH} / 20 \mathrm{~A}$
	15	3M200D1610196	$0.7 \mathrm{mH} / 30 \mathrm{~A}$
	20	3M200D1610196	$0.7 \mathrm{mH} / 30 \mathrm{~A}$
	25	3M200D1610200	$0.53 \mathrm{mH} / 40 \mathrm{~A}$
	30	3M200D1610218	$0.42 \mathrm{mH} / 50 \mathrm{~A}$
	40	3M200D1610226	$0.36 \mathrm{mH} / 60 \mathrm{~A}$
	50	3M200D1610234	$0.26 \mathrm{mH} / 80 \mathrm{~A}$
	60	3M200D1610242	$0.24 \mathrm{mH} / 90 \mathrm{~A}$
	75	3M200D1610251	$0.18 \mathrm{mH} / 120 \mathrm{~A}$
	100	3M200D1610315	$0.15 \mathrm{mH} / 150 \mathrm{~A}$

Note: AC reactors listed in this table can only be used for the inverter input side. Do not connect AC reactor to the inverter output side. Both 200 V class $60 \mathrm{HP} \sim 125 \mathrm{HP}$ (IP20) and 400V class 100HP~425HP (IP20) and $5 \mathrm{HP} \sim 100 \mathrm{HP}$ (IP55) have a built-in DC reactors. If required by the application an AC reactor may be added.

### 11.3 Harmonic Filters

Model	Rated load power @400VAC $150 \mathrm{~Hz}[\mathrm{~kW}]$	Rated load power @500VAC 150 Hz [kW]	Filter efficiency   @ $25^{\circ} \mathrm{C}$ $150 \mathrm{~Hz} \text { [\%] }$	Input/output connections		Capacitance disconnections $\square$	Weight [Kg]	NEMA 1 cover**   Part Number
FN 341x-10-44	4	5.5	98.5	-44		-44	13	1151-081
FN 341x-13-44	5.5	7.5	98.5	-44		-44	14	1151-081
FN 341x-16-44	7.5	11	98.5	-44		-44	21	1151-082
FN 341x-24-33	11	15	98.5	-33		-44	27	1151-083
FN 341x-32-33	15	18.5	98.5	-33		-44	31	1151-083
FN 341x-38-33	18.5	22	98.6	-33		-44	35	1151-083
FN 341x-45-34	22	30	98.7	-34		-33	45	1151-084
FN 341x-60-34	30	37	98.8	-34		-33	54	1151-084
FN 341x-75-35	37	45	98.9	-35		-34	65	1151-085
FN 341x-90-35	45	55	99	-35		-34	77	1151-085
FN 341x-110-35	55	75	99.1	-35		-34	86	1151-085
FN 341x-150-40	75	90	99.2	-40		-35	118	1151-086
FN 341x-180-40	90	110	99.3	-40		-35	136	1151-086
FN 341x-210-40	110	132	99.3	-40		-35	154	1151-086
FN 341x-260-99	132	160	99.4		-99	-35	201	1151-086
FN 341x-320-99	160	200	99.5		-99	-35	201	1151-086


Model	Rated load power   @460VAC   /60Hz [kW]	Filter efficiency   @ $25^{\circ} \mathrm{C}$   /50Hz [\%]	Input / output connections$\square$		Capacitance disconnections gig	Weight   [Kg]	NEMA 1 cover**   Part Number
FN 341x-8-44	5	98.5	-44		-44	12	1151-081
FN 341x-11-44	7.5	98.5	-44		-44	13	1151-081
FN 341x-15-44	10	98.5	-44		-44	17	1151-082
FN 341x-21-33	15	98.5	-44		-44	21	1151-082
FN 341x-28-33	20	98.6	-33		-44	28	1151-083
FN 341x-35-33	25	98.6	-33		-44	32	1151-083
FN 341x-41-34	30	98.7	-33		-44	35	1151-083
FN 341x-53-34	40	98.9	-34		-33	48	1151-084
FN 341x-65-35	50	99	-34		-33	52	1151-084
FN 341x-80-35	60	99.1	-35		-34	69	1151-085
FN 341x-105-35	75	99.2	-35		-34	77	1151-085
FN 341x-130-35	100	99.3	-35		-35	87	1151-085
FN 341x-160-40	125	99.4	-40		-35	124	1151-086
FN 341x-190-40	150	99.4	-40		-35	132	1151-086
FN 341x-240-99	200	99.5		-99	-35	185	1151-086
FN 341x-310-99	250	99.5		-99	-35	202	1151-086


Part Number	Dimensions in mm											
	A	B	C	E	F	G	J	V	W	X	Y	Z
FN 3410/FN 3411-10	400	170	190	380	130	7	M6	--	--	--	--	--
FN 3410/FN 3411-13	700	170	190	380	130	7	M6	--	--	--	--	--
FN 3410/FN 3411-16	430	210	210	410	170	9	M6	--	--	--	--	--
FN 3410/FN 3411-24	520	250	280	495	200	11	M8	--	--	--	--	--
FN 3410/FN 3411-32	520	250	280	495	200	11	M8	--	--	--	--	--
FN 3410/FN 3411-38	520	250	280	495	200	11	M8	--	--	--	--	--
FN 3410/FN 3411-45	590	300	300	565	250	11	M8	--	--	--	--	--
FN 3410/FN 3411-60	590	300	300	565	250	11	M8	--	--	--	--	--
FN 3410/FN 3411-75	750	320	300	725	270	11	M10	--	--	--	--	--
FN 3410/FN 3411-90	750	320	300	725	270	11	M10	--	--	--	--	--
FN 3410/FN 3411-110	750	320	300	725	270	11	M10	--	--	--	--	--
FN 3410/FN 3411-150	1000	500	450	240	338	14X30	M10	--	--	--	--	--
FN 3410/FN 3411-180	1000	500	450	240	338	14X30	M10	--	--	--	--	--
FN 3410/FN 3411-210	1000	500	450	240	338	14X30	M10	--	--	--	--	--
FN 3410/FN 3411-260	1000	500	450	240	338	14X30	M10	25	6	12.5	40	11
FN 3410/FN 3411-320	1000	500	450	240	338	14X30	M10	25	6	12.5	40	11
FN 3412/FN 3413-08	400	170	190	380	130	7	M6	--	--	--	--	--
FN 3412/FN 3413-11	700	170	190	380	130	7	M6	--	--	--	--	--
FN 3412/FN 3413-15	430	210	210	410	170	9	M6	--	--	--	--	--
FN 3412/FN 3413-21	430	210	210	410	170	9	M6	--	--	--	--	--
FN 3412/FN 3413-28	520	250	280	495	200	11	M8	--	--	--	--	--
FN 3412/FN 3413-35	520	250	280	495	200	11	M8	--	--	--	--	--
FN 3412/FN 3413-41	520	250	280	495	200	11	M8	--	--	--	--	--
FN 3412/FN 3413-53	590	300	300	565	250	11	M8	--	--	--	--	--
FN 3412/FN 3413-65	590	300	300	565	250	11	M8	--	--	--	--	--
FN 3412/FN 3413-80	750	320	300	725	270	11	M10	--	--	--	--	--
FN 3412/FN 3413-105	750	320	300	725	270	11	M10	--	--	--	--	--
FN 3412/FN 3413-130	750	320	300	725	270	11	M10	--	--	--	--	--
FN 3412/FN 3413-160	1000	500	450	240	338	14X30	M10	--	--	--	--	--
FN 3412/FN 3413-190	1000	500	450	240	338	14X30	M10	--	--	--	--	--
FN 3412/FN 3413-240	1000	500	450	240	338	14X30	M10	25	6	12.5	40	11
FN 3412/FN 3413-310	1000	500	450	240	338	14X30	M10	25	6	12.5	40	11

## Mechanical data

FN 3410／FN 3411－10 to－110
FN 3412／FN 3413－8 to－130


FN 3410／FN 3411－260 and－320 FN 3412／FN 3413－240 and－310


Filter connecor cross sections	－33	－34	－34	－40	－44
		㿽近	或近近	미이이응	㫿或
Solid wire	$16 \mathrm{~m} \mathrm{~m}{ }^{2}$	$35 \mathrm{~mm}{ }^{2}$	50 m m	$95 \mathrm{~mm}{ }^{2}$	$10 \mathrm{~mm}{ }^{2}$
Flex wire	$10 \mathrm{~mm}{ }^{2}$	$25 \mathrm{~m} \mathrm{~m}{ }^{2}$	$50 \mathrm{~m} \mathrm{~m}{ }^{2}$	$95 \mathrm{~m} \mathrm{~m}{ }^{2}$	$6 \mathrm{~m} \mathrm{~m}{ }^{2}$
AWG type wire	AWG 6	AWG 2	AWG 1／0	AWG 4／0	AWG 8
Recommended torque	$1.5-1.8 \mathrm{Nm}$	$4.0-4.5 \mathrm{Nm}$	$7.0-8.0 \mathrm{Nm}$	17－20Nm	$1.0-1.2 \mathrm{Nm}$

### 11.4 Input Noise Filters

## A. Input Noise Filter on Specifications \& Ratings

Install a noise filter on power supply side to eliminate noise transmitted between the power line and the inverter. The inverter noise filter shown in Table 11.4.1 and Table 11.4.2 below meets the EN61800-3 class A specification. 400V inverter class models can be ordered with integrated noise filter.

Table 11.4.1 Input Noise Filter Specifications and Ratings (IP20)

Inverter size		Noise filter		
Input voltage	HP	Model	Rated current	Dimension
$\begin{gathered} 3 \phi \\ 200 \mathrm{~V} \end{gathered}$	5HP/7.5HP	FS32124-23-99	23	290*50*85
	10HP/15HP	FS32123-42-99	42	330*85*90
	20HP	FS32125-61-99	61	318*80*135
	25HP/30HP	FS32125-86-99	86	360*95*90
	40HP/50HP	FS32125-150-99	150	320*226.5*86
	60HP/75HP	FS32125-232-99	232	320*226.5*86
	100HP/125HP	FS32125-343-99	343	320*226.5*86
	150HP/175HP	FN3270H-600-99	600A	
$\begin{gathered} 3 \phi \\ 400 \mathrm{~V} \end{gathered}$	5HP/7.5HP/10HP	JN5-FLT-19A	19	123*141*92
	15HP/20HP	JN5-FLT-33A	33	132*206*124
	25HP/30HP/40HP	JN5-FLT-63A	63	127*260*131
	50HP/60HP/75HP	JN5-FLT-112A	112	186*284*128
	100HP/125HP	FS32126-181-99	181	320*226.5*86
	150HP/175HP/215HP/250HP	FS32126-361-99	361	320*226.5*86
	300HP/375HP/425HP	FN3270H-800-99	800A	
	535HP/670HP/800HP			

Table 11.4.2 Input Noise Filter Specifications and Ratings (IP55)

Inverter size				Noise filter of Input Terminal		
Input   voltage	HP	Output Rated   current(A)	Rated   current	Model	Type	
$3 \phi$	10	17.5	30 A	FS29040-30-99	External	
	15	23	30 A	FS29040-30-99	External	
	75	103	42 A		External	
	100	145	42 A		External	

## B. Input or Output Noise Filter (EMI Suppression Zero Phase Core)

- Part Number: 4H000D0250001
- Select a matched ferrite core to suppress EMI noise according to the required power rating and wire size.
- The ferrite core can attenuate high frequencies in the range of 100 kHz to 50 MHz , as shown in figure 11.4.1 below, and therefore should minimize the RFI generated by the inverter.
- The zero-sequence noise ferrite core can be installed either on the input side or on the output side. The wire around the core for each phase should be wound by following the same convention and in one direction. The more turns without resulting in saturation the better the attenuation. If the wire size is too large to be wound, all the wiring can be grouped and put through several cores together in one direction.


Figure 11.4.1 Frequency attenuation characteristics (10 windings case)


Figure 11.4.2 Example of EMI Suppression Zero Phase Core Application

Note: All the wiring of phases U/T1, V/T2, W/T3 must pass through the same zero-phase core without crossing over.

### 11.5 Output Filters

Model	Rated current @ $45^{\circ} \mathrm{C} /$ 50Hz [A]	Rated current @ $45^{\circ} \mathrm{C} /$ 100 Hz [A]	Typical motor power [kW]	Nominal   Ind.[mH]	Nominal Cap.[ $\mu \mathrm{F}]$	$\begin{gathered} \text { Cap. } \\ \text { connection } \end{gathered}$	Min.   Switching freq. [kHz]	Typical power loss [W]	Input/Output connections		Weight [Kg]
FN 5040-4.5-82	4.5	4.05	1.1/1.5	13	2.2	Y	4	65	-82		3.3
FN 5040-8-82	8	7.2	2.2/3	6.9	4.7	Y	4	80	-82		4.6
FN 5040-10-83	10	9	4	5.2	6.8	Y	4	90	-83		6.1
FN 5040-17-83	17	15.3	5.5/75.5	3.1	10	Y	4	115	-83		7.58
FN 5040-24-84	24	21.6	11	2.4	10	Y	4	150	-84		14.4
FN 5040-38-84	38	34.2	15/18.5	1.6	10	Y	4	170	-84		25
FN 5040-48-85	48	43.2	22	1.1	14.7	Y	4	260	-85		33
FN 5040-62-85	62	55.8	30	0.85	30	Y	3	280	-85		36
FN 5040-75-87	75	67.5	37	0.75	30	Y	3	330	-87		42
FN 5040-115-87	115	103.5	45/55	0.5	20	$\triangle$	3	500	-87		68
FN 5040-180-99	180	162	75/90	0.3	33	$\triangle$	3	680		-99	86
FN 5040-260-99	260	234	110/132	0.2	47	$\triangle$	3	880		-99	125
FN 5040-410-99	410	369	160/200	0.13	66	$\triangle$	3	1100		-99	184
FN 5040-480-99	480	432	250	0.11	94	$\triangle$	3	1350		-99	235
FN 5040-660-99	660	594	315/355	0.14	141	$\triangle$	2	2000		-99	310
FN 5040-750-99	750	675	400	0.12	165	$\triangle$	2	2800		-99	470
FN 5040-880-99	880	792	450/500	0.11	188	$\triangle$	2	3400		-99	640
FN 5040-1200-99	1200	1080	560/630	0.075	282	$\triangle$	2	3800		-99	680
FN 5045-4.5-44	4.5	4.05	1.1/1.5	13	2.2	Y	4	65	-44		4.1
FN 5045-8-44	8	7.2	2.2/3	6.9	4.7	Y	4	80	-44		5.4
FN 5045-10-44	10	9	4	5.2	6.8	Y	4	90	-44		6.9
FN 5045-17-33	17	15.3	5.5/7.5	3.1	10	Y	4	115	-33		9
FN 5045-24-33	24	21.6	11	2.4	10	Y	4	150	-33		15.6
FN 5045-38-33	38	34.2	15/18.5	1.6	10	Y	4	170	-33		18.9
FN 5045-48-34	48	43.2	22	1.1	14.7	Y	4	260	-34		35.8
FN 5045-62-34	62	55.8	30	0.85	30	Y	3	280	-34		37.8
FN 5045-75-35	75	67.5	37	0.75	30	Y	3	330	-35		60
FN 5045-115-35	115	103.5	45/55	0.5	20	$\triangle$	3	500	-35		70
FN 5048-180-99	180	162	75/90	0.3	33	$\triangle$	3	680		-99	92
FN 5045-260-99	260	234	110/132	0.2	47	$\triangle$	3	880		-99	131
FN 5045-410-99	410	369	160/200	0.13	66	$\triangle$	3	1100		-99	198
FN 5045-480-99	480	432	250	0.11	94	$\triangle$	3	1350		-99	243
FN 5045-660-99	660	594	315/355	0.14	141	$\triangle$	2	2000		-99	425
FN 5045-750-99	750	675	400	0.12	162	$\triangle$	2	2800		-99	482
FN 5045-880-99	880	792	450/500	0.11	188	$\triangle$	2	3400		-99	652
FN 5045-1200-99	1200	1080	560/630	0.075	282	$\triangle$	2	3800		-99	692

### 11.6 Input Current and Fuse Specifications

## IP20 200V class

Model	Horse   power	KVA	$\mathbf{1 0 0 \%}$ of rated   output current	Rated input   current	Fuse rating
F510-2005-H3	5	5.5	14.5	16	30
F510-2008-H3	7.5	8.0	21	22.3	45
F510-2010-H3	10	11.4	30	31.6	60
F510-2015-H3	15	15	40	41.7	80
F510-2020-H3	20	21	56	60.9	125
F510-2025-H3	25	26	69	75	150
F510-2030-H3	30	30	79	85.9	175
F510-2040-H3	40	42	110	119.6	225
F510-2050-H3	50	53	138	150	275
F510-2060-H3	60	64	169	232	325
F510-2075-H3	75	76	200	275	400
F510-2100-H3	100	95	250	343	500
F510-2125-H3	125	119	312	440	600
F510-2150-H3	150	152	400	495	800
F510-2175-H3	175	172	450	1000	

## IP20 400V class

Model	Horse   power	KVA	100\% of rated output   current	Rated input   current	Fuse rating
F510-4005-H3(F)	5	7.0	9.2	9.6	20
F510-4008-H3(F)	7.5	8.5	11.1	11.6	20
F510-4010-H3(F)	10	13.3	17.5	18.2	30
F510-4015-H3(F)	15	18	23	24	40
F510-4020-H3(F)	20	24	31	32.3	50
F510-4025-H3(F)	25	29	38	41.3	70
F510-4030-H3(F)	30	34	44	47.8	80
F510-4040-H3(F)	40	41	54	58.7	100
F510-4050-H3(F)	50	55	72	75	125
F510-4060-H3(F)	60	67	88	112	150
F510-4075-H3(F)	75	79	103	141	200
F510-4100-H3(F)	100	111	145	229	250
F510-4125-H3(F)	125	126	165	275	300
F510-4150-H3(F)	150	159	208	325	350
F510-4175-H3(F)	175	191	250	360	500
F510-4215-H3(F)	215	226	296	478	600
F510-4250-H3(F)	250	250	328	566	700
F510-4300-H3(F)	300	332	435	643	800
F510-4375-H3(F)	375	393	515	750	1000
F510-4425-H3(F)	425	446	585	913	1200
F510-4535-H3(F)	535	526	690	1400	
F510-4670-H3(F)	670	640	940	1800	
F510-4800-H3(F)	800	732	960	2200	

IP55 400V class

Model	Horse   power	KVA	100\% of rated   output current	Rated input   current	Fuse rating
F510-4005-H3(F)N4	5	7.0	9.2	9.6	20
F510-4008-H3(F)N4	7.5	8.5	11.1	11.6	20
F510-4010-H3(F)N4	10	13.3	17.5	18.2	30
F510-4015-H3(F)N4	15	18	23	24	40
F510-4020-H3(F)N4	20	24	31	34	50
F510-4025-H3(F)N4	25	29	38	41	70
F510-4030-H3(F)N4	30	34	44	48	80
F510-4040-H3(F)N4	40	41	54	59	100
F510-4050-H3(F)N4	50	55	72	68	125
F510-4060-H3(F)N4	60	67	88	96	150
F510-4075-H3(F)N4	75	79	103	112	200
F510-4100-H3(F)N4	100	111	145	140	250

Fuse type: Choose semiconductor fuse to comply with UL.
Class: CC, J, T, RK1 or RK5

## Voltage Range:

For 200 V class inverter, use 300V class fuse.
For 400 V class inverter, use 500 V class fuse.

### 11.7 Other options

## A. Analog Operator

In addition to LCD \& LED keypad and optional HOA LCD keypad for this inverter model (IP20), analog operation panel (JNEP-16), which can be pulled outside to be removable, is optional for installation. Refer to Fig.11.7.1 for the keypad exterior and inverter wiring diagram.


Figure 11.7.1 Analog keypad
LED keypad can be pulled out to operate and select different specifications of extension cables depending on needs.


$\mathbf{L}$	Extension Cable *1
1 m	JN5-CB-01M
2 m	JN5-CB-02M
3 m	JN5-CB-03M
5 m	JN5-CB-05M

*1 : inclusive of dedicatedly isolated wiring extension cable, blank ocer, screws and instruction manuals.
*2 : inclusive of a dedicatedly isolated wiring extension cable.
*3 : Install blank cover to the position of digital keypad to avoid the unknown objects falling.

Dimensions of LED keypad (IP20):


Figure 11.7.2 Dimensions of LED keypad

Dimensions of LCD keypad (IP55):


Figure 11.7.3 Dimensions of LCD keypad (IP55)

## B. 1 to 8 Pump Card

Refer to instruction manual of the option card to install. JN5-IO-8DO Card: 8 Relay Output Card

Terminals of JN5-IO-8DO:

Terminal	Description
RY1~RY8	Relay1~Relay8 A terminal output
CM1~CM4	Common terminal output

Wiring of JN5-IO-8DO (Example):


## C. Copy Unit (JN5-CU)

The copy unit is used to copy an inverter parameter setup to another inverter.


## D. Copy Module(JN5-CU-M)

The copy module is used to copy mutiple inverters parameters setup to another inverter.


## E. RJ45 to USB connecting Cable (1.8m)

JN5-CM-USB has the function of converting USB communication format to RS485 to achieve the inverter communication control being similar with PC or other control equipment with USB port.

- Exterior:

- Connecting:



### 11.8 Communication options

(a) PROFIBUS communication interface module (JN5-CM-PDP)

For wiring example and communication setup refer to JN5-CM-PDP communication option manual.
(b) DEVICENET communication interface module (JN5-CM-DNET)

For wiring example and communication setup refer to JN5-CM-DNET communication option manual.
(c) CANopen communication interface module (JN5-CM-CAN)

For wiring example and communication setup refer to JN5-CM-VAN communication option manual.
(d) TCP-IP communication interface module (JN5-CM-TCPIP)

For wiring example and communication setup refer to JN5-CM-TCPIP communication option manual.

10F., No.3-1, Yuancyu St., Nangang District, Taipei City 115, Taiwan<br>Tel :+886-2-6615-9111<br>Fax :+886-2-6615-0933

This manual may be modified when necessary because of improvement of the product, modification, or changes in specifications, This manual is subject to change without notice.

