MICROMASTER 430 Documentation

Getting Started Guide
Is for quick commissioning with SDP and BOP-2.

Operating Instructions
Gives information about features of the MICROMASTER 430, Installation, Commissioning, Control modes, System Parameter structure, Troubleshooting, Specifications and available options of the MICROMASTER 430.

Parameter List
The Parameter List contains the description of all Parameters structured in functional order and a detailed description. The Parameter list also includes a series of function plans.

Catalogues
In the catalogue you will find all the necessary information to select an appropriate inverter, as well as filters, chokes, operator panels and communication options.
Foreword

User Documentation

WARNING
Before installing and commissioning the inverter, you must read all safety instructions and warnings carefully including all the warning labels attached to the equipment. Make sure that the warning labels are kept in a legible condition and replace missing or damaged labels.

Information is also available from:

Regional Contacts
Please get in touch with your contact for Technical Support in your Region for questions about services, prices and conditions of Technical Support.

Central Technical Support
The competent consulting service for technical issues with a broad range of requirements-based services around our products and systems.

Europe / Africa
Tel: +49 (0) 180 5050 222
Fax: +49 (0) 180 5050 223
Email: adsupport@siemens.com

America
Tel: +1 423 262 2522
Fax: +1 423 262 2589
Email: simatic.hotline@sea.siemens.com

Asia / Pazific
Tel: +86 1064 757 575
Fax: +86 1064 747 474
Email: adsupport.asia@siemens.com

Online Service & Support
The comprehensive, generally available information system over the Internet, from product support to service & support to the support tools in the shop.
http://www.siemens.com/automation/service&support

Contact address
Should any questions or problems arise while reading this manual, please contact the Siemens office concerned using the form provided at the back this manual.
Definitions and Warnings

DANGER
indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING
indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION
used with the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

CAUTION
used without safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property damage.

NOTICE
indicates a potential situation which, if not avoided, may result in an undesirable result or state.

NOTE
For the purpose of this documentation, "Note" indicates important information relating to the product or highlights part of the documentation for special attention.

Qualified personnel
For the purpose of this Instruction Manual and product labels, a "Qualified person" is someone who is familiar with the installation, mounting, start-up and operation of the equipment and the hazards involved. He or she must have the following qualifications:

1. Trained and authorized to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety procedures.
2. Trained in the proper care and use of protective equipment in accordance with established safety procedures.
3. Trained in rendering first aid.

- **PE – Protective Earth** uses circuit protective conductors sized for short circuits where the voltage will not rise in excess of 50 Volts. This connection is normally used to ground the inverter.

- **Ground**

- Is the ground connection where the reference voltage can be the same as the Earth voltage. This connection is normally used to ground the motor.

Use for intended purpose only
The equipment may be used only for the application stated in the manual and only in conjunction with devices and components recommended and authorized by Siemens.
Safety Instructions

The following Warnings, Cautions and Notes are provided for your safety and as a means of preventing damage to the product or components in the machines connected. This section lists Warnings, Cautions and Notes, which apply generally when handling MICROMASTER 430 Inverters, classified as General, Transport & Storage, Commissioning, Operation, Repair and Dismantling & Disposal.

Specific Warnings, Cautions and Notes that apply to particular activities are listed at the beginning of the relevant chapters and are repeated or supplemented at critical points throughout these sections.

Please read the information carefully, since it is provided for your personal safety and will also help prolong the service life of your MICROMASTER 430 Inverter and the equipment you connect to it.

General

WARNING

- This equipment contains dangerous voltages and controls potentially dangerous rotating mechanical parts. Non-compliance with Warnings or failure to follow the instructions contained in this manual can result in loss of life, severe personal injury or serious damage to property.
- Only suitable qualified personnel should work on this equipment, and only after becoming familiar with all safety notices, installation, operation and maintenance procedures contained in this manual. The successful and safe operation of this equipment is dependent upon its proper handling, installation, operation and maintenance.
- Risk of electric shock. The DC link capacitors remain charged for five minutes after power has been removed. It is not permissible to open the equipment until 5 minutes after the power has been removed.
- The following terminals can carry dangerous voltages even if the inverter is inoperative:
 - the power supply L/L1, N/L2, L3 resp. U1/L1, V1/L2, W1/L3
 - the motor terminals U, V, W resp. U2, V2, W2
 - and depending on the frame size the terminals DC+/B+, DC-, B-, DC/R+ resp. DCPS, DCNS, DCPA, DCNA
- HP ratings are based on the Siemens 1LA motors and are given for guidance only; they do not necessarily comply with UL or NEMA HP ratings.

CAUTION

- Children and the general public must be prevented from accessing or approaching the equipment!
- This equipment may only be used for the purpose specified by the manufacturer. Unauthorized modifications and the use of spare parts and accessories that are not sold or recommended by the manufacturer of the equipment can cause fires, electric shocks and injuries.
NOTICE

- Keep these operating instructions within easy reach of the equipment and make them available to all users.
- Whenever measuring or testing has to be performed on live equipment, the regulations of Safety Code VBG 4.0 must be observed, in particular §8 "Permissible Deviations when Working on Live Parts". Suitable electronic tools should be used.
- Before installing and commissioning, please read these safety instructions and warnings carefully and all the warning labels attached to the equipment. Make sure that the warning labels are kept in a legible condition and replace missing or damaged labels.

Transport & Storage

WARNING

- Correct transport, storage, erection and mounting, as well as careful operation and maintenance are essential for proper and safe operation of the equipment.

CAUTION

- Protect the inverter against physical shocks and vibration during transport and storage. Also be sure to protect it against water (rainfall) and excessive temperatures (see table on page 80).

Commissioning

WARNING

- Work on the device/system by unqualified personnel or failure to comply with warnings can result in severe personal injury or serious damage to material. Only suitably qualified personnel trained in the setup, installation, commissioning and operation of the product should carry out work on the device/system.
- Only permanently-wired input power connections are allowed. This equipment must be grounded (IEC 536 Class 1, NEC and other applicable standards).
- If a Residual Current-operated protective Device (RCD) is to be used, it must be an RCD type B. Machines with a three-phase power supply, fitted with EMC filters, must not be connected to a supply via an ELCB (Earth Leakage Circuit-Breaker - see DIN VDE 0160, section 5.5.2 and EN 50178 section 5.2.11.1).
- The following terminals can carry dangerous voltages even if the inverter is inoperative:
 - the power supply L/L1, N/L2, L3 resp. U1/L1, V1/L2, W1/L3
 - the motor terminals U, V, W resp. U2, V2, W2
 - and depending on the frame size the terminals DC+/B+, DC-, B-, DC/R+ resp. DCPS, DCNS, DCPA, DCNA
- This equipment must not be used as an ‘emergency stop mechanism’ (see EN 60204, 9.2.5.4)

CAUTION

The connection of power, motor and control cables to the inverter must be carried out as shown in Figure 2-14 on page 40, to prevent inductive and capacitive interference from affecting the correct functioning of the inverter.
Operation

WARNING

- MICROMASTERS operate at high voltages.
- When operating electrical devices, it is impossible to avoid applying hazardous voltages to certain parts of the equipment.
- Emergency Stop facilities according to EN 60204 IEC 204 (VDE 0113) must remain operative in all operating modes of the control equipment. Any disengagement of the Emergency Stop facility must not lead to uncontrolled or undefined restart.
- Wherever faults occurring in the control equipment can lead to substantial material damage or even grievous bodily injury (i.e. potentially dangerous faults), additional external precautions must be taken or facilities provided to ensure or enforce safe operation, even when a fault occurs (e.g. independent limit switches, mechanical interlocks, etc.).
- Certain parameter settings may cause the inverter to restart automatically after an input power failure.
- Motor parameters must be accurately configured for motor overload protection to operate correctly.
- This equipment is capable of providing internal motor overload protection in accordance with UL508C section 42. Refer to P0610 and P0335, i²t is ON by default. Motor overload protection can also be provided using an external KTY84 or PTC.
- This equipment is suitable for use in a circuit capable of delivering not more than 10,000 (Frame Size C) or 42,000 (Frame Sizes D to GX) symmetrical amperes (rms), for a maximum voltage of 460 V when protected by an H, J or K type fuse, a circuit breaker or self-protected combination motor controller (for more details see Appendix F).
- This equipment must not be used as an ‘emergency stop mechanism’ (see EN 60204, 9.2.5.4)

Repair

WARNING

- Repairs on equipment may only be carried out by Siemens Service, by repair centers authorized by Siemens or by authorized personnel who are thoroughly acquainted with all the warnings and operating procedures contained in this manual.
- Any defective parts or components must be replaced using parts contained in the relevant spare parts list.
- Disconnect the power supply across all poles before opening the equipment for access.

Dismantling & Disposal

CAUTION

- The inverter’s packaging is re-usable. Retain the packaging for future use or return it to the manufacturer.
- Easy-to-release screw and snap connectors allow you to break the unit down into its component parts. You can then re-cycle these component parts, dispose of them in accordance with local requirements or return them to the manufacturer.
Electrostatic Sensitive Devices (ESD)

The device contains components which can be destroyed by electrostatic discharge. These components can be easily destroyed if not carefully handled. Before opening the cabinet/enclosure in which the device is located, you must electrically discharge your body and apply the appropriate ESDS protective measures. The cabinet/enclosure should be appropriately labeled.

If you have to handle electronic boards, please observe the following:

- Electronic boards should only be touched when absolutely necessary.
- The human body must be electrically discharged before touching an electronic board.
- Boards must not come into contact with highly insulating materials - e.g. plastic parts, insulated desktops, articles of clothing manufactured from man-made fibers.
- Boards must only be placed on conductive surfaces.
- Boards and components should only be stored and transported in conductive packaging (e.g. metalized plastic boxes or metal containers).
- If the packing material is not conductive, the boards must be wrapped with a conductive packaging material, e.g. conductive foam rubber or household aluminium foil.

The necessary ESD protective measures are clearly shown again in the following diagram:

- a = Conductive floor surface
- b = ESD table
- c = ESD shoes
- d = ESD overall
- e = ESD chain
- f = Cubicle ground connection
Table of Contents

1. **Overview** .. 15
 1.1 The MICROMASTER 430 ... 16
 1.2 Features .. 17

2. **Installation** ... 19
 2.1 Installation after a Period of Storage .. 21
 2.2 Ambient operating conditions ... 22
 2.3 Mechanical installation .. 24
 2.4 Electrical installation ... 30

3. **Commissioning** ... 43
 3.1 Block diagram ... 45
 3.2 Commission modes ... 47
 3.3 General operation ... 58

4. **MICROMASTER 430 functions** .. 61
 4.1 Frequency set point (P1000) .. 63
 4.2 Command sources (P0700) .. 63
 4.3 OFF and brake function .. 64
 4.4 Control modes (P1300) ... 65
 4.5 MICROMASTER 430 operating modes .. 66
 4.6 Free Function Blocks (P2800 ff) ... 70
 4.7 Faults and Alarms ... 70

5. **System parameters** .. 71
 5.1 Introduction to MICROMASTER system parameters ... 72
 5.2 Parameter overview ... 73

6. **Troubleshooting** .. 75
 6.1 Troubleshooting with the SDP .. 76
 6.2 Troubleshooting with the BOP-2 .. 77
 6.3 Fault messages ... 78
 6.4 Alarm Messages ... 78

7. **MICROMASTER 430 specifications** ... 79

8. **Options** .. 87
 8.1 Device-independent options ... 87
 8.2 Device-dependent options .. 87

9. **Electro-magnetic compatibility (EMC)** ... 89
 9.1 Electro-magnetic compatibility .. 90
Table of Contents

Appendices .. 95

A \hspace{0.5cm} \text{Changing the Operator Panel} ... 95

B \hspace{0.5cm} \text{Removing Front Covers} .. 96
B.1 \hspace{0.5cm} \text{Removing Front Covers Frame Size C} .. 96
B.2 \hspace{0.5cm} \text{Removing Front Covers Frame Sizes D and E} .. 97
B.3 \hspace{0.5cm} \text{Removing Covers Frame Size F} ... 98
B.4 \hspace{0.5cm} \text{Removing Front Covers Frame Sizes FX and GX} .. 99

C \hspace{0.5cm} \text{Removing the I/O Board} ... 100

D \hspace{0.5cm} \text{Removing ‘Y’ Cap} ... 101
D.1 \hspace{0.5cm} \text{Removing ‘Y’ Cap Frame Size C} ... 101
D.2 \hspace{0.5cm} \text{Removing ‘Y’ Cap Frame Sizes D and E} .. 102
D.3 \hspace{0.5cm} \text{Removing ‘Y’ Cap Frame Sizes F} ... 103
D.4 \hspace{0.5cm} \text{Removing ‘Y’ Cap Frame Sizes FX} ... 104
D.5 \hspace{0.5cm} \text{Removing ‘Y’ Cap Frame Sizes GX} ... 105

E \hspace{0.5cm} \text{Applicable Standards} ... 106

F \hspace{0.5cm} \text{Short circuit current rating (SCCR)} ... 107

G \hspace{0.5cm} \text{List of Abbreviations} .. 108

Index ... 111
Figure 2-1	Forming	21
Figure 2-2	Ambient operating temperature	22
Figure 2-3	Installation altitude	22
Figure 2-4	Drill pattern for MICROMASTER 430 Frame Sizes C to F	25
Figure 2-5	Installation dimensions for MICROMASTER 430 Frame size FX	26
Figure 2-6	Installation dimensions for MICROMASTER 430 Frame size GX	27
Figure 2-7	Installation of options for the electronic box	29
Figure 2-8	MICROMASTER 430 Connection Terminals, Frame Sizes C to F	33
Figure 2-9	MICROMASTER 430 connection drawing – frame size FX	34
Figure 2-10	MICROMASTER 430 connection drawing – frame size GX	35
Figure 2-11	Motor and Power Connections	36
Figure 2-12	Adaptation of fan voltage	37
Figure 2-13	Control terminals of MICROMASTER 430	38
Figure 2-14	Wiring Guidelines to Minimize the Effects of EMI	40
Figure 3-1	Inverter block diagram	45
Figure 3-2	Configuration of the analogue input as a digital input	46
Figure 3-3	Panels available for the MICROMASTER 430 Inverter	47
Figure 3-4	DIP switch	47
Figure 3-5	Recommended wiring for the factory setting	49
Figure 3-6	Buttons on the BOP-2	52
Figure 3-7	Changing parameters via the BOP-2	53
Figure 3-8	Typical Motor Rating Plate Example	57
Figure 3-9	Thermal overload protection	59
Figure 4-1	Bypass circuit	66
Figure 4-2	Belt Failure Detection	67
Figure 4-3	Motor Staging	68
Figure 4-4	Energy Saving Mode	69
Figure 5-1	Parameter Overview	73
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Dimensions and Torques of MICROMASTER 430</td>
<td>28</td>
</tr>
<tr>
<td>3-1</td>
<td>Default settings for operation using the SDP</td>
<td>48</td>
</tr>
<tr>
<td>3-2</td>
<td>Default settings for operation using the BOP-2</td>
<td>51</td>
</tr>
<tr>
<td>6-1</td>
<td>Inverter conditions indicated by the LEDs on the SDP</td>
<td>76</td>
</tr>
<tr>
<td>7-1</td>
<td>MICROMASTER 430 Performance Ratings</td>
<td>80</td>
</tr>
<tr>
<td>7-2</td>
<td>Dimensions, required cooling air flow and tightening torques for power terminals</td>
<td>81</td>
</tr>
<tr>
<td>7-3</td>
<td>Current reduction depending on pulse frequency</td>
<td>82</td>
</tr>
<tr>
<td>7-4</td>
<td>MICROMASTER 430 Specifications</td>
<td>83</td>
</tr>
<tr>
<td>9-1</td>
<td>General Industrial</td>
<td>91</td>
</tr>
<tr>
<td>9-2</td>
<td>Filtered Industrial</td>
<td>91</td>
</tr>
<tr>
<td>9-3</td>
<td>Filtered for Residential, Commercial and Light Industry</td>
<td>92</td>
</tr>
<tr>
<td>9-4</td>
<td>Compliance Table</td>
<td>93</td>
</tr>
</tbody>
</table>
1 Overview

This Chapter contains:
A summary of the major features of the MICROMASTER 430 range.

1.1 The MICROMASTER 430... 16
1.2 Features.. 17
1.1 The MICROMASTER 430

The MICROMASTER 430s are a range of 3AC-frequency inverters for controlling the speed of three phase AC motors. The various models available range from the 7.5 kW input to the 250 kW input.

The MICROMASTER 430 is especially well suited for use with pumps and ventilators when used with its factory set functions and settings.

The inverters are microprocessor-controlled and use state-of-the-art Insulated Gate Bipolar Transistor (IGBT) technology. This makes them reliable and versatile. A special pulse-width modulation method with selectable Pulse frequency permits quiet motor operation. Comprehensive protective functions provide excellent inverter and motor protection.
1.2 Features

Main Characteristics
 - Easy installation
 - Easy commissioning
 - Rugged EMC design
 - Can be operated on IT line supplies
 - Fast repeatable response time to control signals
 - Comprehensive range of parameters enabling configuration for a wide range of applications
 - Simple cable connection
 - Output relays
 - Analog outputs (0 – 20 mA)
 - 6 Isolated and switchable NPN/PNP digital inputs
 - 2 Analog inputs:
 - AIN1: 0 – 10 V, 0 – 20 mA and -10 to +10 V
 - AIN2: 0 – 10 V, 0 – 20 mA
 - The 2 analog inputs can be used as the 7th and 8th digital inputs
 - BiCo technology
 - Modular design for extremely flexible configuration
 - High switching frequencies for low-noise motor operation
 - Detailed status information and integrated message functions
 - External options for PC communications, Basic Operator Panel (BOP-2) and PROFIBUS communications module
 - Pump & Fan Features:
 - Motor Staging (Control of additional drives via output relay)
 - Energy Saving Mode
 - Hand / Auto (manual / automatic) with BOP-2
 - Belt failure detection (e.g. detects if pumps have run dry)
 - Bypass
Performance Characteristics

- **U/f control**
 - Linear U/f control with flux current control (FCC) for improved dynamic response and motor control
 - Multiple point U/f control
- Automatic restart
- Flying restart
- Slip compensation
- Fast Current Limitation (FCL) for trip-free operation
- Motor holding brake
- Built-in DC injection brake
- Compound braking to improve braking performance
- Setpoint input via:
 - Analog inputs
 - Communication interface
 - Motorized potentiometer
 - Fixed frequencies
- Ramp function generator
 - With smoothing
 - Without smoothing
- Technology controller (PID)
- Parameter set switch-over
 - Motor data sets (DDS)
 - Command data sets and setpoint sources (CDS)
- Rating for operation with variable torque (VT)
- Free Function Blocks

Protection characteristics

- Overvoltage/undervoltage protection
- Overtemperature protection for the inverter
- Ground fault protection
- Short-circuit protection
- \(i^2t\) thermal motor protection
- PTC/KTY for motor protection

Options

Refer to Chapter 8
2 Installation

This Chapter contains:

- General data relating to installation
- Dimensions of Inverter
- Wiring guidelines to minimize the effects of EMI
- Details concerning electrical installation

2.1 Installation after a Period of Storage ... 20
2.2 Ambient operating conditions .. 22
2.3 Mechanical installation .. 24
2.4 Electrical installation ... 29
WARNING

- Work on the device/system by unqualified personnel or failure to comply with warnings can result in severe personal injury or serious damage to material. Only suitably qualified personnel trained in the setup, installation, commissioning and operation of the product should carry out work on the device/system.
- Only permanently-wired input power connections are allowed. This equipment must be grounded (IEC 536 Class 1, NEC and other applicable standards).
- If a Residual Current-operated protective Device (RCD) is to be used, it must be an RCD type B. Machines with a three-phase power supply, fitted with EMC filters, must not be connected to a supply via an ELCB (Earth Leakage Circuit-Breaker EN 50178 Section 5.2.11.1).
- The following terminals can carry dangerous voltages even if the inverter is inoperative:
 - the power supply L/L1, N/L2, L3 resp. U1/L1, V1/L2, W1/L3
 - the motor terminals U, V, W resp. U2, V2, W2
 - and depending on the frame size the terminals DC+/B+, DC-, B-, DC/R+ resp. DCP+, DCN+, DCPA, DCPA
- Always wait 5 minutes to allow the unit to discharge after switching off before carrying out any installation work.
- This equipment must not be used as an ‘emergency stop mechanism’ (see EN 60204, 9.2.5.4).
- The minimum size of the earth-bonding conductor must be equal to or greater than the cross-section of the power supply cables.

CAUTION

The connection of power, motor and control cables to the inverter must be carried out as shown in Figure 2-14 on page 40, to prevent inductive and capacitive interference from affecting the correct functioning of the inverter.
2.1 Installation after a Period of Storage

Following a prolonged period of storage, you must reform the capacitors in the inverter. The requirements are listed below.

Frame Sizes C to F

<table>
<thead>
<tr>
<th>Storage Period</th>
<th>Action Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1 year</td>
<td>No action necessary</td>
</tr>
<tr>
<td>1 to 2 years</td>
<td>Prior to energizing, connect to voltage for one hour</td>
</tr>
<tr>
<td>2 to 3 years</td>
<td>Prior to energizing, form according to the curve</td>
</tr>
<tr>
<td>3 and more years</td>
<td>Prior to energizing, form according to the curve</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage [%]</th>
<th>Time t [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.5 1 2 4 6 8</td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-1
Forming

Frame Sizes FX and GX

Reforming the capacitors can be accomplished by applying 85% of the rated input voltage for at least 30 minutes without load.
2.2 Ambient operating conditions

Temperature

<table>
<thead>
<tr>
<th>Frame Sizes G to F:</th>
<th>Frame Sizes FX and GX:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible output current [%]</td>
<td>Permissible output current [%]</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>75</td>
<td>95</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>25</td>
<td>85</td>
</tr>
</tbody>
</table>

Temperature

- Frame Sizes G to F: -10°C to 60°C
- Frame Sizes FX and GX: -10°C to 55°C

Figure 2-2 Ambient operating temperature

Humidity Range

Relative air humidity ≤ 95 % Non-condensing

Altitude

If the inverter is to be installed at an altitude > 1000 m or > 2000 m above sea level, derating will be required:

Figure 2-3 Installation altitude

Shock and Vibration

Do not drop the inverter or expose to sudden shock. Do not install the inverter in an area where it is likely to be exposed to constant vibration.

Mechanical strength to EN 60721-3-3

- Deflection: 0.075 mm (10 ... 58 Hz)
- Acceleration: 9.8 m/s² (> 58 ... 200 Hz)
Electromagnetic Radiation
Do not install the inverter near sources of electromagnetic radiation.

Atmospheric Pollution
Do not install the inverter in an environment, which contains atmospheric pollutants such as dust, corrosive gases, etc.

Water
Take care to site the inverter away from potential water hazards, e.g. do not install the inverter beneath pipes that are subject to condensation. Avoid installing the inverter where excessive humidity and condensation may occur.

Installation and cooling

CAUTION
The inverters MUST NOT be mounted horizontally.
The inverters can be mounted without any clearance at either side.

When mounting inverters one above the other, the specified environmental conditions must not be exceeded.
Independent of this, these minimum distances must be observed.

- Frame Size C above and below 100 mm
- Frame Size D, E above and below 300 mm
- Frame Size F above and below 350 mm
- Frame Size FX, GX above 250 mm below 150 mm in front 40 mm (FX), 50 mm (GX)

No equipment that could have a negative effect on the flow of cooling air should be installed in this area. Make sure that the cooling vents in the inverter are positioned correctly to allow free movement of air.
2.3 Mechanical installation

WARNING

- To ensure the safe operation of the equipment, it must be installed and commissioned by qualified personnel in full compliance with the warnings laid down in these operating instructions.
- Take particular note of the general and regional installation and safety regulations regarding work on dangerous voltage installations (e.g. EN 50178), as well as the relevant regulations regarding the correct use of tools and personal protective equipment (PPE).
- The mains input, DC and motor terminals, can carry dangerous voltages even if the inverter is inoperative; wait 5 minutes to allow the unit to discharge after switching off before carrying out any installation work.
- The inverters can be mounted without any clearance at either side. When mounting inverters one above the other, the specified environmental conditions must not be exceeded. Independent of this, these minimum distances must be observed.
 - Frame Size C above and below 100 mm
 - Frame Size D, E above and below 300 mm
 - Frame Size F above and below 350 mm
 - Frame Size FX, GX above 250 mm below 150 mm in front 40 mm (FX), 50 mm (GX)
- If the front cover (Frame Sizes FX and GX) has been removed, the fan impeller is exposed. There is danger of injury when the fan is running.
- IP20 protection is only against direct contact, always use these products within a protective cabinet.

Removing from transport pallet (only for framesizes FX and GX)

During transport, the inverter is fastened on the transport pallet with the aid of two iron brackets.

WARNING

Note that the center of gravity of the inverter is not in the middle of the unit. When lifting the pallet, the unit can therefore suddenly change position and swing to the side.

1. Fasten the hoisting crane cable to the hoisting eyes on the inverter (2 eyes (see Figure 2-9 for frame size FX Figure 2-10 for frame size GX).
2. Remove the two retaining bolts at the top of the front cover.
3. Unscrew the bolts in the iron brackets on the transport pallet and lift the inverter off the pallet.
4. Once installation has been completed and the inverter connected, fasten the two retaining bolts for the front cover at the bottom side of the door.
Frame Sizes C to F

Figure 2-4 Drill pattern for MICROMASTER 430 Frame Sizes C to F
Frame Size FX

Figure 2-5 Installation dimensions for MICROMASTER 430 Frame size FX
Frame Size GX

Figure 2-6 Installation dimensions for MICROMASTER 430 Frame size GX
Table 2-1 Dimensions and Torques of MICROMASTER 430

<table>
<thead>
<tr>
<th>Frame-Size</th>
<th>Overall Dimensions</th>
<th>Fixing Method</th>
<th>Tightening Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Width x Height x Depth</td>
<td>mm 185 x 245 x 195</td>
<td>4 x M5 Bolts 4 x M5 Nuts 4 x M5 Washers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch 7.28 x 9.65 x 7.68</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Width x Height x Depth</td>
<td>mm 275 x 520 x 245</td>
<td>4 x M8 Bolts 4 x M8 Nuts 4 x M8 Washers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch 10.82 x 20.47 x 9.65</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Width x Height x Depth</td>
<td>mm 275 x 650 x 245</td>
<td>4 x M8 Bolts 4 x M8 Nuts 4 x M8 Washers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch 10.82 x 25.59 x 9.65</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Width x Height x Depth</td>
<td>mm 350 x 850 mm x 320 height with filter</td>
<td>4 x M8 Bolts 4 x M8 Nuts 4 x M8 Washers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch 13.78 x 33.46 x 12.60 height with filter</td>
<td></td>
</tr>
<tr>
<td>FX</td>
<td>Width x Height x Depth</td>
<td>mm 326 x 1400 x 356</td>
<td>6 M8 Bolts 6 M8 Nuts 6 M8 Washers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch 12.80 x 55.12 x 12.83</td>
<td></td>
</tr>
<tr>
<td>GX</td>
<td>Width x Height x Depth</td>
<td>mm 326 x 1533 x 545</td>
<td>6 M8 Bolts 6 M8 Nuts 6 M8 Washers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch 12.80 x 60.35 x 21.46</td>
<td></td>
</tr>
</tbody>
</table>
2.3.1 Installing communication options and/or pulse encoder evaluation module

Frame Size C

NOTE
When installing the following options – PROFIBUS module, DeviceNet module, CANopen option module and/or pulses encoder evaluation module, the mounting depth of the drive inverter is increased!

Please refer to the relevant Operating Instructions for the actual procedure.

Frame Sizes FX and GX
The front cover of the MICROMASTER 440 is designed so that the control module (normally the SDP) is almost flush with the opening in the front cover. If more than one option is to be installed in the electronic box, it is necessary to position the entire electronic box further to the rear.

Installing the options
- Remove the front cover:
 - Unscrew two screws at the bottom side of the front cover.
 - Lift front cover up and out.
- Remove retaining screws on the electronic box.
- Screw on electronic box in correct installation position as shown in Figure 2-7
- Install additional options.
- Reinstall front cover.

![Diagram of installation positions](image)

Figure 2-7 Installation of options for the electronic box
2.4 Electrical installation

WARNING

- The inverter must always be grounded.
- To ensure the safe operation of the equipment, it must be installed and commissioned by qualified personnel in full compliance with the warnings laid down in these operating instructions.
- Take particular note of the general and regional installation and safety regulations regarding work on dangerous voltage installations (e.g. EN 50178), as well as the relevant regulations regarding the correct use of tools and personal protective gear.
- Never use high voltage insulation test equipment on cables connected to the inverter.
- The mains input, DC and motor terminals, can carry dangerous voltages even if the inverter is inoperative; wait 5 minutes to allow the unit to discharge after switching off before carrying out any installation work.
- If the front cover (Frame Sizes FX and GX) has been removed, the fan impeller is exposed. There is danger of injury when the fan is running.

CAUTION

The control, power supply and motor leads must be laid separately. Do not feed them through the same cable conduit/trunking.
2.4.1 General

WARNING

The inverter must always be grounded. If the inverter is not grounded correctly, extremely dangerous conditions may arise within the inverter which could prove potentially fatal.

Operation with ungrounded (IT) supplies

Filtered

The use of MICROMASTER 4 inverters with built-in filters is not allowed on IT supplies.

Unfiltered

In the case of non-grounded networks, the 'Y' capacitor of the device must be made ineffective. The procedure is described in Appendix D. If the MICROMASTER is to remain in operation in non-grounded networks when a ground fault occurs during the input or output phase, an output reactor must be installed.

Operation with Residual Current Device (Frame Sizes C to F)

If an RCD (also referred to as ELCB or RCCB) is fitted, the MICROMASTER inverters will operate without nuisance tripping, provided that:

- A type B RCD is used.
- The trip limit of the RCD is 300 mA.
- The neutral of the supply is grounded.
- Only one inverter is supplied from each RCD.
- The output cables are less than 50 m (screened) or 100 m (unscreened).

NOTE

The residual current operated circuit-breakers used must provide protection against direct-current components in the fault current and must be suitable for briefly suppressing power pulse current peaks. It is recommended to protect the frequency inverter by fuse separately.

The regulations of the individual country (e.g. VDE regulations in Germany) and the regional power suppliers must be observed!
2.4.2 Power and motor connections

WARNING

The inverter must always be grounded.

- Isolate the mains electrical supply before making or changing connections to the unit.
- When synchronous motors are connected or when coupling several motors in parallel, the inverter must be operated with voltage/frequency control characteristic (P1300 = 0, 2 or 3).

CAUTION

After connecting the power and motor cables to the proper terminals, make sure that the front covers have been replaced properly before supplying power to the unit!

NOTICE

- Ensure that the appropriate circuit-breakers/fuses with the specified current rating are connected between the power supply and inverter (see chapter 7, Tables starting on page 82).
- Use Class 1 60/75°C copper wire only (for UL compliance). For tightening torque see Table 7-2 on page 81.

Operation with long cables

All inverters will operate at full specification with cable lengths as follows:

<table>
<thead>
<tr>
<th>Frame Sizes</th>
<th>C to F</th>
<th>FX and GX</th>
</tr>
</thead>
<tbody>
<tr>
<td>screened</td>
<td>50 m</td>
<td>100 m</td>
</tr>
<tr>
<td>unscreened</td>
<td>100 m</td>
<td>150 m</td>
</tr>
</tbody>
</table>

Using the output chokes specified in catalogue DA 51.2, the following cable lengths are possible for all frame sizes:

<table>
<thead>
<tr>
<th>Supply Voltage</th>
<th>380 V … 400 V ± 10 %</th>
<th>401 V … 480 V ± 10 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Sizes</td>
<td>C</td>
<td>D to F</td>
</tr>
<tr>
<td>screened</td>
<td>200 m</td>
<td>200 m</td>
</tr>
<tr>
<td>unscreened</td>
<td>300 m</td>
<td>300 m</td>
</tr>
</tbody>
</table>

CAUTION

If using output chokes operation is only permissible with a pulse frequency of 4 kHz. Make sure that the automatic pulse frequency reductions are disabled.

Coercing required parameter adjusting: P1800 = 4 kHz , P0290 = 0 or 1.

Access to the power and motor terminals

Access to the power supply and motor terminals is possible by removing the front covers (See Figure 2-8 to Figure 2-10). See also Appendix B.

After removing the front covers and exposing the terminals, complete power and motor connections as shown Figure 2-11.
NOTE
The DC connections are for testing purposes only and have not been released for operation by the user. No brake resistors etc. may be connected here.
Figure 2-9 MICROMASTER 430 connection drawing – frame size FX
Figure 2-10 MICROMASTER 430 connection drawing – frame size GX
Frame Sizes C to F

1) with and without filter

Frame Sizes FX and GX

2) without filter

3) the commutation choke is to be earthed using the designated earthing point

Figure 2-11 Motor and Power Connections
Adaptation of fan voltage (only for framesize FX and GX)
A transformer is installed to adapt the existing line voltage to the fan voltage. It may be necessary to reconnect the transformer terminals on the primary side to coincide with the existing line power.

Figure 2-12 Adaptation of fan voltage

CAUTION
If the terminals are not reconnected to the actually present line voltage, the fan fuses can blow.

Replacement for fan fuses

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Fuses (2 each)</th>
<th>Recommended fuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>FX (90 kW CT)</td>
<td>1 A / 600 V / slow-acting</td>
<td>Cooper-Bussmann FNQ-R-1, 600 V or comparable fuse</td>
</tr>
<tr>
<td>FX (110 kW CT)</td>
<td>2.5 A / 600 V / slow-acting</td>
<td>Ferraz Gould Shawmut ATDR2-1/2, 600 V or comparable fuse</td>
</tr>
<tr>
<td>GX (132-200 kW CT)</td>
<td>4 A / 600 V / slow-acting</td>
<td>Ferraz Gould Shawmut ATDR4, 600 V or comparable fuse</td>
</tr>
</tbody>
</table>
Control terminals

Permitted cable diameters: 0.08 … 2.5 mm² (AWG: 28 … 12)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Output +10 V</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>Output 0 V</td>
</tr>
<tr>
<td>3</td>
<td>ADC1+</td>
<td>Analog input 1 (+)</td>
</tr>
<tr>
<td>4</td>
<td>ADC1-</td>
<td>Analog input 1 (-)</td>
</tr>
<tr>
<td>5</td>
<td>DIN1</td>
<td>Digital input 1</td>
</tr>
<tr>
<td>6</td>
<td>DIN2</td>
<td>Digital input 2</td>
</tr>
<tr>
<td>7</td>
<td>DIN3</td>
<td>Digital input 3</td>
</tr>
<tr>
<td>8</td>
<td>DIN4</td>
<td>Digital input 4</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>Isolated output +24 V / max. 100 mA</td>
</tr>
<tr>
<td>10</td>
<td>ADC2+</td>
<td>Analog input 2 (+)</td>
</tr>
<tr>
<td>11</td>
<td>ADC2-</td>
<td>Analog input 2 (-)</td>
</tr>
<tr>
<td>12</td>
<td>DAC1+</td>
<td>Analog output 1 (+)</td>
</tr>
<tr>
<td>13</td>
<td>DAC1-</td>
<td>Analog output 1 (-)</td>
</tr>
<tr>
<td>14</td>
<td>PTCA</td>
<td>Connection for PTC / KTY84</td>
</tr>
<tr>
<td>15</td>
<td>PTCB</td>
<td>Connection for PTC / KTY84</td>
</tr>
<tr>
<td>16</td>
<td>DIN5</td>
<td>Digital input 5</td>
</tr>
<tr>
<td>17</td>
<td>DIN6</td>
<td>Digital input 6</td>
</tr>
<tr>
<td>18</td>
<td>DOUT1/NC</td>
<td>Digital output 1 / NC contact</td>
</tr>
<tr>
<td>19</td>
<td>DOUT1/NO</td>
<td>Digital output 1 / NO contact</td>
</tr>
<tr>
<td>20</td>
<td>DOUT1/COM</td>
<td>Digital output 1 / Changeover contact</td>
</tr>
<tr>
<td>21</td>
<td>DOUT2/NO</td>
<td>Digital output 2 / NO contact</td>
</tr>
<tr>
<td>22</td>
<td>DOUT2/COM</td>
<td>Digital output 2 / Changeover contact</td>
</tr>
<tr>
<td>23</td>
<td>DOUT3/NC</td>
<td>Digital output 3 / NC contact</td>
</tr>
<tr>
<td>24</td>
<td>DOUT3/NO</td>
<td>Digital output 3 / NO contact</td>
</tr>
<tr>
<td>25</td>
<td>DOUT3/COM</td>
<td>Digital output 3 / Changeover contact</td>
</tr>
<tr>
<td>26</td>
<td>DAC2+</td>
<td>Analog output 2 (+)</td>
</tr>
<tr>
<td>27</td>
<td>DAC2-</td>
<td>Analog output 2 (-)</td>
</tr>
<tr>
<td>28</td>
<td>–</td>
<td>Isolated output 0 V / max. 100 mA</td>
</tr>
<tr>
<td>29</td>
<td>P+</td>
<td>RS485 port</td>
</tr>
<tr>
<td>30</td>
<td>N–</td>
<td>RS485 port</td>
</tr>
</tbody>
</table>

![Control terminals of MICROMASTER 430](image)
2.4.4 Avoiding Electro-Magnetic Interference (EMI)

The inverters are designed to operate in an industrial environment where a high level of EMI can be expected. Usually, good installation practices will ensure safe and trouble-free operation. If you encounter problems, follow the guidelines stated below.

Action to Take

- Ensure that all equipment in the cubicle is well grounded using short, thick grounding cable connected to a common star point or busbar.
- Make sure that any control equipment (such as a PLC) connected to the inverter is connected to the same ground or star point as the inverter via a short thick link.
- Connect the return ground from the motors controlled by the inverters directly to the ground connection (PE) on the associated inverter.
- Flat conductors are preferred as they have lower impedance at higher frequencies.
- Terminate the ends of the cable neatly, ensuring that unscreened wires are as short as possible.
- **Separate the control cables from the power cables as much as possible, using separate trunking, if necessary at 90º to each other.**
- Whenever possible, use screened leads for the connections to the control circuitry.
- Ensure that the contactors in the cubicle are suppressed, either with R-C suppressors for AC contactors or 'flywheel' diodes for DC contactors fitted to the coils. Varistor suppressors are also effective. This is important when the contactors are controlled from the inverter relay.
- Use screened or armored cables for the motor connections and ground the screen at both ends using the cable clamps.

WARNING

Safety regulations **must not** be compromised when installing inverters!
2.4.5 Screening Methods

Frame Size C
For frame size C the Gland Plate Kit is supplied as an option. It allows easy and efficient connection of the necessary screening. See the Gland Plate Installation Instructions contained on the Document CD-ROM, supplied with the MM430.

Screening without a Gland Plate
Should a Gland Plate not be available, then the inverter can be screened using the methodology shown in Figure 2-14.

Figure 2-14 Wiring Guidelines to Minimize the Effects of EMI

1 Mains power input
2 Control cable
3 Motor cable
4 Footprint filter
5 Metal back plate
6 Use suitable clips to fix motor and control cable screens securely to metal back plate
7 Screening cables
Frame Sizes D and E

The Gland Plate is factory fitted. If the installation conditions are restricted, the shield of the motor cable can also be attached outside the cabinet, as shown in Figure 2-14, for example.

Frame size F

The gland plate for the control cables is factory-fitted.

Devices without filter: The shield of the motor cable must be attached outside the cabinet, as shown in Figure 2-14, for example.

Devices with filter: The gland plate for the motor cable is factory-fitted.

Frame Sizes FX and GX

Attach the shields for the control cable as shown in the connection overview (see Figure 2-9 and Figure 2-10) to the marked shield connection over a large surface.

Twist the shields of the motor cables and screw them to the PE connection for the motor cable.

When using an EMI filter, a power commutating choke is required. The wire shields should be fastened to the metallic mounting surface as close as possible to the components.
3 Commissioning

This Chapter contains:

- A schematic diagram of the MICROMASTER 430
- An overview of the commissioning options and the display and operator panels
- An overview of quick commissioning of the MICROMASTER 430

3.1 Block diagram ... 45
3.2 Commission modes ... 46
3.3 General operation .. 56
WARNING

- MICROMASTERS operate at high voltages.
- When operating electrical devices, it is impossible to avoid applying hazardous voltages to certain parts of the equipment.
- The following terminals can carry dangerous voltages even if the inverter is inoperative:
 ♦ the power supply L/L1, N/L2, L3 resp. U1/L1, V1/L2, W1/L3
 ♦ the motor terminals U, V, W resp. U2, V2, W2
 ♦ and depending on the frame size the terminals DC+/B+, DC-, B-, DC/R+ resp. DCPS, DCNS, DCPA, DCNA
- Emergency Stop facilities according to EN 60204 IEC 204 (VDE 0113) must remain operative in all operating modes of the control equipment. Any disengagement of the Emergency Stop facility must not lead to uncontrolled or undefined restart.
- Wherever faults occurring in the control equipment can lead to substantial material damage or even grievous bodily injury (i.e. potentially dangerous faults), additional external precautions must be taken or facilities provided to ensure or enforce safe operation, even when a fault occurs (e.g. independent limit switches, mechanical interlocks, etc.).
- Certain parameter settings may cause the inverter to restart automatically after an input power failure.
- Motor parameters must be accurately configured for motor overload protection to operate correctly.
- This equipment is capable of providing internal motor overload protection in accordance with UL508C section 42. Refer to P0610 and P0335, i^2 is ON by default. Motor overload protection can also be provided using an external KTY84 or PTC.
- This equipment is suitable for use in a circuit capable of delivering not more than 10,000 (Frame Size C) or 42,000 (Frame Sizes D to GX) symmetrical amperes (rms), for a maximum voltage of 460 V when protected by an H, J or K type fuse, a circuit breaker or self-protected combination motor controller (for more details see Appendix F).
 This equipment must not be used as an ‘emergency stop mechanism’ (see EN 60204, 9.2.5.4).

CAUTION

Only qualified personnel may enter settings in the control panels. Particular attention must be paid to safety precautions and warnings at all times.
3.1 Block diagram

![Inverter block diagram]

Figure 3-1 Inverter block diagram
3.1.1 Standard settings for the terminals

See Figure 3-2.

3.1.2 Analogue inputs

Analogue input 1 (AIN1) can be used with:
0 - 10 V, 0 - 20 mA and -10 V to +10 V
Analogue input 2 (AIN2) can be used with:
0 - 10 V and 0 - 20 mA

The analog input circuit can be alternatively configured to provide additional digital inputs (DIN7 & DIN8) as shown:

![Diagram showing configuration of the analogue input as a digital input]

Figure 3-2 Configuration of the analogue input as a digital input

When an analogue input is configured as a digital input the threshold values are as follows:

1.75 V DC = OFF
3.70 V DC = ON

Terminal 9 (24 V) can also be used to drive the analog inputs when used as digital inputs. Terminals 2 and 28 (0 V) must be linked together.
3.2 Commission modes

In the standard version, the MICROMASTER 430 is fitted with the Status Display Panel (SDP) (see Figure 3-3) with which it is possible to use the inverter with the pre-assigned factory settings for a large range of applications. If these factory settings are not suitable, you can adapt them to suit your equipment conditions using the Basic Operator Panel-2 (BOP-2) (see Figure 3-3). The BOP-2 are available as options. You can also adjust the factory settings using the PC IBN tool. This software is available on the CD ROM which comes with the documentation of the unit.

ATTENTION

MICROMASTER 430 can only be operated with the BOP-2. It is not possible to use BOP or AOP.

![SDP and BOP-2](image)

Figure 3-3 Panels available for the MICROMASTER 430 Inverter

For notes on replacing the operator panels please refer to the corresponding appendix A to this manual.

NOTICE

Adjusting the motor frequency 50/60 Hz: The DIP switch to adjust the motor frequency is located below the I/O board (for removing the I/O board, see appendix C).

The inverter is delivered as follows:

- **DIP switch 2:**
 - Off position: European defaults (50 Hz, kW etc.)
 - On position: North American defaults (60 Hz, hp etc.)
- **DIP switch 1:**
 - Not for customer use.

![DIP Switch](image)

Figure 3-4 DIP switch
3.2.1 Commissioning with the SDP

The SDP has two LEDs on the front which display the current operating status of the inverter (see Section 6.1).

When the SDP is used, the presets of the inverter must be compatible with the following motor data:
- Rated motor power
- Motor voltage
- Rated motor current
- Rated motor frequency

(A conventional Siemens motor is recommended)

In addition, the following conditions must be met:
- Linear V/f motor speed controlled by an analog potentiometer.
- Maximum speed 1500 rpm at 50 Hz (1800 rpm at 60 Hz); can be controlled by a potentiometer via the analog inputs of the inverter.
- Ramp-up time = 10 s
- Ramp-down time = 30 s

Settings for more complex applications can be found in the parameter list and in Section 3.2.2 "Commission Overview with BOP-2".

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Parameter</th>
<th>Default Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Input 1</td>
<td>5</td>
<td>P0701 = '1'</td>
</tr>
<tr>
<td>Digital Input 2 *</td>
<td>6</td>
<td>P0702 = '12'</td>
</tr>
<tr>
<td>Digital Input 3</td>
<td>7</td>
<td>P0703 = '9'</td>
</tr>
<tr>
<td>Digital Input 4</td>
<td>8</td>
<td>P0704 = '15'</td>
</tr>
<tr>
<td>Digital Input 5</td>
<td>16</td>
<td>P0705 = '15'</td>
</tr>
<tr>
<td>Digital Input 6</td>
<td>17</td>
<td>P0706 = '15'</td>
</tr>
<tr>
<td>Digital Input 7 Via AIN1</td>
<td></td>
<td>P0707 = '0'</td>
</tr>
<tr>
<td>Digital Input 8 Via AIN2</td>
<td></td>
<td>P0708 = '0'</td>
</tr>
</tbody>
</table>

* The standard setting for the change of rotation direction is as inhibited. (Parameter 1110)
Basic operation with SDP

With the SDP fitted, the following is possible:
- Start and stopping the motor (DIN1 via external switch)
- Fault Reset (DIN3 via external switch)
- Presetting frequency setpoint (via ADC1 with external potentiometer, default setting of the ADC: Voltage input)
- Output frequency actual value (via D/A converter, D/A converter output: Current output)

Controlling the speed of the motor is accomplished by connecting the analog inputs as shown in the Figure 3-5. The potentiometer and the external switches can be connected through the drive inverter internal power supply.

Figure 3-5 Recommended wiring for the factory setting

If settings have to be made which go beyond the factory setting, then depending on the complexity of the application, when commissioning the drive system, the particular function description as well as the parameter list including function charts must be carefully taken into consideration.
3.2.2 Commission Overview with BOP-2

Prerequisites
Mechanical and electrical installation are completed.

Setting the motor frequency
DIP Switch 2: OFF = 50 Hz / ON = 60 Hz

Power ON

Quick Commissioning P0010 = 1
See Section 3.2.3.1

Further Commissioning via P0004 and P0003
An overview of the parameter structure is given in
Section 5.1
For a detailed description of the parameter, see the
Parameter List.

NOTES
We recommend the commissioning according this scheme.
3.2.2.1 Commissioning with the BOP-2

You can alter parameter values via the BOP-2. To set parameters on this panel, you must remove the SDP and attach the BOP-2 (see Appendix A).

The BOP-2 features a five-digit, seven-segment display for showing parameter numbers and values, alarm and fault messages and setpoints and actual values. Parameter sets cannot be saved via the BOP-2.

Table 3-2 shows the factory default settings for operation via the BOP-2.

NOTICE

➢ The BOP-2 motor control functions are disabled by default. To control the motor via the BOP-2, parameter P0700 should be set to 1 and P1000 set to 1.
➢ The BOP-2 can be fitted to and removed from the inverter whilst power is applied.
➢ If the BOP-2 has been set as the I/O control (P0700 = 1), the drive will stop if the BOP-2 is removed.

Table 3-2 Default settings for operation using the BOP-2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Default Europe (North America)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0100</td>
<td>Operating Mode Europe/US</td>
<td>50 Hz, kW (60 Hz, hp)</td>
</tr>
<tr>
<td>P0307</td>
<td>Power (rated motor)</td>
<td>Dimension kW (Hp) depending on setting of P0100. [Value depending on variant]</td>
</tr>
<tr>
<td>P0310</td>
<td>Motor frequency rating</td>
<td>50 Hz (60 Hz)</td>
</tr>
<tr>
<td>P0311</td>
<td>Motor speed rating</td>
<td>1395 (1680) rpm [depending on variant]</td>
</tr>
<tr>
<td>P1082</td>
<td>Maximum Motor Frequency</td>
<td>50 Hz (60 Hz)</td>
</tr>
</tbody>
</table>

ATTENTION

MICROMASTER 430 can only be operated using a BOP-2 bedient werden.

If a BOP or AOP is used, the following is shown on the display -----.
Buttons on the BOP-2

<table>
<thead>
<tr>
<th>Panel/Button</th>
<th>Function</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Indicates Status</td>
<td>The LCD displays the settings currently used by the converter.</td>
</tr>
<tr>
<td>I</td>
<td>Start motor</td>
<td>Pressing the button starts the converter. This button is disabled by default. To enable this button set P0700 = 1.</td>
</tr>
</tbody>
</table>
| O | Stop motor | OFF1: Pressing the button causes the motor to come to a standstill at the selected ramp down rate. Disabled by default; to enable set P0700 = 1.
OFF2: Pressing the button twice (or once long) causes the motor to coast to a standstill. This function is always enabled. |
| Hand | Manual mode | The customer terminal strip (CD S2) and the operating panel (BOP-2) are sources for commands and set values. |
| Auto | Automatic mode | The customer’s terminal strip (CD S1) or the serial (US S) or field bus interface (e.g. PROFIBUS) are sources for commands and set values. |
| Fn | Functions | This button can be used to view additional information. Pressing and holding the button for 2 seconds from any parameter during operation, shows the following:
1. DC link voltage (indicated by d – units V).
2. Output current (A).
3. Output frequency (Hz).
4. Output voltage (indicated by o – units V).
5. The value selected in P0005 (If P0005 is set to show any of the above (1 - 4) then this will not be shown again).
Additional presses will toggle around the above displays. |
| P | Access parameters | Pressing this button allows access to the parameters. |
| P | Increase value | Pressing this button increases the displayed value. |
| P | Decrease value | Pressing this button decreases the displayed value. |

![Figure 3-6 Buttons on the BOP-2](image-url)
Changing parameters with the BOP-2

The procedure for changing the value of parameter P0004 is described below. Modifying the value of an indexed parameter is illustrated using the example of P0719. Follow exactly the same procedure to alter other parameters that you wish to set via the BOP-2.

Changing P0004 – parameter filter function

<table>
<thead>
<tr>
<th>Step</th>
<th>Result on display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Press (\square) to access parameters</td>
<td>(r0000)</td>
</tr>
<tr>
<td>2. Press (\square) until P0004 is displayed</td>
<td>(P0004)</td>
</tr>
<tr>
<td>3. Press (\square) to access the parameter value level</td>
<td>(0)</td>
</tr>
<tr>
<td>4. Press (\square) or (\square) to the required value</td>
<td>(7)</td>
</tr>
<tr>
<td>5. Press (\square) to confirm and store the value</td>
<td>(P0004)</td>
</tr>
</tbody>
</table>

Changing P0719 an indexed parameter

Selection of command/setpoint source

<table>
<thead>
<tr>
<th>Step</th>
<th>Result on display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Press (\square) to access parameters</td>
<td>(r0000)</td>
</tr>
<tr>
<td>2. Press (\square) until P0719 is displayed</td>
<td>(P0719)</td>
</tr>
<tr>
<td>3. Press (\square) to access the parameter value level</td>
<td>(r0000)</td>
</tr>
<tr>
<td>4. Press (\square) to display current set value</td>
<td>(0)</td>
</tr>
<tr>
<td>5. Press (\square) or (\square) to the required value</td>
<td>(12)</td>
</tr>
<tr>
<td>6. Press (\square) to confirm and store the value</td>
<td>(P0719)</td>
</tr>
<tr>
<td>7. Press (\square) until r0000 is displayed</td>
<td>(r0000)</td>
</tr>
<tr>
<td>8. Press (\square) to return the display to the standard drive display (as defined by the customer)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-7 Changing parameters via the BOP-2
NOTES
In some cases - when changing parameter values - the display on the BOP-2 shows **buSY**. This means the inverter is busy with tasks of higher priority.

Changing single digits in Parameter values
For changing the parameter value rapidly, the single digits of the display can be changed by performing the following actions:
Ensure you are in the parameter value changing level (see "Changing parameters with BOP-2").

1. Press **(function button)**, which causes the right hand digit to blink.
2. Change the value of this digit by pressing **/**.
3. Press **(function button)** again causes the next digit to blink.
4. Perform steps 2 to 4 until the required value is displayed.
5. Press the **to leave the parameter value changing level.**

NOTES
The function button may also be used to acknowledge a fault condition

3.2.3 Commissioning functions with BOP-2

3.2.3.1 Quick commissioning (P0010=1)
Mechanical and electrical installation of the inverter must be completed before running „Quick Commissioning“.
It is **important** that parameter P0010 is used for commissioning and P0003 is used to select the access level.
There are three user levels, standard, extended and expert. The lower the access level fewer parameters can be seen while performing Quick commissioning. The values for these parameters are either the default settings or are calculated during quick commissioning.
Quick commissioning includes motor and ramp setting parameters.
Quick Commissioning concludes with P3900, which, when set to 1, will perform the necessary motor calculations and clear all other parameters (not included in P0010=1) to the default settings. After completing Quick Commissioning with P3900 = 1, the inverter is then ready to run; this will only happen in the Quick Commissioning mode.
Flow chart Quick Commissioning

Access level

P0003 User access level
1 Standard
2 Extended
3 Expert

P0010 Start Quick Commissioning
0 Ready to Run
1 Quick Commissioning
30 Factory Setting

P0100 Operation for Europe/N. America
0 Power in kW; f default 50 Hz
1 Power in hp; f default 60 Hz
2 Power in kW; f default 60 Hz

NOTE
Settings 0 and 1 should be changed using the DIP switches to allow permanent setting. The DIP switches should be used to create permanent settings. After a mains break the DIP switch settings override the parameter settings.

P0304 Rated Motor Voltage
Setting range: 10 V - 2000 V
Nominal motor voltage (V) from rating plate.

P0305 Rated Motor Current
Setting range: 0 - 2 x inverter rated current (A)
Nominal motor current (A) from rating plate.

P0307 Rated Motor Power
Setting range: 0.01 kW - 2000 kW
Nominal motor power (kW) from rating plate.
If P0100 = 1, values will be in hp.

P0308 Rated motor cosPhi
Setting range: 0.000 - 1.000
Nom. motor power factor (cosPhi) from rating plate.
Visible only when P0100 = 0, 2, (motor power in kW).

P0309 Rated motor efficiency
Setting range: 0.0 - 99.9 %
Nominal motor efficiency in % from rating plate.
Visible only when P0100 = 1, (motor power in hp).

P0310 Rated Motor Frequency
Setting range: 12 Hz - 650 Hz
Nominal motor frequency (Hz) from rating plate.

P0311 Rated Motor Speed
Setting range: 0 - 40.000 U/min
Nominal motor speed (rpm) from rating plate.

P0320 Motor magnetizing current
Setting range: 0.0 - 99.0 %
Motor magnetizing current (%) relative to the rated motor current (P0305).

P0335 Motor cooling
0 Self-cooled
1 Force-cooled
2 Self-cooled and internal fan
3 Force-cooled and internal fan

P0500 Technological application
0 Constant torque
1 Pumps and fans

P0640 Motor overload factor
Setting range: 10.0 - 400.0 %
Motor overload current limit [%] relative to P0305 (rated motor current).

P0700 Selection of Command Source
0 Factory Setting
1 BOP-2
2 Terminals (Digital Inputs)

Note
If P0700 = 2 is selected, the function of the digital inputs can be determined via P0701 to P0708. P0701 to P0708 = 99 enables the BICO-parameterization for the digital inputs.

1) Motor-specific parameters – see motor rating plate.
2) The parameters offer more setting options than listed here. See Parameter List for further setting options.
P1000 Selection of Frequency Setpoint
1. Motor potentiometer setpoint
2. Analog setpoint 1
3. Fixed frequency setpoint
4. Analog setpoint 2

Note
For additional settings for setpoint see Parameter List. If P1000 = 1 the selection depends on the settings of P0700 to P0708.

P1080 Min. Motor Frequency
Setting range: 0 - 650 Hz
Sets minimum motor frequency (0 - 650 Hz) at which the motor will run irrespective of the frequency setpoint. The value is valid for both motor directions.

P1082 Max. Motor Frequency
Setting range: 0 - 650 Hz
Sets maximum motor frequency (0 - 650 Hz) at which the motor will run irrespective of the frequency setpoint. The value is valid for both motor directions.

P1120 Ramp-Up Time
Setting range: 0 - 650 s
Time taken for the motor to accelerate from standstill up to maximum motor frequency.

P1121 Ramp-Down Time
Setting range: 0 - 650 s
Time taken for motor to decelerate from maximum motor frequency down to standstill.

P1135 OFF3 ramp-down time
Setting range: 0 - 650 s
Defines the ramp down time from the maximum frequency to standstill for the OFF3 command.

P1300 Control mode
0. V/f with linear charac.
1. V/f with FCC
2. V/f with parabolic charac.
3. V/f with programmable charac.
5. V/f for textile applications
6. V/f with FCC for textile applications
19. V/f control with independent voltage setpoint

Note
For additional settings for setpoint see Parameter List.

2) The parameters offer more setting options than listed here. See Parameter List for further setting options.
Motor data for parameterization

![Motor Rating Plate Example]

Figure 3-8 Typical Motor Rating Plate Example
(The details given on the rating plate are only examples)

NOTICE
- P0308 & P0309 are only visible if P0003 ≥ 2. Only one of the parameters is shown depending on the settings of P0100.
- P0307 indicates kW or HP depending upon the setting of P0100. For detailed information, please see the Parameter List.
- Changing motor parameters is not possible unless P0010=1.
- Ensure that the inverter is configured correctly to the motor.
- Observe the motor's star/delta connection arrangement!

3.2.4 Reset to Factory default

To reset all parameters to the factory default settings; the following parameters should be set as follows (BOP-2 or Communication Option needed):

2. Set P0970=1.

NOTE
The reset process can take up to 3 minutes to complete.
3.3 General operation

For a full description of standard and extended parameters, please refer to the Parameter List.

NOTICE
1. The inverter does not have a main power switch and is live when the mains supply is connected. It waits, with the output disabled, until the RUN button is pressed or for the presence of a digital ON signal at terminal 5 (rotate right).
2. If a BOP-2 is fitted and the output frequency is selected to be displayed (P0005 = 21) the corresponding setpoint is displayed approximately every 1.0 seconds while the inverter is stopped.
3. The inverter is programmed at the factory for standard applications on Siemens four-pole standard motors that have the same power rating as the inverters. When using other motors it is necessary to enter the specifications from the motor’s rating plate. See Figure 3-8 for details on how to read motor data.
4. Changing motor parameters is not possible unless P0010 = 1.
5. Before initing a run, You must set P0010 back to 0.

Basic operation with the BOP-2

Prerequisites
- P0010 = 0 (in order to initiate the run command correctly).
- P0700 = 1 (enables the start/stop button on the BOP-2).
- P1000 = 1 (this enables the motor potentiometer setpoints).

1. Press the green Button to start the motor.
2. Press the Button while the motor is turning. Motor speed increases to 50 Hz.
3. When the inverter reaches 50 Hz, press the Button. Motor speed and display is decreased.
4. Press button to activate manual mode.
5. Press button , to activate automatic mode.
6. The red button stops the motor.

NOTE
Three Command data sets (CDS) are available. The Hand/Auto-Button on the BOP-2 toggles between CDS 1 and CDS 2. If CDS 3 is selected (via P0811), the Hand/Auto-Button on the BOP-2 is inactive. For further details see the Parameter List.
External motor thermal overload protection

When operated below rated speed, the cooling effect of fans fitted to the motor shaft is reduced. Consequentially, most motors require de-rating for continuous operation at low frequencies. To ensure that the motors are protected against overheating under these conditions, a PTC temperature sensor must be fitted to the motor and connected to the inverter control terminals.

![Thermal overload protection diagram]

Figure 3-9 Thermal overload protection

With PTC sensor (P0601 = 1)

If the PTC in the motor is connected to the MICROMASTER 430 control terminals 14 (PTCA) and 15 (PTCB) and the PTC function enabled by setting P0601 = 1, then the MICROMASTER 430 will operate as normal providing the resistance at the terminals remains below approximately 1500 Ω. If this value is exceeded, the inverter indicates a warning A0511 and then a fault F0011. The actual resistance value at which this occurs will not be less than 1000 Ω, and not more than 2000 Ω.

With KTY84 sensor (P0601 = 2)

The KTY84 has to be connected so that the diode is forward biased; that is the anode is connected to terminal 14 (PTCA) and the cathode to terminal 15 (PTCB). If the temperature monitoring function is enabled by setting P0601 = 2, the temperature of the sensor (and therefore the motor windings) is written to parameter r0035. The threshold motor temperature can now be set using parameter P0604 (default setting 130 °C).

Connection failure

If the connection to the PTC or KTY84 sensor becomes open circuit or short circuit, a fault will be indicated, and by default the drive will trip.
4 MICROMASTER 430 functions

This chapter contains:
- a description of the different procedures to control the inverter
- a summary of the control types of the inverter.

4.1 Frequency set point (P1000) ... 63
4.2 Command sources (P0700) ... 63
4.3 OFF and brake function ... 64
4.4 Control modes (P1300) ... 65
4.5 MICROMASTER 430 operating modes .. 66
4.6 Free Function Blocks (P2800 ff) ... 70
4.7 Faults and Alarms ... 70
WARNING

♦ When operating electrical devices, certain parts of these devices are always live.

➢ The following terminals can carry dangerous voltages even if the inverter is inoperative:
 ♦ the power supply L/L1, N/L2, L3 resp. U1/L1, V1/L2, W1/L3
 ♦ the motor terminals U, V, W resp. U2, V2, W2
 ♦ and depending on the frame size the terminals DC+/B+, DC-, B-, DC/R+ resp. DCPS, DCNS, DCPA, DCNA

♦ Emergency Off devices in compliance with EN 60204 IEC 204 (VDE 0113) must remain functional in all operating modes of the control device. Resetting the Emergency Off device must not result in uncontrolled or undefined re-starts.

♦ In those cases, where short circuits in the control device can result in considerable material damage or even serious bodily harm (i.e. potentially dangerous short circuits), external measures or devices must be taken or fitted to ensure that operation is not dangerous even if a short circuit does occur (e.g. independent limit switches, mechanical locks etc.).

♦ MICROMASTER inverters work with high voltages.

♦ Certain parameter settings can cause the inverter to start up again automatically after the supply voltage has failed.

♦ The motor parameters must be configured exactly to ensure perfect motor overload protection.

♦ The device provides an internal motor overload protection system in compliance with UL508C, section 42. See P0610 and P0335, the pre-setting for i^2t is ON. Motor overload protection can also be secured via an external KTY84 or PTC.

♦ This equipment is suitable for use in a circuit capable of delivering not more than 10,000 (Frame Size C) or 42,000 (Frame Sizes D to GX) symmetrical amperes (rms), for a maximum voltage of 460 V when protected by an H, J or K type fuse, a circuit breaker or self-protected combination motor controller (for more details see Appendix F).

♦ This device must not be used as an „Emergency Off device“ (see EN 60204, 9.2.5.4).
4.1 Frequency set point (P1000)

- Pre-setting: terminal 3/4 (AIN+/AIN-, 0…10 V equates to 0…50/60 Hz)
- Additional settings: see P1000

4.2 Command sources (P0700)

ATTENTION
The *ramp-up/ramp-down times* and *ramp smoothing* also have an effect on the motor’s start and stop behaviour. Further details about these functions are to be found in the parameter list for parameters P1120, P1121, P1130 – P1134.

Start motor
- Default: terminal 5 (DIN1, high)
- Additional settings: see P0700 to P0708

Stop motor
- There are a number of possibilities to stop the motor:
 - Default:
 - OFF1: terminal 5 (DIN1, low)
 - OFF2: OFF key on BOP-2, press the OFF key once for 2 seconds or press twice
 - OFF3: not active in factory settings
 - Additional settings: see P0700 to P0708

Reversing the direction of rotation of the motor
This function is inhibited in the factory settings. To release it, you must set P1110 = 0.
- Default: terminal 6 (DIN2, high)
- Additional settings: see P0700 to P0708
4.3 OFF and brake function

4.3.1 OFF1

This command (which is triggered by the cancellation of the ON order) causes the inverter to come to a standstill within the selected ramp-down time.

For parameters to change ramp-down time: see P1121

ATTENTION

- The ON and the subsequent OFF command must come from the same source.
- If the ON / OFF1 command is set for more than one digital input, only the digital input set last will be valid, e.g. DIN3 is active.
- OFF1 can be combined with DC braking or compound braking.

4.3.2 OFF2

This command causes the motor to run down freely to a standstill (impulses deactivated).

ATTENTION

The OFF command can have one or more sources. The default causes the OFF2 command to be set to BOP-2. This source continues to exist even if other sources are defined by one of the parameters P0700 to P0708.

4.3.3 OFF3

The OFF3 command causes the motor to be slowed down quickly. The binary input must be closed to start the motor if the command OFF3 has been set. If OFF3 is closed, the motor can be started and stopped by commands OFF1 or OFF2.

If OFF3 is open, the motor cannot be started.

- ramp-down time: see P1135

ATTENTION:

OFF3 can be combined with DC braking, compound braking or dynamic braking.

4.3.4 DC braking

DC braking is possible together with OFF1 and OFF3. Direct current is input which brakes the motor quickly and holds the shaft until the end of the braking period.

- Activate DC braking: see P0701 to P0708
- Set DC brake period: see P1233
- Set DC braking current: see P1232
- Set DC braking start frequency: see P1234

ATTENTION

If no digital input is set to DC braking, DC braking is active for P1233 ≠ 0 after every OFF1 command with the period set in P1233.
4.3.5 **Compound braking**

Compound braking is possible with OFF1 and OFF3. In the case of compound braking, a DC component is superimposed on the alternating current.

Set braking current: see P1236

4.4 **Control modes (P1300)**

MICROMASTER 430 has a number of different control modes based on U/f-control. The individual modes have been listed below, additional settings are listed in the parameter list and the function plans contained therein.

- **Linear U/f control**
 P1300 = 0
 Can be used for variable and constant torque applications e.g. transport systems and positive displacement pumps.

- **Linear U/f control with flux current control (FCC)**
 P1300 = 1
 This type of control can be used to improve the performance and dynamic behaviour of the motor.

- **Parabolic U/f control**
 P1300 = 2
 This type of control can be used for variable torque loads e.g. fan and pumps.

- **Multiple point U/f control**
 P1300 = 3
 Please refer to the MICROMASTER 430 parameter list for more information on this operating mode.

- **U/f control for textile applications**
 P1300 = 5
 There is no slip compensation gain or resonance dampening. The Imax controller refers to voltage instead of frequency.

- **U/f control with FCC for textile applications**
 P1300 = 6
 A combination of P1300 = 1 and P1300 = 5.

- **U/f control with independent voltage set point**
 P1300 = 19
 Using the P1330, the voltage set point can be given independently from the starting frequency of the ramp function generator (HLG).
4.5 MICROMASTER 430 operating modes

4.5.1 Bypass Mode

Setting up an inverter bypass circuit

Function

Control of two interlocked contactors via relay outputs of MICROMASTER 430. This circuit makes it possible to operate the motor via the inverter or directly via the mains. The inverter is responsible for switching.

Switching is possible by the following means:

- error message from the inverter
- digital input
- inverter frequency

For further settings please refer to parameters list P1260 and following.
4.5.2 Belt Failure Detection

Recognizes mechanical faults in drive section e.g. torn V-belt, pumps which have run dry etc.

A torque band is monitored. This enables underload and overload conditions to be recognized (e.g. ventilator not running correctly).

Comparison between current speed / torque curve with programmed envelope curve. The upper and lower frequency curve can be specified via three supporting points each. In addition a dead time until the function is triggered can be defined. This avoids accidental triggering due to transient events.

For additional settings please refer to parameter list P2181 and following.
4.5.3 Motor Staging

Controlling additional drives via output relay

Function

Enables up to three additional motors to be controlled based on PID control

The entire system is made up of a pump which is controlled by the inverter with up to an additional 3 pumps which can be added to the system via contactors or motor starters. The motor starter is controlled via the output relay in the inverter. Figure 4-3 shows a typical pump system.

This function can also be used accordingly for ventilators and ventilation shafts.

For additional settings please refer to parameter list P2370 and following.
4.5.4 Energy Saving Mode

Energy saving mode to switch off the motor when it is in idle mode

Function

Energy saving mode extends the function of the PID controller. This enables the motor to be operated for a defined period of time with a minimum frequency and to switch it off afterwards. If the re-start frequency is reached, the motor is automatically re-started again. Energy saving mode is independent of the Motor Staging Function. It is possible to combine Motor Staging and Energy Saving Mode. For additional settings please refer to the parameter list P2390 and following.
4.6 Free Function Blocks (P2800 ff)

Using free function blocks, internal signals (Digital inputs, set points, actual values, ...) can be interlinked, to enable application specific control.

4.7 Faults and Alarms

SDP

With the SDP Faults and Alarms conditions are displayed via the two LEDs on the SDP. For further information see Section 6.1 on page 76.

The operation status of the inverter is indicated by the two LEDs as follows:
- Green and yellow = Ready to run
- Green only = Inverter running

BOP-2

If a BOP-2 has been fitted to the inverter, details of any fault condition will be displayed by the operator panel. For detailed information of fault conditions and alarms, See Section 6 parameter list.
5 System parameters

This Chapter contains:

- An overview of the parameter structure of the MICROMASTER 430
- A parameter list in short form

5.1 Introduction to MICROMASTER system parameters ... 72
5.2 Parameter overview .. 73
5.1 Introduction to MICROMASTER system parameters

The parameters can only be changed by using the BOP-2 or the Serial Interface.

Parameters can be changed and set using the BOP-2 to adjust the desired properties of the inverter, such as ramp times, minimum and maximum frequencies etc. The parameter numbers selected and the setting of the parameter values are indicated on the optional five-digit LCD display.

- rxxxx indicates a display parameter, Pxxxx a setting parameter.
- P0010 initiates "quick commissioning".
- The inverter will not run unless P0010 is set to 0 after it has been accessed. This function is automatically perform if P3900 > 0.
- P0004 acts as a filter, allowing access to parameters according to their functionality.
- If an attempt is made to change a parameter that cannot be changed in this status, for example, cannot be changed whilst running or can only be changed in quick commissioning, then will be displayed.

- Busy Message
 In some cases - when changing parameter values - the display on the BOP-2 shows for maximum of five seconds. This means the inverter is busy with tasks of higher priority.

ATTENTION
MICROMASTER 430 can only be operated using a BOP-2. If the BOP or AOP is used, the following is displayed .

5.1.1 Access Levels

There are three access levels available to the user; Standard, Extended and Expert. The level of access is set by parameter P0003. For most applications, Standard (P0003 = 1) or Extended parameters (P0003 = 2) are sufficient.

CAUTION
Some of level 4 parameters are for internal system settings only and should not be modified.

Level 4 parameters should only be modified by authorized personnel.

The number of parameters that appear within each functional group depends on the access level set in parameter P0003. For further details regarding parameters, see the Parameter List on the Documentation CD-ROM.
5.2 Parameter overview

P0004 = 0
(no filter function)
allows direct access
to the parameters.
For BOP-2
depending on the
selected access level

P0004 = 2, P0003 = 1
Parameters level 1
concerning the inverter unit

P0004 = 2, P0003 = 2
Parameters level 1 and 2
concerning the inverter unit

P0004 = 2, P0003 = 3
Parameters level 1, 2 and 3
concerning the inverter unit

P0004 = 2, P0003 = 4
Parameters level 1, 2, 3 and 4
concerning the inverter unit

Figure 5-1 Parameter Overview
6 Troubleshooting

This Chapter contains:

- An overview of the operating statuses of the inverter with the SDP
- Notes on troubleshooting with the BOP-2
- A list of the alarms and fault messages

6.1 Troubleshooting with the SDP ... 76
6.2 Troubleshooting with the BOP-2... 77
6.3 Fault messages... 78
6.4 Alarm Messages... 78
WARNING
Repairs on equipment may only be carried out by Siemens Service, by repair centers authorized by Siemens or by qualified personnel who are thoroughly acquainted with all the warnings and operating procedures contained in this manual.
Any defective parts or components must be replaced using parts contained in the relevant spare parts list.
Disconnect the power supply before opening the equipment for access.

6.1 Troubleshooting with the SDP
Table 6-1 explains the meaning of the various states of the LEDs on the SDP.

<table>
<thead>
<tr>
<th>LEDs for indicating the drive state</th>
<th>Table 6-1 Inverter conditions indicated by the LEDs on the SDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Fault inverter temperature</td>
</tr>
<tr>
<td>On</td>
<td>Warning current limit - both LEDs twinkling same time</td>
</tr>
<tr>
<td>approx. 0.3 s, flashing</td>
<td>Other warnings - both LEDs twinkling alternatively</td>
</tr>
<tr>
<td>approx. 1 s, twinkling</td>
<td>Undervoltage trip / undervoltage warning</td>
</tr>
<tr>
<td></td>
<td>Drive is not in ready state</td>
</tr>
<tr>
<td></td>
<td>Fault overcurrent</td>
</tr>
<tr>
<td></td>
<td>Fault overvoltage</td>
</tr>
<tr>
<td></td>
<td>Fault motor overtemperature</td>
</tr>
</tbody>
</table>

Table 6-1 Inverter conditions indicated by the LEDs on the SDP

- Mains not present
- Ready to run
- Inverter fault - other than the ones listed below
- Inverter running
- Fault overcurrent
- Fault overvoltage
- Fault motor overtemperature
6.2 Troubleshooting with the BOP-2

Warnings and faults are displayed on the BOP-2 with Axxx and Fxxx respectively. The individual messages are shown in Section 6.3.

If the motor fails to start when the ON command has been given:

- Check that P0010 = 0.
- Check that a valid ON signal is present.
- Check that P0700 = 2 (for digital input control) or P0700 = 1 (for BOP-2 control).
- Check that the setpoint is present (0 to 10V on Terminal 3) or the setpoint has been entered into the correct parameter, depending upon the setpoint source (P1000). See the Parameter List for further details.

If the motor fails to run after changing the parameters, set P0010 = 30 then P0970 = 1 and press P to reset the inverter to the factory default parameter values.

Now use a switch between terminals 5 and 9 on the control board. The drive should now run to the defined setpoint by analogue input.

NOTICE

Motor data must relate to the inverter data power range and voltage.
6.3 Fault messages

In the event of a failure, the inverter switches off and a fault code appears on the display.

NOTE

To reset the fault code, one of three methods listed below can be used:

1. Cycle the power to the drive.
2. Press the button on the BOP-2.
3. Via Digital Input 3 (default setting)

Fault messages are stored in parameter r0947 under their code number (e.g. F0003 = 3). The associated error value is found in parameter r0949. The value 0 is entered if a fault has no error value. It is furthermore possible to read out the point in time that a fault occurred (r0948) and the number of fault messages (P0952) stored in Parameter r0947.

A detailed description of the fault messages is provided in the parameter list.

6.4 Alarm Messages

Alarm messages are stored in parameter r2110 under their code number (e.g. A0503 = 503) and can be read out from there.

A detailed description of the alarm messages is provided in the parameter list.
7 MICROMASTER 430 specifications

This Chapter contains:

- Table 7.1 contains the general technical specifications for the MICROMASTER 430 inverter
- Table 7-2 contains terminal tightening torques and the required cooling air flow
- Table 7-3 contains current values depending on pulse frequency
- Table 7-4 includes various tables of specific technical data for individual MICROMASTER 430 inverters
Table 7-1 MICROMASTER 430 Performance Ratings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains Operating Voltage & Power Ranges</td>
<td>VT</td>
</tr>
<tr>
<td>Mains Operating Voltage</td>
<td>3 AC 380 to 480 V ± 10 % 7.50 kW – 90.0 kW (10.0 hp – 120 hp)</td>
</tr>
<tr>
<td>Input Frequency</td>
<td>47 to 63 Hz</td>
</tr>
<tr>
<td>Output frequency</td>
<td>0 Hz to 650 Hz</td>
</tr>
<tr>
<td>Power Factor</td>
<td>± 0.7</td>
</tr>
<tr>
<td>Inverter Efficiency</td>
<td>Frame Sizes C to F: 96 % to 97 % Frame Sizes FX and GX: 97 % to 98 %</td>
</tr>
<tr>
<td>Overload Capability for variable torque (VT)</td>
<td>Frame Sizes C to F: 1.1 x Nominal output current (i.e. 110 % overload) for 60 s every 300 s and 1.4 x Nominal output current (i.e 140 % overload) for 3 s every 300 s Frame Sizes FX and GX: 1.1 x Nominal output current (i.e. 110 % overload) for 59 s every 300 s and 1.5 x Nominal output current (i.e 150 % overload) for 1 s every 300s</td>
</tr>
<tr>
<td>Inrush Current</td>
<td>Less than rated input current</td>
</tr>
<tr>
<td>Power-ON-OFF cycle time</td>
<td>Frame Sizes C to E: every 30 s Frame Size F: every 150 s Frame Sizes FX and GX: every 300 s</td>
</tr>
<tr>
<td>Control Method</td>
<td>Linear V/f control, Linear V/f control with FCC, Parabolic V/f control, Multi-point V/f control, V/f control for textile applications, V/f control with FCC for textile applications, V/f control with independent voltage setpoint</td>
</tr>
<tr>
<td>Pulse Frequency</td>
<td>Frame Sizes C to F: 2 kHz to 8 kHz (2 kHz steps) Frame Sizes FX and GX: 2 kHz to 8 kHz (2 kHz steps) (Standard 2 kHz (VT), power reduction see Table 7-3)</td>
</tr>
<tr>
<td>Fixed Frequencies</td>
<td>15, programmable</td>
</tr>
<tr>
<td>Skip Frequencies</td>
<td>4, programmable</td>
</tr>
<tr>
<td>Setpoint Resolution</td>
<td>0.01 Hz Digital, 0.01 Hz Serial, 10 bit Analogue (motor potentiometer 0.1 Hz [0.1% (in PID mode)])</td>
</tr>
<tr>
<td>Digital Inputs</td>
<td>6, programmable (isolated), switchable active high / active low (PNP/NPN)</td>
</tr>
<tr>
<td>Analog Input 1</td>
<td>0 - 10 V, 0 - 20 mA and –10 V to +10 V</td>
</tr>
<tr>
<td>Analog Input 2</td>
<td>0 - 10 V and 0 - 20 mA</td>
</tr>
<tr>
<td>Relay Outputs</td>
<td>3, programmable 30 V DC / 5 A (resistive), 250 V AC 2 A (inductive)</td>
</tr>
<tr>
<td>Analogue Output</td>
<td>2, programmable (0 to 20 mA)</td>
</tr>
<tr>
<td>Serial Interface</td>
<td>RS-485, optional RS-232</td>
</tr>
<tr>
<td>Electromagnetic Compatibility</td>
<td>Frame Sizes C to F: Optional EMC filters to EN 55011 Class A or B, also Internal Class A filters available Frame Sizes FX and GX: With EMI filter (available as an option) the limiting values of the EN 55011, Class A are fulfilled for conducted emission (line commutating choke required)</td>
</tr>
<tr>
<td>Braking</td>
<td>DC braking, Compound braking</td>
</tr>
<tr>
<td>Protection Level</td>
<td>IP20</td>
</tr>
<tr>
<td>Temperature range (VT)</td>
<td>Frame Sizes C to F: -10 °C to +40 °C (14 °F to 104 °F) Frame Sizes FX and GX: 0 °C to +40 °C (32 °F to 104 °F), to 55 °C (131 °F) Power reduction see Figure 2-2</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40 °C to +70 °C (40 °F to 158 °F)</td>
</tr>
</tbody>
</table>
Humidity | < 95 % RH – non-condensing
---|---
Operational Altitudes | Frame Sizes C to F: Up to 1000 m above sea level without derating
| Frame Sizes FX and GX: Up to 2000 m above sea level without derating
Protection Features | Undervoltage, Overvoltage, Overload, Ground Faults, Short circuit, Stall Prevention, Motor Blocking Protection, Motor Overttemperature, Inverter Overttemperature, Parameter Interlock
| Frame Sizes C to F: UL, cUL, CE, C-tick
| Frame Sizes FX and GX: UL (in preparation), cUL (in preparation), CE

Table 7-2 Dimensions, required cooling air flow and tightening torques for power terminals

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>Dimensions</th>
<th>Required cooling air flow</th>
<th>Tightening torques for power terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>B x H x T</td>
<td>mm</td>
<td>185 x 245 x 195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch</td>
<td>7.28 x 9.65 x 7.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>l/s</td>
<td>54.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFM</td>
<td>116.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb-ft</td>
<td>1.7</td>
</tr>
<tr>
<td>D</td>
<td>B x H x T</td>
<td>mm</td>
<td>275 x 520 x 245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch</td>
<td>10.82 x 20.47 x 9.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>l/s</td>
<td>2 x 54.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFM</td>
<td>2 x 116.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>10 (max.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb-ft</td>
<td>7.4 (max.)</td>
</tr>
<tr>
<td>E</td>
<td>B x H x T</td>
<td>mm</td>
<td>275 x 650 x 245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch</td>
<td>10.82 x 25.59 x 9.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFM</td>
<td>2 x 116.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>10 (max.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb-ft</td>
<td>7.4 (max.)</td>
</tr>
<tr>
<td>F</td>
<td>B x H x T</td>
<td>mm</td>
<td>350 x 850 x 320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch</td>
<td>13.78 x 33.46 x 12.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>l/s</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFM</td>
<td>317.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb-ft</td>
<td>36.9</td>
</tr>
<tr>
<td>FX</td>
<td>B x H x T</td>
<td>mm</td>
<td>326 x 1400 x 356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch</td>
<td>12.80 x 55.12 x 12.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>l/s</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFM</td>
<td>478.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb-ft</td>
<td>18.4</td>
</tr>
<tr>
<td>GX</td>
<td>B x H x T</td>
<td>mm</td>
<td>326 x 1533 x 545</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inch</td>
<td>12.80 x 60.35 x 21.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>l/s</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CFM</td>
<td>935</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nm</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb-ft</td>
<td>18.4</td>
</tr>
</tbody>
</table>
Table 7-3 Current reduction depending on pulse frequency

<table>
<thead>
<tr>
<th>Mains voltage</th>
<th>Power [kW]</th>
<th>Output current in A with a switching frequency of;</th>
<th>2 kHz</th>
<th>4 kHz</th>
<th>6 kHz</th>
<th>8 kHz</th>
<th>10 kHz</th>
<th>12 kHz</th>
<th>14 kHz</th>
<th>16 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 AC 400 V</td>
<td>7.5</td>
<td></td>
<td>19.0</td>
<td>19.0</td>
<td>17.1</td>
<td>15.2</td>
<td>13.3</td>
<td>11.4</td>
<td>9.5</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>11.0</td>
<td></td>
<td>26.0</td>
<td>26.0</td>
<td>24.7</td>
<td>23.4</td>
<td>20.8</td>
<td>18.2</td>
<td>15.6</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td></td>
<td>32.0</td>
<td>32.0</td>
<td>28.8</td>
<td>25.6</td>
<td>22.4</td>
<td>19.2</td>
<td>16.0</td>
<td>12.8</td>
</tr>
<tr>
<td></td>
<td>18.5</td>
<td></td>
<td>38.0</td>
<td>38.0</td>
<td>36.1</td>
<td>34.2</td>
<td>30.4</td>
<td>26.6</td>
<td>22.8</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
<td>45.0</td>
<td>45.0</td>
<td>40.5</td>
<td>36.0</td>
<td>31.5</td>
<td>27.0</td>
<td>22.5</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>62.0</td>
<td>62.0</td>
<td>55.8</td>
<td>49.6</td>
<td>43.4</td>
<td>37.2</td>
<td>31.0</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td></td>
<td>75.0</td>
<td>75.0</td>
<td>71.3</td>
<td>67.5</td>
<td>60.0</td>
<td>52.5</td>
<td>45.0</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
<td>90.0</td>
<td>90.0</td>
<td>81.0</td>
<td>72.0</td>
<td>63.0</td>
<td>54.0</td>
<td>45.0</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
<td>110.0</td>
<td>110.0</td>
<td>93.5</td>
<td>77.0</td>
<td>63.3</td>
<td>49.5</td>
<td>41.3</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td>145.0</td>
<td>145.0</td>
<td>123.3</td>
<td>101.5</td>
<td>83.4</td>
<td>65.3</td>
<td>54.4</td>
<td>43.5</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
<td>178.0</td>
<td>178.0</td>
<td>138.0</td>
<td>97.9</td>
<td>84.6</td>
<td>71.2</td>
<td>62.3</td>
<td>53.4</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
<td>205.0</td>
<td>180.4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>132</td>
<td></td>
<td>250.0</td>
<td>220.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td></td>
<td>302.0</td>
<td>265.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
<td>370.0</td>
<td>325.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td></td>
<td>477.0</td>
<td>419.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
In order to have a UL compliant installation fuses from the SITOR range with the appropriate current rating must be used.

Table 7-4 MICROMASTER 430 Specifications

In order to have a UL compliant installation fuses from the SITOR range with the appropriate current rating must be used.

Input voltage range
(with built in Class A Filter)

<table>
<thead>
<tr>
<th>Order No.</th>
<th>6SE6430-</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT Motor Output Rating</td>
<td>2AD27-SCA0</td>
</tr>
<tr>
<td>[kW]</td>
<td>7,5</td>
</tr>
<tr>
<td>[hp]</td>
<td>10,0</td>
</tr>
<tr>
<td>Output Power</td>
<td>[kVA]</td>
</tr>
<tr>
<td>VT Input Current 1</td>
<td>[A]</td>
</tr>
<tr>
<td>VT Output Cur. Max.</td>
<td>[A]</td>
</tr>
<tr>
<td>Recommended Fuse</td>
<td>[A]</td>
</tr>
<tr>
<td>Fuses recommended for UL applications</td>
<td>[A]</td>
</tr>
<tr>
<td>Input Cable Min.</td>
<td>[mm²]</td>
</tr>
<tr>
<td>Input Cable Max.</td>
<td>[mm²]</td>
</tr>
<tr>
<td>Output Cable Min.</td>
<td>[mm²]</td>
</tr>
<tr>
<td>Output Cable Max.</td>
<td>[mm²]</td>
</tr>
<tr>
<td>Frame Size</td>
<td>C</td>
</tr>
<tr>
<td>Weight</td>
<td>[kg]</td>
</tr>
<tr>
<td></td>
<td>[lbs]</td>
</tr>
</tbody>
</table>

2) Secondary conditions:
Input current at the rated operating point - applies for the short-circuit voltage of the line supply V_k = 2% referred to the rated drive converter power and a rated line supply voltage of 400 V without line commutating reactor.

Fuses recommended for UL applications	[A]	100	125	160	200	200
Fuses recommended for UL applications	[NE]	1021-0	1022-0	1224-0	1225-0	1227-0
Input Cable Min.	[mm²]	25,0	25,0	35,0	70,0	70,0
Input Cable Max.	[mm²]	35,0	35,0	150,0	300,0	300,0
Output Cable Min.	[mm²]	25,0	25,0	50,0	70,0	95,0
Output Cable Max.	[mm²]	35,0	35,0	150,0	150,0	150,0
Frame Size	E	F				
Weight	[kg]	22,0	22,0	75,0	75,0	75,0
	[lbs]	48,0	48,0	165,0	165,0	165,0

* UL listed fuses such as Class NON from Bussmann are required for use in America.
MICROMASTER 430 specifications

Input voltage range (Unfiltered)

<table>
<thead>
<tr>
<th>Order No.</th>
<th>6SE6430-</th>
<th>2UD27-5CA0</th>
<th>2UD31-1CA0</th>
<th>2UD31-5CA0</th>
<th>2UD31-8DA0</th>
<th>2UD32-2DA0</th>
<th>2UD33-0DA0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT Motor Output Rating</td>
<td>[kW]</td>
<td>7.5</td>
<td>11.0</td>
<td>15.0</td>
<td>18.5</td>
<td>22.0</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>[hp]</td>
<td>10.0</td>
<td>15.0</td>
<td>20.0</td>
<td>25.0</td>
<td>30.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Output Power</td>
<td>[kVA]</td>
<td>10.1</td>
<td>14.0</td>
<td>19.8</td>
<td>24.4</td>
<td>29.0</td>
<td>34.3</td>
</tr>
<tr>
<td>VT Input Current 1)</td>
<td>[A]</td>
<td>17.3</td>
<td>23.1</td>
<td>33.8</td>
<td>37.0</td>
<td>43.0</td>
<td>59.0</td>
</tr>
<tr>
<td>VT Output Cur. Max.</td>
<td>[A]</td>
<td>19.0</td>
<td>26.0</td>
<td>32.0</td>
<td>38.0</td>
<td>45.0</td>
<td>62.0</td>
</tr>
<tr>
<td>Recommended Fuse</td>
<td>[A]</td>
<td>20</td>
<td>32</td>
<td>35</td>
<td>50</td>
<td>63</td>
<td>80</td>
</tr>
<tr>
<td>Fuses recommended for UL applications</td>
<td>[A]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>1617-0</td>
<td>1818-0</td>
<td>1620-0</td>
</tr>
<tr>
<td>Input Cable Min.</td>
<td>[mm²]</td>
<td>2.5</td>
<td>4.0</td>
<td>6.0</td>
<td>10.0</td>
<td>10.0</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Input Cable Max.</td>
<td>[mm²]</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>35.0</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Output Cable Min.</td>
<td>[mm²]</td>
<td>2.5</td>
<td>4.0</td>
<td>6.0</td>
<td>10.0</td>
<td>10.0</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Output Cable Max.</td>
<td>[mm²]</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>35.0</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Frame Size</td>
<td></td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>[kg]</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>16.0</td>
<td>16.0</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>[lbs]</td>
<td>12.1</td>
<td>12.1</td>
<td>12.1</td>
<td>35.0</td>
<td>35.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Other specifications

- **Order No.**

VT Motor Output Rating

- [kW]: 7.5, 11.0, 15.0, 18.5, 22.0, 30.0, 40.0
- [hp]: 10.0, 15.0, 20.0, 25.0, 30.0, 40.0

Output Power

- [kVA]: 10.1, 14.0, 19.8, 24.4, 29.0, 34.3

VT Input Current 1)

- [A]: 17.3, 23.1, 33.8, 37.0, 43.0, 59.0

VT Output Current Max.

- [A]: 19.0, 26.0, 32.0, 38.0, 45.0, 62.0

Recommended Fuse

- [A]: 20, 32, 35, 50, 63, 80

Fuses recommended for UL applications

- [A]: * * * 1617-0 1818-0 1620-0

Input Cable Min.

- [mm²]: 2.5, 4.0, 6.0, 10.0, 10.0, 16.0
- [AWG]: 14, 12, 10, 8, 8, 6

Input Cable Max.

- [mm²]: 10.0, 10.0, 10.0, 35.0, 35.0, 35.0
- [AWG]: 8, 8, 8, 2, 2, 2

Output Cable Min.

- [mm²]: 10.0, 10.0, 10.0, 35.0, 35.0, 35.0
- [AWG]: 8, 8, 8, 2, 2, 2

Output Cable Max.

- [mm²]: 10.0, 10.0, 10.0, 35.0, 35.0, 35.0
- [AWG]: 8, 8, 8, 2, 2, 2

Frame Size

- C | D

Weight

- [kg]: 5.5, 5.5, 5.5, 16.0, 16.0, 16.0
- [lbs]: 12.1, 12.1, 12.1, 35.0, 35.0, 35.0

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply \(V_s = 2 \% \) referred to the rated drive converter power and a rated line supply voltage of 400 V without line commutating reactor.

* UL listed fuses such as Class NON from Bussmann are required for use in America.
Input voltage range
3 AC 380 V … 480 V, ± 10 %

(Unfiltered)

<table>
<thead>
<tr>
<th>Order No.</th>
<th>6SE6430-4005</th>
<th>2UD41-1FA0</th>
<th>2UD41-3FA0</th>
<th>2UD41-6GA0</th>
<th>2UD42-0GA0</th>
<th>2UD42-5GA0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT Motor Output Rating</td>
<td>[kW]</td>
<td>110</td>
<td>132</td>
<td>160</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>[hp]</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>333</td>
</tr>
<tr>
<td>Output Power</td>
<td>[kVA]</td>
<td>145.4</td>
<td>180</td>
<td>214.8</td>
<td>263.2</td>
<td>339.4</td>
</tr>
<tr>
<td>VT Input Current 1)</td>
<td>[A]</td>
<td>200</td>
<td>245</td>
<td>297</td>
<td>354</td>
<td>442</td>
</tr>
<tr>
<td>Recommended Fuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[mm²]</td>
<td>3 x 12</td>
<td>3 x 15</td>
<td>4 x 10</td>
<td>4 x 15</td>
<td>5 x 10</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>1 x 4/0 or 2 x 2</td>
<td>1 x 6/0 or 2 x 2</td>
<td>1 x 8/0 or 2 x 2</td>
<td>1 x 10/0 or 2 x 2</td>
<td>1 x 12/0 or 2 x 2</td>
</tr>
<tr>
<td>Input Cable Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[mm²]</td>
<td>1 x 95 or 2 x 35</td>
<td>1 x 150 or 2 x 50</td>
<td>1 x 185 or 2 x 70</td>
<td>1 x 240 or 2 x 70</td>
<td>2 x 95</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>1 x 4/0 or 2 x 2</td>
<td>1 x 6/0 or 2 x 2</td>
<td>1 x 8/0 or 2 x 2</td>
<td>1 x 10/0 or 2 x 2</td>
<td>2 x 4/0</td>
</tr>
<tr>
<td>Input Cable Max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[mm²]</td>
<td>1 x 185 or 2 x 120</td>
<td>1 x 185 or 2 x 120</td>
<td>2 x 240</td>
<td>2 x 240</td>
<td>2 x 240</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>1 x 4/0 or 2 x 2</td>
<td>1 x 6/0 or 2 x 2</td>
<td>2 x 400</td>
<td>2 x 400</td>
<td>2 x 400</td>
</tr>
<tr>
<td>Output Cable Min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[mm²]</td>
<td>1 x 95 or 2 x 35</td>
<td>1 x 150 or 2 x 50</td>
<td>1 x 185 or 2 x 70</td>
<td>1 x 240 or 2 x 70</td>
<td>2 x 95</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>1 x 4/0 or 2 x 2</td>
<td>1 x 6/0 or 2 x 2</td>
<td>2 x 400</td>
<td>2 x 400</td>
<td>2 x 400</td>
</tr>
<tr>
<td>Output Cable Max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[mm²]</td>
<td>1 x 185 or 2 x 120</td>
<td>1 x 185 or 2 x 120</td>
<td>2 x 240</td>
<td>2 x 240</td>
<td>2 x 240</td>
</tr>
<tr>
<td></td>
<td>[AWG]</td>
<td>1 x 4/0 or 2 x 2</td>
<td>1 x 6/0 or 2 x 2</td>
<td>2 x 400</td>
<td>2 x 400</td>
<td>2 x 400</td>
</tr>
<tr>
<td>Pipe cable shoe to DIN 46235</td>
<td>[mm]</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Frame Size</td>
<td>FX</td>
<td>GX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>[kg]</td>
<td>110</td>
<td>116</td>
<td>170</td>
<td>174</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>[lbs]</td>
<td>242</td>
<td>256</td>
<td>375</td>
<td>384</td>
<td>388</td>
</tr>
</tbody>
</table>

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply \(V_k \geq 2.33 \% \) referred to the rated drive converter power and a rated line supply voltage of 400 V.
8 Options

An overview of the options available for the MICROMASTER 430 is given in this section. For further information about options, please refer to the catalog or the documentation CD.

8.1 Device-independent options
- Basic Operator Panel 2 (BOP-2)
- PROFIBUS module
- PC to inverter connection kit
- BOP/AOP door mounting kit for single inverter control
- “DriveMonitor” and "Starter" commissioning tool

8.2 Device-dependent options

Frame Sizes C to F
- Gland plate (Frame size C)
- EMC filter, Class A
- EMC filter, Class B (Frame size C)
- Line commutating choke
- Output choke
- LC Filter

CAUTION
If using output chokes or LC filters operation is only permissible with a pulse frequency of 4 kHz. Make shure that the automatic pulse frequency reductions are disabled.

Coercing required parameter adjusting: P1800 = 4 kHz , P0290 = 0 or 1.

Frame Sizes FX and GX
- Line commutating choke
- EMC filter, Class A (power commutating choke required)
- LC Filter

CAUTION
If using output chokes or LC filters operation is only permissible with a pulse frequency of 4 kHz. Make shure that the automatic pulse frequency reductions are disabled.

Coercing required parameter adjusting: P1800 = 4 kHz , P0290 = 0 or 1.
9 Electro-magnetic compatibility (EMC)

This Chapter contains:
EMC information.

9.1 Electro-magnetic compatibility ... 90
9.1 Electro-magnetic compatibility

(EMC) All manufacturers / assemblers of electrical apparatus which “performs a complete intrinsic function and is placed on the market as a single unit intended for the end user” must comply with the EMC directive 89/336/EEC.

There are three routes for the manufacturer/assembler to demonstrate compliance:

9.1.1 Self-certification

This is a manufacturer’s declaration that the European standards applicable to the electrical environment for which the apparatus is intended have been met. Only standards that have been officially published in the Official Journal of the European Community can be cited in the manufacturer’s declaration.

9.1.2 Technical construction file

A technical construction file can be prepared for the apparatus describing its EMC characteristics. This file must be approved by a ‘Competent Body’ appointed by the appropriate European government organization. This approach allows the use of standards that are still in preparation.

9.1.3 EC type examination certificate

This approach is only applicable to radio communication transmitting apparatus. All MICROMASTER 430 units are certified for compliance with the EMC directive, when installed in accordance with the recommendations in Section 2.

9.1.4 EMC Directive Compliance with Imminent Harmonics Regulations

Since 1st January 2001 all electrical apparatus covered by the EMC Directive will have to comply with EN 61000-3-2 "Limits for harmonic current emissions (equipment input ≤ 16 A per phase)".

All Siemens variable speed drives of the MICROMASTER, MIDIMASTER, MICROMASTER Eco and COMBIMASTER ranges, which are classified as "Professional Equipment" within the terms of the standard, fulfill the requirements of the standard.

The allowed harmonic currents for "professional equipment" with an input power > 1 kW are not yet defined. Therefore, any electrical apparatus containing the above drives which has an input power > 1 kW will not require connection approval.
9.1.5 Classification of EMC performance

Three General classes of EMC performance are available as detailed below:

Class 1: General Industrial

Compliance with European Standard EN 61800-3 (EMC Product Standard for Power Drive Systems) for use in **Second Environment (Industrial)**.

Table 9-1 General Industrial

<table>
<thead>
<tr>
<th>EMC Phenomenon</th>
<th>Standard</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions:</td>
<td>Radiated Emissions</td>
<td>EN 55011</td>
</tr>
<tr>
<td></td>
<td>Leitungsgebundene</td>
<td>EN 61800-3</td>
</tr>
<tr>
<td></td>
<td>Emissionen</td>
<td>Limits complying with EN 55011, Class A, Group 2</td>
</tr>
<tr>
<td>Immunity:</td>
<td>Electrostatic Discharge</td>
<td>EN 61000-4-2</td>
</tr>
<tr>
<td></td>
<td>Burst Interference</td>
<td>EN 61000-4-4</td>
</tr>
<tr>
<td></td>
<td>Radio Frequency</td>
<td>EN 61000-4-3</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic Field</td>
<td></td>
</tr>
</tbody>
</table>

Table 9-2 Filtered Industrial

<table>
<thead>
<tr>
<th>EMC Phenomenon</th>
<th>Standard</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions:</td>
<td>Radiated Emissions</td>
<td>EN 55011</td>
</tr>
<tr>
<td></td>
<td>Conducted Emissions</td>
<td>EN 61800-3</td>
</tr>
<tr>
<td></td>
<td>Supply Voltage Distortion</td>
<td>EN 61000-2-4</td>
</tr>
<tr>
<td></td>
<td>Voltage Fluctuations, Dips, Unbalance, Frequency Variations</td>
<td>EN 61000-2-1</td>
</tr>
<tr>
<td></td>
<td>Magnetic Fields</td>
<td>EN 61000-4-8</td>
</tr>
<tr>
<td></td>
<td>Electrostatic Discharge</td>
<td>EN 61000-4-2</td>
</tr>
<tr>
<td></td>
<td>Burst Interference</td>
<td>EN 61000-4-4</td>
</tr>
<tr>
<td></td>
<td>Radio Frequency</td>
<td>EN 61000-4-3</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic Field, amplitude modulated</td>
<td>EN 61000-4-3</td>
</tr>
<tr>
<td></td>
<td>Radio-frequency</td>
<td>EN 61000-4-3</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic Field, pulse modulated</td>
<td></td>
</tr>
</tbody>
</table>

Class 2: Filtered Industrial

This level of performance will allow the manufacturer/assembler to self-certify their apparatus for compliance with the EMC directive for the industrial environment as regards the EMC performance characteristics of the power drive system. Performance limits are as specified in the Generic Industrial Emissions and Immunity standards EN 50081-2 and EN 50082-2.
Only Frame Size C

Class 3: Filtered - for residential, commercial and trade applications

This level of performance will allow the manufacturer / assembler to self-certify compliance of their apparatus with the EMC directive for the residential, commercial and trade applications environment as regards the EMC performance characteristics of the power drive system. Performance limits are as specified in the generic emission and immunity standards EN 61000-6-3 and EN 61000-6-1 in residential.

Table 9-3 Filtered for Residential, Commercial and trade applications

<table>
<thead>
<tr>
<th>EMC Phenomenon</th>
<th>Standard</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiated Emissions*</td>
<td>EN 55011</td>
<td>Limit B</td>
</tr>
<tr>
<td>Conducted Emissions</td>
<td>EN 61800-3</td>
<td>Category C1: Limit complying with EN 55011, Class B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Category C2: Limit complying with EN 55011, Class A</td>
</tr>
<tr>
<td>Immunity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Voltage Distortion</td>
<td>EN 61000-2-4</td>
<td></td>
</tr>
<tr>
<td>Voltage Fluctuations, Dips, Unbalance, Frequency Variations</td>
<td>EN 61000-2-1</td>
<td></td>
</tr>
<tr>
<td>Magnetic Fields</td>
<td>EN 61000-4-8</td>
<td>50 Hz, 30 A/m</td>
</tr>
<tr>
<td>Electrostatic Discharge</td>
<td>EN 61000-4-2</td>
<td>8 kV air discharge</td>
</tr>
<tr>
<td>Burst Interference</td>
<td>EN 61000-4-4</td>
<td>2 kV power cables, 2 kV control</td>
</tr>
<tr>
<td>Radio Frequency Electromagnetic Field, amplitude modulated</td>
<td>EN 61000-4-3</td>
<td>80-1000 MHz, 10 V/m, 80% AM, power and signal lines</td>
</tr>
<tr>
<td>Radio-frequency Electromagnetic Field, pulse modulated</td>
<td>EN 61000-4-3</td>
<td>900 MHz, 10 V/m 50% duty cycle, 200 Hz repetition rate</td>
</tr>
</tbody>
</table>

* These limits are dependent on the inverter being correctly installed inside a metallic switchgear enclosure. The limits will not be met if the inverter is not enclosed.

Notes

- To achieve these performance levels, you must not exceed the default Pulse frequency nor use cables longer than 25 m.
- The MICROMASTER inverters are intended exclusively for professional applications. Therefore, they do not fall within the scope of the harmonics emissions specification EN 61000-3-2.
- Maximum mains supply voltage when filters are fitted is 480 V.
Table 9-4 Compliance Table

Frame Sizes C to F

<table>
<thead>
<tr>
<th>Class 1 – General Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SE6430-2U***-**A0</td>
</tr>
<tr>
<td>Units without filters, all voltages and performances. The product norm EN 61800-3 +A11 for "Variable-speed electrical drives, Part 3: EMC product standard including specific test methods" specifies limits for conducted emissions which cannot be complied with by unfiltered inverters in the second environment. Filtered inverters (as described under Class 2) must be installed for drive systems in C3 installations. The use of unfiltered inverters in industrial environments is allowed only if they are part of a system which is equipped with line filters on the higher-level supply side.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class 2 – Filtered Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SE6430-2A***-**A0</td>
</tr>
<tr>
<td>All units with integral Class A filters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class 3 – Filtered for residential, commerical and trade applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SE6430-2A***-**A0 with 6SE6400-2FS0-**0</td>
</tr>
<tr>
<td>Units with fitted Class A filters and additional external Class B filters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6SE6430-2U***-A0 with EMV-Filter Class B (e.g. Fa. Schaffner) 6SE6430-2A**-**A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfiltered units fitted with external Class B filters</td>
</tr>
<tr>
<td>All units with fitted Class A filters.</td>
</tr>
<tr>
<td>For drive systems in category C2 installations, the following warning notice is necessary: In residential environments, this product may cause radio-frequency disturbances which may necessitate interference suppression measures.</td>
</tr>
</tbody>
</table>

* denotes any value is allowed.

Frame Sizes FX to GX

<table>
<thead>
<tr>
<th>Class 1 – General Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SE6430-2U***-**A0</td>
</tr>
<tr>
<td>Units without filters, all voltages and performances. The product norm EN 61800-3 +A11 for "Variable-speed electrical drives, Part 3: EMC product standard including specific test methods" specifies limits for conducted emissions which cannot be complied with by unfiltered inverters in the second environment. Filtered inverters (as described under Class 2) must be installed for drive systems in C3 installations. The use of unfiltered inverters in industrial environments is allowed only if they are part of a system which is equipped with line filters on the higher-level supply side.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class 2 – Filtered Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SE6430-2U***-**A0 with 6SL3000-0BE-***0</td>
</tr>
<tr>
<td>With external EMI filter (available as an option) the limiting values of the EN 55011, Class A are fulfilled for conducted emission. (line commutating choke required)</td>
</tr>
</tbody>
</table>

* denotes any value is allowed.

Category C3: Drive system (PDS) with rated voltage < 1000 V. For use in second environment.

Category C2: Drive system (PDS) with rated voltage < 1000 V. For use in first environment. Installation and commissioning by EMC expert only.

Category C1: Drive system (PDS) with rated voltage < 1000 V. For use in first environment.
Appendices

A Changing the Operator Panel

1

2

3

4
B Removing Front Covers

B.1 Removing Front Covers Frame Size C
B.2 Removing Front Covers Frame Sizes D and E
B.3 Removing Covers Frame Size F
B.4 Removing Front Covers Frame Sizes FX and GX

1. [Diagram 1]
2. [Diagram 2]
3. [Diagram 3]
4. [Diagram 4]
C Removing the I/O Board

NOTICE
1. Only a small amount of pressure is required to release the I/O Board catch.
2. The I/O Board is removed using the same technique regardless of frame size.
D Removing ‘Y’ Cap

D.1 Removing ‘Y’ Cap Frame Size C
D.2 Removing ‘Y’ Cap Frame Sizes D and E
D.3 Removing ‘Y’ Cap Frame Sizes F

[Diagram showing a control unit with directions on how to remove the Y cap using a Torx driver T30 and M6 screwdriver.]
D.4 Removing ‘Y’ Cap Frame Sizes FX

TORX T20

open link
D.5 Removing ‘Y’ Cap Frame Sizes GX

TORX T20
open link
Applicable Standards

European Low Voltage Directive
The MICROMASTER product range complies with the requirements of the Low Voltage Directive 73/23/EEC as amended by Directive 98/68/EEC. The units are certified for compliance with the following standards:

- EN 61800-5-1 Adjustable speed electrical power drive systems,
 Part 5-1: Safety requirements – Electrical, thermal and energy
- EN 60204-1 Safety of machinery - Electrical equipment of machines

European Machinery Directive
The MICROMASTER inverter series does not fall under the scope of the Machinery Directive. However, the products have been fully evaluated for compliance with the essential Health & Safety requirements of the directive when used in a typical machine application. A Declaration of Incorporation is available on request.

European EMC Directive
When installed according to the recommendations described in this manual, the MICROMASTER fulfils all requirements of the EMC Directive as defined by the EMC Product Standard for Power Drive Systems EN 61800-3.

Underwriters Laboratories
UL and CUL LISTED POWER CONVERSION EQUIPMENT.

ISO 9001
Siemens plc operates a quality management system, which complies with the requirements of ISO 9001.
F Short circuit current rating (SCCR)

Frame Size C
The equipment has a "standard SCCR" value of 10 kA, which complies with the requirements of UL508C.
In addition to the "standard SCCR" a "high SCCR" is available which can be used for industrial control panel installations in line with the National Electrical Code (NEC) article 409 (edition 2005) and Underwriters Laboratories UL508A (effective April 2006).
The uL certification of MICROMASTER 430 allows the drives to adopt a high SCCR equal to the interrupt current rating of the branch-circuit protection (BCP) device protecting the drive.
Hence by selection of the correct uL listed BCP device with appropriate interrupt rating for the application, any high SCCR rating can be achieved for MICROMASTER 430, including SCCR values above 10 kA.
The above statements are valid for the respective maximum voltage of the drive when protected by a UL recognised/listed H, J or K type fuse, a circuit breaker or self-protected combination motor controller.

Frame Sizes D to GX
The equipment has a "standard SCCR" value of 42 kA, which complies with the requirements of UL508C.
A "high SCCR", which can be used for industrial control panel installations in line with the National Electrical Code (NEC) article 409 (edition 2005) and Underwriters Laboratories UL508A (effective April 2006), can be achieved with the use of current limiting fuses or circuit breakers with an appropriate interrupt rating and derived let through current.
For compliance with NEC article 409 and UL508A the calculation, selection and marking of the current limiting device must be carried out by an qualified engineer.
The above statements are valid for the respective maximum voltage of the drive when protected by a UL recognised/listed H, J or K type fuse, a circuit breaker or self-protected combination motor controller.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>AD</td>
<td>Analog digital converter</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog digital converter</td>
</tr>
<tr>
<td>ADR</td>
<td>Address</td>
</tr>
<tr>
<td>AFM</td>
<td>Additional frequency modification</td>
</tr>
<tr>
<td>AIN</td>
<td>Analog input</td>
</tr>
<tr>
<td>AOP</td>
<td>Advanced operator panel</td>
</tr>
<tr>
<td>AOUT</td>
<td>Analog output</td>
</tr>
<tr>
<td>ASP</td>
<td>Analog setpoint</td>
</tr>
<tr>
<td>ASVM</td>
<td>Asymmetric space vector modulation</td>
</tr>
<tr>
<td>BCC</td>
<td>Block check character</td>
</tr>
<tr>
<td>BCD</td>
<td>Binary-coded decimal code</td>
</tr>
<tr>
<td>BI</td>
<td>Binector input</td>
</tr>
<tr>
<td>BICO</td>
<td>Binector / connector</td>
</tr>
<tr>
<td>BO</td>
<td>Binector output</td>
</tr>
<tr>
<td>BOP</td>
<td>Basic operator panel</td>
</tr>
<tr>
<td>C</td>
<td>Commissioning</td>
</tr>
<tr>
<td>CB</td>
<td>Communication board</td>
</tr>
<tr>
<td>CCW</td>
<td>Counter-clockwise</td>
</tr>
<tr>
<td>CDS</td>
<td>Command data set</td>
</tr>
<tr>
<td>CFM</td>
<td>Cubic feet per minute (1 l/s ≅ 2.1 CFM)</td>
</tr>
<tr>
<td>CI</td>
<td>Connector input</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration management</td>
</tr>
<tr>
<td>CMD</td>
<td>Commando</td>
</tr>
<tr>
<td>CMM</td>
<td>Combimaster</td>
</tr>
<tr>
<td>CO</td>
<td>Connector output</td>
</tr>
<tr>
<td>CO/BO</td>
<td>Connector output / Binector output</td>
</tr>
<tr>
<td>COM</td>
<td>Common (terminal that is connected to NO or NC)</td>
</tr>
<tr>
<td>COM-Link</td>
<td>Communication link</td>
</tr>
<tr>
<td>CT</td>
<td>Commissioning, ready to run</td>
</tr>
<tr>
<td>CT</td>
<td>Constant torque</td>
</tr>
<tr>
<td>CUT</td>
<td>Commissioning, run, ready to run</td>
</tr>
<tr>
<td>CW</td>
<td>Clockwise</td>
</tr>
<tr>
<td>DA</td>
<td>Digital analog converter</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital analog converter</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DDS</td>
<td>Drive data set</td>
</tr>
<tr>
<td>DIN</td>
<td>Digital input</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DIP</td>
<td>DIP switch</td>
</tr>
<tr>
<td>DOUT</td>
<td>Digital output</td>
</tr>
<tr>
<td>DS</td>
<td>Drive state</td>
</tr>
<tr>
<td>EEC</td>
<td>European Economic Community</td>
</tr>
<tr>
<td>EEROM</td>
<td>Electrical erasable programmable read-only</td>
</tr>
<tr>
<td>ELCB</td>
<td>Earth leakage circuit breaker</td>
</tr>
<tr>
<td>EMC</td>
<td>Electro-magnetic compatibility</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromotive force</td>
</tr>
<tr>
<td>EMI</td>
<td>Electro-magnetic interference</td>
</tr>
<tr>
<td>FAQ</td>
<td>Frequently asked questions</td>
</tr>
<tr>
<td>FCC</td>
<td>Flux current control</td>
</tr>
<tr>
<td>FCL</td>
<td>Fast current limit</td>
</tr>
<tr>
<td>FF</td>
<td>Fixed frequency</td>
</tr>
<tr>
<td>FFB</td>
<td>Free function block</td>
</tr>
<tr>
<td>FOC</td>
<td>Field orientated control</td>
</tr>
<tr>
<td>FSA</td>
<td>Frame size A</td>
</tr>
<tr>
<td>GSG</td>
<td>Getting started guide</td>
</tr>
<tr>
<td>GUI ID</td>
<td>Global unique identifier</td>
</tr>
<tr>
<td>HIW</td>
<td>Main actual value</td>
</tr>
<tr>
<td>HSW</td>
<td>Main setpoint</td>
</tr>
<tr>
<td>HTL</td>
<td>High-threshold logic</td>
</tr>
<tr>
<td>I/O</td>
<td>Input and output</td>
</tr>
<tr>
<td>IBN</td>
<td>Commissioning</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated gate bipolar transistor</td>
</tr>
<tr>
<td>IND</td>
<td>Sub-index</td>
</tr>
<tr>
<td>JOG</td>
<td>Jog</td>
</tr>
<tr>
<td>KIB</td>
<td>Kinetic buffering</td>
</tr>
<tr>
<td>KTY</td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid crystal display</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>LGE</td>
<td>Length</td>
</tr>
<tr>
<td>MHB</td>
<td>Motor holding brake</td>
</tr>
<tr>
<td>MM4</td>
<td>MICROMASTER 4th. Generation</td>
</tr>
<tr>
<td>MOP</td>
<td>Motor potentiometer</td>
</tr>
<tr>
<td>NC</td>
<td>Normally closed</td>
</tr>
<tr>
<td>NO</td>
<td>Normally open</td>
</tr>
<tr>
<td>NPN</td>
<td></td>
</tr>
<tr>
<td>OPI</td>
<td>Operating instructions</td>
</tr>
<tr>
<td>PDS</td>
<td>Power drive system</td>
</tr>
<tr>
<td>PID</td>
<td>PID controller (proportional, integral, derivative)</td>
</tr>
<tr>
<td>PKE</td>
<td>Parameter ID</td>
</tr>
<tr>
<td>PKW</td>
<td>Parameter ID value</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable logic controller</td>
</tr>
<tr>
<td>PLI</td>
<td>Parameter list</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>PNP</td>
<td>Parameter process data object</td>
</tr>
<tr>
<td>PPO</td>
<td>Parameter process data object</td>
</tr>
<tr>
<td>PTC</td>
<td>Positive temperature coefficient</td>
</tr>
<tr>
<td>PWE</td>
<td>Parameter value</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse-width modulation</td>
</tr>
<tr>
<td>PX</td>
<td>Power extension</td>
</tr>
<tr>
<td>PZD</td>
<td>Process data</td>
</tr>
<tr>
<td>QC</td>
<td>Quick commissioning</td>
</tr>
<tr>
<td>RAM</td>
<td>Random-access memory</td>
</tr>
<tr>
<td>RCCB</td>
<td>Residual current circuit breaker</td>
</tr>
<tr>
<td>RCD</td>
<td>Residual current device</td>
</tr>
<tr>
<td>RFG</td>
<td>Ramp function generator</td>
</tr>
<tr>
<td>RFI</td>
<td>Radio-frequency interference</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SCL</td>
<td>Scaling</td>
</tr>
<tr>
<td>SDP</td>
<td>Status display panel</td>
</tr>
<tr>
<td>SLVC</td>
<td>Sensorless vector control</td>
</tr>
<tr>
<td>STW</td>
<td>Control word</td>
</tr>
<tr>
<td>STX</td>
<td>Start of text</td>
</tr>
<tr>
<td>SVM</td>
<td>Space vector modulation</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-transistor logic</td>
</tr>
<tr>
<td>USS</td>
<td>Universal serial interface</td>
</tr>
<tr>
<td>VC</td>
<td>Vector control</td>
</tr>
<tr>
<td>VT</td>
<td>Variable torque</td>
</tr>
<tr>
<td>ZSW</td>
<td>Status word</td>
</tr>
</tbody>
</table>
Index

A
- Access Levels .. 68
- Adaptation of fan voltage 35
- Altitude ... 20

Ambient operating conditions
- Altitude ... 20
- Atmospheric Pollution 21
- Electromagnetic Radiation 21
- Humidity Range ... 20
- Installation und Kühlung 21
- Shock .. 20
- Vibration ... 20
- Water hazard ... 21

Ambient operating conditions
... 20

Applicable standards
- European EMC Directive 102
- European Low Voltage Directive 102
- European Machinery Directive 102
- ISO 9001 .. 102
- Underwriters Laboratories 102

Atmospheric pollution 21

B

Basic operation
- changing parameters with BOP-2 49
- external motor thermal overload protection 53, 55
- general .. 54
- with BOP-2 .. 54
- with SDP ... 45

Belt Failure Detection 63

BOP-2
- default settings with BOP-2 47
- operation with BOP-2 47

Bypass Mode ... 62

C

Commissioning... 39

Compound braking 60

connection drawing – frame size FX 32

connection drawing – frame size GX 33

Connection Terminals 31

Contact address .. 5

Control modes .. 61

Current reduction depending on pulse frequency 77

D

- DC braking ... 60
- Default settings .. 47
- Dimensions and Torques 26
- Drill pattern for MICROMASTER 440 23

E

Electrical Installation 28

Electro-Magnetic Compatibility
- EC type-examination certificate 86
- general .. 85, 86
- self-certification 86
- technical construction file 86
- Electro-Magnetic Interference 36
- avoiding EMI .. 36
- Electromagnetic radiation 21
- EMC .. 86
- EMC Directive Compliance 86

EMC performance
- filtered for residential, commercial and light industry 89
- filtered industrial class 88
- general industrial class 87
- EMI .. 36
- Energy Saving Mode 65

F

Fan fuses ... 35

Fault messages
- with the BOP-2 fitted 73
- with the SDP fitted 72

Faults and Alarms
- with BOP-2 .. 66
- with SDP ... 66

Features ... 15

flux current control (FCC) 61

Foreword .. 5

Free Function Blocks 66

Frequency set point 58
Index

H
Humidity Range ..20

I
Installation ..17
 after a period of storage17, 19
Installation dimensions for MICROMASTER
 440 Version FX24
Installation of options in the electronic box ...
 ..27
Installation und Kühlung21
Internet Home Address5
Inverter block diagram41

L
Linear U/f control61
Long cables
 operation with29

M
Main characteristics15
Mechanical Installation22
MICROMASTER 430
 general ..14
 main characteristics15
 performance characteristics16
 protection characteristics16
 specifications75
Motor connections30
Motor data ...53
Motor Staging ...64
Multiple point U/f control61

O
Operation
 OFF and brake function59
Operation with
 long cables29
 Residual Current Device29
 ungrounded IT supplies29
Operator panels
 BOP-2 ...47
 changing the operator panel91
 SDP ... 44
Options
 Device-dependent options83
 Device-independent options83
Options for electronic box27
Overview ..13

P
Parabolic U/f control61
Parameter
 Systemparameter67
Parameters
 changing parameters with BOP-249
Performance characteristics16
Performance Ratings76
Power and motor connections30
 single phase34
Protection characteristics16

Q
Qualified personnel6
Quick commissioning50

R
Removing ‘Y’ Cap Frame Sizes C97
Removing ‘Y’ Cap Frame Sizes D and E. 98
Removing ‘Y’ Cap Frame Sizes F99
Removing Covers Frame Size C92
Removing Covers Frame Size F94
Removing Covers Frame Sizes D and E...
 ..93, 95
Removing the I/O Board96
Reset to Factory default53
Residual Current Device
 operation with29

S
Safety instructions7
Screening Methods37
SDP
 Default settings44
 operation with SDP44
Shock ..20
Specifications78

T
Technical Support5
Terminal Torques77
Troubleshooting71

U
Ungrounded (IT) supplies
 operation with29
<table>
<thead>
<tr>
<th>Warnings, cautions & notes</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>commissioning</td>
<td>8</td>
</tr>
<tr>
<td>definitions</td>
<td>6</td>
</tr>
<tr>
<td>dismantling & disposal</td>
<td>9</td>
</tr>
<tr>
<td>general</td>
<td>7</td>
</tr>
<tr>
<td>operation</td>
<td>9</td>
</tr>
<tr>
<td>repair</td>
<td>9</td>
</tr>
<tr>
<td>transport & storage</td>
<td>8</td>
</tr>
<tr>
<td>Water hazard</td>
<td>21</td>
</tr>
<tr>
<td>Wiring Guidelines EMI</td>
<td>37</td>
</tr>
</tbody>
</table>
Suggestions and/or Corrections

<table>
<thead>
<tr>
<th>To:</th>
<th>Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens AG</td>
<td>For Publication/Manual:</td>
</tr>
<tr>
<td>Automation & Drives Group</td>
<td>MICROMASTER 430</td>
</tr>
<tr>
<td>SD SPA PM 4</td>
<td>User Documentation</td>
</tr>
<tr>
<td>P.O. Box 3269</td>
<td></td>
</tr>
<tr>
<td>D-91050 Erlangen</td>
<td></td>
</tr>
<tr>
<td>Federal Republic of Germany</td>
<td></td>
</tr>
<tr>
<td>Email: documentation.sd@siemens.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From</th>
<th>Corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Operating Instructions</td>
</tr>
<tr>
<td></td>
<td>Order Number: 6SE6400-5AE00-0BP0</td>
</tr>
<tr>
<td></td>
<td>Date of Issue: 10/06</td>
</tr>
<tr>
<td>Company/Service Department</td>
<td>Should you come across any printing errors when</td>
</tr>
<tr>
<td>Address:</td>
<td>reading this publication, please notify us on</td>
</tr>
<tr>
<td></td>
<td>this sheet.</td>
</tr>
<tr>
<td></td>
<td>Suggestions for improvement are also welcome.</td>
</tr>
<tr>
<td>Telephone: __________ / __________</td>
<td></td>
</tr>
<tr>
<td>Telefax: _________ / ____________________</td>
<td></td>
</tr>
</tbody>
</table>