SIEMENS

SINAMICS G120

CU230P-2 Control Units

SIEMENS

	Parameters	$\mathbf{2}$
SINAMICS	Function diagrams	$\mathbf{3}$
SINAMICS G120	Faults and alarms	$\mathbf{4}$
CU230P-2 Control Units	Appendix	\mathbf{A}

Fundamental safety instructions	1

ParametersSINAMICS G120
List Manual
Valid for
Control Units Firmware version
CU230P-2_HVAC 4.7
CU230P-2 BT 4.7
CU230P-2_DP 4.7
CU230P-2 PN 4.7
CU230P-2_CAN 4.7Faults and alarms
Index

Legal information

Warning notice system

This Manual contains information which you must observe to ensure your own personal safety as well as to avoid material damage. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to equipment damage have no safety alert symbol. Depending on the hazard level, warnings are indicated in a descending order as follows:

DANGER

indicates that death or serious injury will result if proper precautions are not taken.

WARNING

indicates that death or serious injury could result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one level of danger is simultaneously applicable, the warning notice for the highest level is used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified personnel

The product/system described in this documentation may only be operated by personnel qualified for the specific task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper Use of Siemens Products

Note the following:

WARNING

Siemens products are only permitted to be used for the applications listed in the catalog and in the associated technical documentation. If third-party products and components are used, then they must be recommended or approved by Siemens. These products can only function correctly and safely if they are transported, stored, set up, mounted, installed, commissioned, operated and maintained correctly. The permissible ambient conditions must be adhered to. Notes in the associated documentation must be observed.

Trademarks

All names identified with ${ }^{\circledR}$ are registered trademarks of Siemens AG. Any other names used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of liability

We have checked the contents of this publication for consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. The information given in this document is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent editions.

Table of contents

1 Fundamental safety instructions 7
1.1 General safety instructions 8
1.2 Industrial security 9
2 Parameters 11
2.1 Overview of parameters 12
2.1.1 Explanation of the parameter list 12
2.1.2 Number ranges of parameters 24
2.2 List of parameters 27
2.3 Parameters for data sets 468
2.3.1 Command Data Sets (CDS) 468
2.3.2 Drive data sets (DDS) 469
2.3.3 Motor data sets (MDS) 474
2.3.4 Power unit Data Sets (PDS) 476
2.4 BICO parameters (connectors/binectors). 477
2.4.1 Binector inputs (BI). 477
2.4.2 Connector inputs (CI) 479
2.4.3 Binector outputs (BO) 481
2.4.4 Connector outputs (CO) 482
2.4.5 Connector/binector outputs (CO/BO) 486
2.5 Parameters for write protection and know-how protection 488
2.5.1 Parameters with "WRITE NO LOCK" 488
2.5.2 Parameters with "KHP WRITE NO LOCK" 488
2.5.3 Parameters with "KHP_ACTIVE_READ" 489
2.6 Quick commissioning (p0010 = 1) 490
3 Function diagrams 493
3.1 Table of contents 494
3.2 Explanation of the function diagrams 499
3.3 Input/output terminals 504
3.4 PROFlenergy 516
3.5 PROFIdrive communication (PROFIBUS/PROFINET) 519
3.6 CANopen communication 534
3.7 Communication, fieldbus interface (USS, MODBUS, BACnet) 541
3.8 Internal control/status words 548
3.9 Setpoint channel 566
3.10 Vector control 576
3.11 Technology functions 600
3.12 Free function blocks 608
3.13 Technology controller 629
3.14 Signals and monitoring functions 634
3.15 Diagnostics 644
3.16 Data sets 650
4 Faults and alarms 653
4.1 Overview of faults and alarms 654
4.1.1 General information 654
4.1.2 Explanation of the list of faults and alarms. 658
4.1.3 Number ranges of faults and alarms 664
4.2 List of faults and alarms 666
A Appendix 741
A. 1 ASCII table (characters that can be displayed) 742
A. 2 Motor code list 745
A. 3 List of abbreviations 746
Index 755

Fundamental safety instructions

Content

1.1 General safety instructions 8
1.2 Industrial security 9

1.1 General safety instructions

T WARNING
Risk of death if the safety instructions and remaining risks are not carefully observed
If the safety instructions and residual risks are not observed in the associated hardware
documentation, accidents involving severe injuries or death can occur.
- Observe the safety instructions given in the hardware documentation.
- Consider the residual risks for the risk evaluation.

WARNING

Danger to life or malfunctions of the machine as a result of incorrect or changed parameterization
As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization (parameter assignments) against unauthorized access.
- Respond to possible malfunctions by applying suitable measures (e.g. EMERGENCY-STOP or EMERGENCY-OFF).

1.2 Industrial security

Note

Industrial security

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, solutions, machines, devices, and/or networks. They are important components of a holistic industrial security concept. With this in mind, Siemens' products and solutions undergo continuous development. Siemens recommends strongly that you regularly check for product updates.

To ensure that Siemens products and solutions are operated securely, suitable preventive measures (e.g. cell protection concept) and each component must be integrated into a state-of-the-art holistic industrial security concept. Third-party products that may be in use should also be considered. You will find more information about industrial security at:
http://www.siemens.com/industrialsecurity
To receive information about product updates on a regular basis, register for our product newsletter. You will find more information at:
http://support.automation.siemens.com

WARNING

Danger as a result of unsafe operating states resulting from software manipulation
Software manipulation (e.g. by viruses, Trojan horses, malware, worms) can cause unsafe operating states to develop in your installation which can result in death, severe injuries and/or material damage.

- Keep the software up to date.

Information and newsletters can be found at:
http://support.automation.siemens.com

- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.

For more information, visit:
http://www.siemens.com/industrialsecurity

- Make sure that you include all installed products into the holistic industrial security concept.

1 Fundamental safety instructions
1.2 Industrial security

Parameters

Content

2.1 Overview of parameters 12
2.2 List of parameters 27
2.3 Parameters for data sets 468
2.4 BICO parameters (connectors/binectors) 477
2.5 Parameters for write protection and know-how protection 488
2.6 Quick commissioning (p0010 = 1) 490

2.1 Overview of parameters

2.1.1 Explanation of the parameter list

Basic structure of the parameter descriptions

The data in the following example has been chosen at random. The table below contains all the information that can be included in a parameter description. Some of the information is optional.
The "List of parameters" (Page 27) has the following structure:

Start of example

pxxxx[0...n]	BICO: Full parameter name / abbreviated name			
CU/PM variants	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32	
	Can be changed: $\mathrm{C}(\mathrm{x}), \mathrm{U}, \mathrm{T}$	Scaling: p2002	Dyn. index: CDS, p0170	
	Unit group: 6_2	Unit selection: p0505	Func. diagram: 8070	
	Min	Max	Factory setting	
	0.00 [Nm]	10.00 [Nm]	0.00 [Nm]	
Description:	Text			
Value:	0: Name and meaning of value 0			
	1: Name and meaning of value 1			
	2 : Name and meaning of value 2			
Recommendation: Index:	Text			
	[0] = Name and meaning of index 0 [1] = Name and meaning of index 1 [2] = Name and meaning of index 2 etc.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Name and meaning of bit 0	Yes	no	8060
	01 Name and meaning of bit 1	Yes	no	-
	02 Name and meaning of bit 2 etc.	Yes	no	8052
Dependency:	Text			
	Refer to: pxxxx, rxxxx			
	Refer to: Fxxxxx, Axxxxx			
Danger:	Warning: Caution:	Safety notices	g triangle	
Notice:		Safety notice w	ning triangle	
Note:	Information that might be useful.			

End of example

The individual pieces of information are described in detail below.

pxxxx[0...n] Parameter number

The parameter number is made up of a " p " or " r ", followed by the parameter number and the index or bit field (optional)

Examples of the representation in the parameter list:

- p... Adjustable parameters (read and write parameters)
- r... Display parameters (read only)
- p0918 Adjustable parameter 918
- p2051[0...13] Adjustable parameter 2051, indices 0 to 13
- p1001[0...n] Adjustable parameter 1001, indices 0 to n ($\mathrm{n}=$ configurable)
- r0944 Display parameter 944
- r2129.0... 15 Display parameter 2129 with bit field from bit 0 (smallest bit) to bit 15 (largest bit)

Other examples of the notation in the documentation:

- p1070[1] Adjustable parameter 1070, index 1
- p2098[1]. 3 Adjustable parameter 2098, index 1 bit 3
- p0795.4 Adjustable parameter 795, bit 4

The following applies to adjustable parameters:
The parameter value as delivered is specified under "Factory setting" with the relevant unit in square brackets. The value can be adjusted within the range defined by "Min" and "Max".

The term "linked parameterization" is used in cases where changes to adjustable parameters affect the settings of other parameters.

Linked parameterization can occur, for example, as a result of the following actions and parameters:

- Setting the PROFIBUS telegram (BICO interconnection)
p0922
- Set component lists
p0230, p0300, p0301, p0400
- Automatic calculation and pre-assignment
p0340, p3900
- Restoring the factory settings
p0970
The following applies to display parameters:
The fields "Min", "Max" and "Factory setting" are specified with a dash "-" and the relevant unit in square brackets.

Note

The parameter list can contain parameters that are not visible in the expert lists of the particular commissioning software (e.g. parameters for trace functions).

BICO: Full parameter name / abbreviated name

The following abbreviations can appear in front of the BICO parameter name:

- BI: Binector Input

This parameter is used for selecting the source of a digital signal.

- BO: Binector output

This parameter is available as a digital signal for interconnection with other parameters.

- CI: Connector Input

This parameter is used for selecting the source of an "analog" signal.

- CO: Connector output

This parameter is available as an "analog" signal for interconnection with other parameters.

- CO/BO: Connector/Binector Output

This parameter is available as an "analog" and digital signal for interconnection with other parameters.

Note

A BICO input ($\mathrm{BI} / \mathrm{CI}$) cannot be interconnected with just any BICO output $(\mathrm{BO} / \mathrm{CO}$, signal source).
When interconnecting a BICO input using the commissioning software, only the corresponding possible signal sources are listed.

Function diagrams 1020 ... 1030 explain the symbols for BICO parameters and how to deal with BICO technology.

CU/PM variants

Indicates for which Control Units (CU) and/or Power Modules (PM) the parameter is valid. If no CU or PM is listed, then the parameter is valid for all variants.

The following information relating to "CU" and "PM" can be displayed under the parameter number:

Table 2-1 Information in the "CU/PM variants" field

CU/PM variants	Meaning
	All Control Units have this parameter.
CU230P-2_BT	CU230P-2 (exclusively for Siemens IC BT)
CU230P-2_BT (PM330)	CU230P-2 (exclusively for Siemens IC BT) and PM330
CU230P-2_CAN	CU230P-2 with CAN interface
CU230P-2_CAN (PM330)	CU230P-2 with CAN interface and PM330
CU230P-2_DP	CU230P-2 with PROFIBUS interface
CU230P-2_DP (PM330)	CU230P-2 with PROFIBUS interface and PM330
CU230P-2_HVAC	CU230P-2 with RS485 interface for USS, Modbus and BACnet

Table 2-1 Information in the "CU/PM variants" field, continued

CU/PM variants	Meaning
CU230P-2_HVAC (PM330)	CU230P-2 with RS485 interface and PM330
CU230P-2_PN	CU230P-2 with PROFINET interface
CU230P-2_PN (PM330)	CU230P-2 with PROFINET interface and PM330
PM230	Power Module for pumps and fans (3 AC 400 V)
PM240	Power Module for standard applications with dynamic braking (3 AC 400 V)
PM250	Power Module (3 AC 400 V with energy recovery)
PM260	Power Module (3 AC 690 V with energy recovery)
PM330	Power Module for pumps and fans

Access level

Specifies the minimum access level required to be able to display and change the relevant parameter. The required access level can be set using p0003.

The system uses the following access levels:

- 1: Standard (not adjustable, included in p0003 = 3)
- 2: Extended (not adjustable, included in p0003 = 3)
- 3: Expert
- 4: Service

Parameters with this access level are password protected.

Note

Parameter p0003 is CU-specific (belongs to the Control Unit).
A higher access level will also include the functions of the lower levels.

Calculated

Specifies whether the parameter is influenced by automatic calculations.
p0340 determines which calculations are to be performed:

- $\mathrm{p} 0340=1$ includes the calculations from p0340 $=2,3,4,5$.
- p0340 $=2$ calculates the motor parameters (p0350 ... p0360, p0625).
- $\mathrm{p} 0340=3$ includes the calculations from $\mathrm{p} 0340=4,5$.
- p0340 $=4$ only calculates the controller parameters.
- p0340 = 5 only calculates the controller limits.

Note

For p3900 > 0, p0340 $=1$ is also called automatically.
After $\mathrm{p} 1900=1,2, \mathrm{p} 0340=3$ is also called automatically.
Parameters with a reference to p0340 after "Calculated" depend on the Power Module being used and the motor. In this case, the values at "Factory setting" do not correspond to the actual values because these values are calculated during the commissioning. This also applies to the motor parameters.

Data type

The information on the data type can consist of the following two items (separated by a slash):

- First item

Data type of the parameter.

- Second item (for binector or connector input only)

Data type of the signal source to be interconnected (binector-/connector output).
Parameters can have the following data types:

- Integer8 18 8-bit integer number
- Integer16 116 16-bit integer number
- Integer32 I32 32-bit integer number
- Unsigned8 U8 8 bits without sign
- Unsigned16 U16 16 bits without sign
- Unsigned32 U32 32 bits without sign
- FloatingPoint32 Float 32-bit floating point number

Depending on the data type of the BICO input parameter (signal sink) and BICO output parameter (signal source), the following combinations are possible when creating BICO interconnections:

Table 2-2 Possible combinations of BICO interconnections

	BICO input parameter			
		Cl parameter		BI parameter
BICO output parameter	Unsigned32 I Integer16	Unsigned32 I Integer32	Unsigned 32 I FloatingPoint32	Unsigned32 / Binary
CO: Unsigned8	X	X	-	-
CO: Unsigned16	X	x	-	-
CO: Unsigned32	x	x	-	-
CO: Integer16	X	X	r2050	-
CO: Integer32	X	x	r2060	-
CO: FloatingPoint32	x	x	x	-
BO: Unsigned8	-	-	-	X
BO: Unsigned16	-	-	-	x
BO: Unsigned32	-	-	-	X
BO: Integer16	-	-	-	x
BO: Integer32	-	-	-	x
BO: FloatingPoint32	-	-	-	-
Legend: $\mathrm{x}:$ BICO interconnection permitted $-:$ BICO interconnection not permitted rxxxx: BICO interconnection is only permitted for the specified CO parameters				

Can be changed

The "-" sign indicates that the parameter can be changed in any object state and that the change will be effective immediately.

The information "C(x), T, U" ((x): optional) means that the parameter can be changed only in the specified drive unit state and that the change will not take effect until the unit switches to another state. This can be a single state or multiple states.

The following states are available:

- $C(x)$ commissioning
C: Commissioning

Drive commissioning is in progress (p0010 > 0).
Pulses cannot be enabled.
The parameter can only be changed in the following drive commissioning settings (p0010 > 0):

- C: Can be changed for all settings p0010>0.
- $C(x)$: Can only be changed for the settings $p 0010=x$.

A modified parameter value does not take effect until drive commissioning mode is exited with p0010 $=0$.

- U Operation
U: Run
Pulses are enabled.
- T Ready T: Ready to run
The pulses are not enabled and the status " $\mathrm{C}(\mathrm{x})$ " is not active.

Scaling

Specification of the reference variable with which a signal value is automatically converted for a BICO interconnection.

The following reference variables are available:

- p2000 ... p2006: Reference speed, reference voltage, etc.
- PERCENT: $1.0=100 \%$
- 4000H: 4000 hex = 100 \%

Dyn. index (dynamic index)

For parameters with a dynamic index [0...n], the following information is specified here:

- Data set (if available).
- Parameter for the number of indices ($\mathrm{n}=$ number -1).

The following information can be contained in this field:

- "CDS, p0170" (Command Data Set, CDS count)

Example:
p1070[0] \rightarrow main setpoint [command data set 0]
p1070[1] \rightarrow main setpoint [command data set 1], etc.

- "DDS, p0180" (Drive Data Set, DDS count)
- "MDS, p0130" (Motor Data Set, MDS count)
- "PDS, p0120" (Power unit Data Set, PDS count)

Data sets can only be created and deleted when p0010 $=15$.

Note

Information on the data sets can be taken from the following references:
Operating Instructions SINAMICS G120 Frequency Converter with CU230P-2 HVAC, CU230P-2 DP, CU230P-2 CAN Control Units.

Unit group and unit selection

The standard unit of a parameter is specified in square brackets after the values for "Min", "Max", and "Factory setting".
For parameters where the unit can be switched over, the specifications for "Unit group" and "Unit selection" determine the group to which this parameter belongs and with which parameter the unit can be changed over.

Example:

Unit group: 7_1, unit selection: p0505
The parameter belongs to unit group 7_1 and the unit can be changed over using p0505.
All the potential unit groups and possible unit selections are listed below.
Table 2-3 Unit group (p0100)

Unit group	Unit selection for $\mathrm{p} 0100=$			Reference variable for \%
	0	1	2	
7_4	Nm	lbf ft	Nm	-
14_6	kW	hp	kW	-
25_1	$\mathrm{kg} \mathrm{m}^{2}$	$\mathrm{lb} \mathrm{ft}{ }^{2}$	$\mathrm{kg} \mathrm{m}^{2}$	-
27_1	kg	lb	kg	-
28_1	Nm/A	lbf ft/A	Nm/A	-

Table 2-4 Unit group (p0505)

Unit group	Unit selection for $\mathbf{p 0 5 0 5}=$				Reference variable for \%
	1	2	3	4	
2_1	Hz	\%	Hz	\%	p2000
3_1	1 rpm	\%	1 rpm	\%	p2000
5_1	Vrms	\%	Vrms	\%	p2001
5_2	V	\%	V	\%	p2001
5_3	V	\%	V	\%	p2001
6_2	Arms	\%	Arms	\%	p2002
6×5	A	\%	A	\%	p2002
7_1	Nm	\%	lbf ft	\%	p2003
7_2	Nm	Nm	lbf ft	lbf ft	-
14_5	kW	\%	hp	\%	r2004
14_10	kW	kW	hp	hp	-
21_1	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
21_2	K	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
39_1	$1 / \mathrm{s}^{2}$	\%	$1 / \mathrm{s}^{2}$	\%	p2007

Table 2-5 Unit group (p0595)

Unit group	Unit selection for p0595 =	Reference variable for \%
	Value	Unit

Table 2-6 Unit group (p11026)

Unit group	Unit selection for p11026 =	Reference variable for \%
	Value	
$9 _2$	The values that can be set and the technological units are shown in p11026.	

Table 2-7 Unit group (p11126)

| Unit group | Unit selection for p11126 = | Reference variable for \% |
| :---: | :---: | :---: | :---: |
| | Value | |
| $9 _3$ | The values that can be set and the technological units are shown in p11126. | |

Table 2-8 Unit group (p11226)

Unit group	Unit selection for p11226 $=$	Reference variable for \%
	Value	Unit

Function diagram

The parameter is included in this function diagram. The structure of the parameter function and its relationship with other parameters is shown in the specified function diagram.

Parameter values

Min	Minimum value of the parameter [unit]
Max	Maximum value of the parameter [unit]
Factory setting	Value when delivered [unit]
	In the case of a binector/connector input, the signal source of the default BICO interconnection is specified. A non-indexed connector output is assigned the index [0].
	A different value may be displayed for certain parameters (e.g. p1800) at the initial commissioning stage or when establishing the factory settings. Reason: The setting of these parameters is determined by the operating environment of the Control Unit (e.g. depending on converter type, power unit).

Description

Explanation of the function of a parameter

Values

Lists the possible values of a parameter.

Recommendation

Information about recommended settings.

Index

The name and meaning of each individual index is specified for indexed parameters.

The following applies to the values (Min, Max, Factory setting) for indexed adjustable parameters:

- Min, Max:

The adjustment range and unit apply to all indices.

- Factory setting:

When all indices have the same factory setting, index 0 is specified with the unit to represent all indices.

When the indices have different factory settings, they are all listed individually with the unit.

Bit field

For parameters with bit fields, the following information is provided about each bit:

- Bit number and signal name
- Meaning for signal states 1 and 0
- Function diagram (FP) (optional).

The signal is shown in this function diagram.

Dependency

Conditions that must be fulfilled in conjunction with this parameter. Also includes special effects that can occur between this parameter and others.

Where necessary, "Refer to:" indicates the following information:

- List of other relevant parameters to be considered.
- List of faults and alarms to be considered.

Safety guidelines

Important information that must be observed to avoid the risk of physical injury or material damage.
Information that must be observed to avoid any problems.
Information that the user may find useful.
Danger The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).

Warning The description of this safety notice can be found at the beginning of this
(

Caution

manual, see "Legal information" (Page 4).

The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).
$\begin{array}{ll}\text { Notice } & \text { The description of this safety notice can be found at the beginning of this } \\ & \text { manual, see "Legal information" (Page 4). }\end{array}$ manual, see "Legal information" (Page 4).

Note Information that the user may find useful.

2.1.2 Number ranges of parameters

Note

The following number ranges represent an overview for all the parameters available for the SINAMICS drive family.

The parameters for the product described in this List Manual are described in detail in "List of parameters" (Page 27).

Parameters are grouped into the following number ranges:
Table 2-9 Number ranges for SINAMICS

Range		Description
From	To	
0000	0099	Display and operation
0100	0199	Commissioning
0200	0299	Power section
0300	0399	Motor
0400	0499	Encoder
0500	0599	Technology and units, motor-specific data, probes
0600	0699	Thermal monitoring, maximum current, operating hours, motor data, central probe
0700	0799	Control Unit terminals, measuring sockets
0800	0839	CDS, DDS data sets, motor changeover
0840	0879	Sequence control (e.g. signal source for ON/OFF1)
0880	0899	ESR, parking, control and status words
0900	0999	PROFIBUS/PROFIdrive
1000	1199	Setpoint channel (e.g. ramp-function generator)
1200	1299	Functions (e.g. motor holding brake)
1300	1399	U/f control
1400	1799	Closed-loop control
1800	1899	Gating unit
1900	1999	Power unit and motor identification
2000	2009	Reference values
2010	2099	Communication (fieldbus)
2100	2139	Faults and alarms
2140	2199	Signals and monitoring
2200	2359	Technology controller
2360	2399	Staging, hibernation
2500	2699	Position control (LR) and basic positioning (EPOS)
2700	2719	Reference values, display

Table 2-9 Number ranges for SINAMICS, continued

Range		Description
From	To	
2720	2729	Load gearbox
2800	2819	Logic operations
2900	2930	Fixed values (e. g. percentage, torque)
3000	3099	Motor identification results
3100	3109	Real-time clock (RTC)
3110	3199	Faults and alarms
3200	3299	Signals and monitoring
3400	3659	Infeed closed-loop control
3660	3699	Voltage Sensing Module (VSM), Braking Module internal
3700	3779	Advanced Positioning Control (APC)
3780	3819	Synchronization
3820	3849	Friction characteristic
3850	3899	Functions (e. g. long stator)
3900	3999	Management
4000	4599	Terminal Board, Terminal Module (e. g. TB30, TM31)
4600	4699	Sensor Module
4700	4799	Trace
4800	4849	Function generator
4950	4999	OA application
5000	5169	Spindle diagnostics
5200	5230	Current setpoint filter 5 ... 10 (r0108.21)
5400	5499	System droop control (e. g. shaft generator)
5500	5599	Dynamic grid support (solar)
5600	5614	PROFlenergy
5900	6999	SINAMICS GM/SM/GL/SL
7000	7499	Parallel connection of power units
7500	7599	SINAMICS SM120
7700	7729	External messages
7770	7789	NVRAM, system parameters
7800	7839	EEPROM read/write parameters
7840	8399	Internal system parameters
8400	8449	Real-time clock (RTC)
8500	8599	Data and macro management
8600	8799	CAN bus
8800	8899	Communication Board Ethernet (CBE), PROFIdrive

Table 2-9 Number ranges for SINAMICS, continued

Range		Description
From	To	
8900	8999	Industrial Ethernet, PROFINET, CBE20
9000	9299	topology
9300	9399	Safety Integrated
9400	9499	Parameter consistency and storage
9500	9899	Safety Integrated
9900	9949	topology
9950	9999	Diagnostics, internal
10000	10199	Safety Integrated
11000	11299	Free technology controller 0, 1, 2
20000	20999	Free function blocks (FBLOCKS)
21000	25999	Drive Control Chart (DCC)
50000	53999	SINAMICS DC MASTER (closed-loop DC current control)
61000	61001	PROFINET

2.2 List of parameters

Product: SINAMICS G120, Version: 4702900, Language: eng
Objects: CU230P-2_BT, CU230P-2_CAN, CU230P-2_DP, CU230P-2_HVAC, CU230P-2_PN

r0002	Drive operating display / Drv op_display		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	200	-
Description:	Operating display for the drive.		
Value:	0: Operation - everything enabled		
	10: Operation - set "enable setpoint" = "1" (p1142)		
	12: Operation - RFG frozen, set "RFG start" = "1" (p		
	13: Operation - set "ena	= "1" (p1140)	
	14: Operation - MotID,		
	16: Operation - withdraw	with OFF1 using "OA	
	17: Operation - braking	3 can only be interr	
	18: Operation - brake on	move fault, acknow	
	19: Operation - DC brak	(p1230, p1231)	
	21: Ready for operation	eration enable" = "1"	
	22: Ready for operation	netizing running (p	
	31: Ready for switching	ON/OFF1" = "0/1"	
	35: Switching on inhibite	out first commissio	
	41: Switching on inhibite	N/OFF1" = "0" (p0	
	42: Switching on inhibite	C/OFF2" = "1" (p0	
	43: Switching on inhibite	C/OFF3" = "1" (p0	
	45: Switching on inhibite	ve fault, acknowled	
	46: Switching on inhibite	mm mode (p0010)	
	70: Initialization		
	200: Wait for booting/p		
Dependency: Notice:	Refer to: r0046		
	For several missing enable signals, the corresponding value with the highest number is displayed.		
Note:	OC: Operating condition		
	RFG: Ramp-function generator		
	COMM: Commissioning		
	MotID: Motor data identification		
p0003	Access level / Acc_level		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C, U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	3	4	3
Description:	Sets the access level to read and write parameters.		
Value:	3: Expert 4: Service		
Note:	A higher set access level also includes the lower one.		
	Access level 3 (experts):		
	Expert know-how is required for these parameters (e.g. BICO parameterization).		
	Access level 4 (service):		
	For these parameters, it is necessary that authorized service personnel enter the appropriate password (p3950).		

p0010	Drive commissioning parameter filter / Drv comm. par_filt		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2800, 2818
	Min	Max	Factory setting
	0	49	1
Description:	Sets the parameter filter to commission a drive.		
	Setting this parameter filters out the parameters that can be written into in the various commissioning steps.		
Value:	0: Ready		
	1: Quick commissioning		
	2: Power unit commissioning		
	3: Motor commissioning		
	5: Technological application/units		
	15: Data sets		
	29: Only Siemens int		
	30: Parameter reset		
	39: Only Siemens int		
	49: Only Siemens int		
Dependency:	Refer to: r3996		
Notice:	When the parameter is reset to a value of 0 , short-term communication interruptions may occur.		
Note:	The drive can only be powered up outside the drive commissioning (inverter enable). To realize this, this parameter must be set to 0 .		
	By setting p3900 to a value other than 0 , the quick commissioning is completed, and this parameter is automatically reset to 0 .		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
	Once the Control Unit has been booted up for the first time, the motor parameters suitable for the power unit have been defined, and the control parameters have been calculated accordingly, p0010 is automatically reset to 0 .		
	p0010 $=3$ is used for the subsequent commissioning of additional drive data sets (creating data sets: see p0010 $=$ 15).		
	p0010 $=29,39,49$: Only for internal Siemens use!		
p0014	Buffer memory mode / Buf mem mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	0
Description:	Sets the mode for the buffer memory.		
Value:	0: Save in a non-volatile fashion (RAM) 1: Buffer memory active (non-volatile) 2: Clear buffer memory		
Dependency:	If p $0014=1$, changes in the same parameter, as well as in following parameters will not be copied to the buffer memory:		
	Refer to: p0040, p0340, p0650, p0802, p0803, p0804, p0952, p0969, p0970, p0971, p0972, p1900, p1910, p1960, p2111, p2380, p3900, p3981, p8400, p8401, p8608, p8611		
Notice:	For p0014 = 2, entries in the buffer memory are lost and cannot be retrieved.		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	The parameter is not influenced by setting the factory setting.		
	Rep0014 = 0:		
	Parameter changes are saved in the volatile memory (RAM).		
	Non-volatile storage from RAM to ROM is carried out in the following cases:		
	- p0971 = 1		

Re p0014 = 1:
With this setting, alarm A01066 followed by alarm A01067 can occur if parameters are continually changed via a fieldbus system.
Parameter changes are entered in the volatile memory (RAM) and also in the non-volatile buffer memory.
In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared:

- p0971 = 1
- power down/power up the Control Unit
- change from p0014 = 1 to 0

Re p0014 = 2:
The procedure to clear the entries in the buffer memory is initiated.
p0014 is automatically set to 0 after the entries have been cleared.

p0015	Macro drive unit / Macro drv unit		
CU230P-2_BT	Access level: 1	Calculated: -	Data type: Unsigned32
CU230P-2_CAN	Can be changed: C, C(1)	Scaling: -	Dyn. index: -
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	999999	12
Description:	Runs the corresponding macro files.		
Dependency:	Refer to: p1000, r8570		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when r3996 $=0$.		
	When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	Macros available as standard are described in the technical documentation of the particular product.		
p0015	Macro drive unit / Macro drv unit		
CU230P-2_DP	Access level: 1	Calculated: -	Data type: Unsigned32
CU230P-2_PN	Can be changed: C, C(1)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	999999	7
Description:	Runs the corresponding macro files.		
Dependency:	Refer to: p1000, r8570		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when r3996 $=0$.		
	When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	Macros available as standard are described in the technical documentation of the particular product.		
r0018	Control Unit firmware version / CU FW version		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	-
Description:	Displays the firmware version of the Control Unit.		
Dependency:	Refer to: r0197, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0020	Speed setpoint smoothed / n_set smth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 5020, 6799
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the currently smoothed speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator).		
Dependency:	Refer to: r0060		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity. The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).		

r0021	CO: Actual speed smoothed / n_act smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6799
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the smoothed actual value of the motor speed.		
	For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0021.		
Dependency:	Refer to: r0022, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		
	For U/f control, the mechanical speed calculated from the output frequency and the slip is shown in r0063[2] even if slip compensation is deactivated.		

r0022	Speed actual value rpm smoothed / n_act rpm smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6799
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the smoothed actual value of the motor speed. r0022 is identical to r0021, however, it always has units of rpm and contrary to r0021 cannot be changed over. For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0022.		
Dependency:	Refer to: r0021, r0063		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The speed actual value is available smoothed (r0021, r0022) and unsmoothed (r0063).		
	For U/f control, the mechanical speed calculated from the output frequency and the slip is shown in r0063[2] even if slip compensation is deactivated.		

r0024	Output frequency smoothed / f_outp smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 5300, 5730, 6300, 6799
	Min	Max	Factory setting
	- [Hz]	- [Hz$]$	- [Hz]
Description:	Displays the smoothed converter frequency.		
Dependency:	Refer to: r0066		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity. The output frequency is available smoothed (r0024) and unsmoothed (r0066).		

r0025	CO: Output voltage smoothed $/$ U_outp smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection:	Func. diagram: $5730,6300,6799$
	Min	Max	Factory setting
	$-[V \mathrm{Vrms}]$	$-[\mathrm{Vrms}]$	
Description:	Displays the smoothed output voltage of the power unit.		
Dependency:	Refer to: r0072		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output voltage is available smoothed (roo25) and unsmoothed (r0072).		

r0026	CO: DC link voltage smoothed / Vdc smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6799
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the smoothed actual value of the DC link voltage.		
Dependency:	Refer to: r0070		
Notice:	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM240) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		

r0027	CO: Absolute actual current smoothed / I_act abs val smth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 5730, 6799, 8850, 8950
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed absolute actual current value.		
Dependency:	Refer to: r0068		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		

2.2 List of parameters

Note: | Smoothing time constant $=300 \mathrm{~ms}$ |
| :--- |
| The signal is not suitable as a process quantity and may only be used as a display quantity. |
| The absolute current actual value is available smoothed (r0027) and unsmoothed (r0068). |

r0028	Modulation depth smoothed / Mod_depth smth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: $5730,6799,8950$
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the smoothed actual value of the modulation depth.		
Dependency:	Refer to: r0074		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		

r0029	Current actual value field-generating smoothed $/$ Id_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6799
	Min	Max	Factory setting
	$-[$ Arms $]$	- [Arms $]$	
Description:	Displays the smoothed field-generating actual current.		
Dependency:	Refer to: r0076		
Note:	Smoothing time constant $=300$ ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		

r0030	Current actual value torque-generating smoothed / lq_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6799
	Min	$-[$ Arms $]$	Factory setting
	$-[$ Arms $]$	- [Arms $]$	
Description:	Displays the smoothed torque-generating actual current.		
Dependency:	Refer to: r0078		
Note:	Smoothing time constant $=300$ ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque-generating current actual value is available smoothed (r0030) and unsmoothed (r0078).		

r0031	Actual torque smoothed $/$ M_act smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed:	Scaling: p2003	Dyn. index: -
	Units group: $7 _1$	Unit selection: p0505	Func. diagram: 5730,6799
	Min	$-[\mathrm{Nm}]$	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	
Description:	Displays the smoothed torque actual value.		
Dependency:	Refer to: r0080		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque actual value is available smoothed (r0031) and unsmoothed (r0080).		

r0032	CO: Active power actual value smoothed / P_actv_act smth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dyn. index: -
	Units group: 14_10	Unit selection: p0505	Func. diagram: 5730, 6799, 8750, 8850, 8950
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the smoothed actual value of the active power.		
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	Power delivered at the motor shaft.		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		
r0034	CO: Motor utilization thermal / Mot_util therm		
PM230	Access level: 2	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: -	Scaling: PERCENT	Dyn. index: -
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 8017
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the motor utilization from motor temperature model 1 (I2t).		
Dependency:	The thermal motor utilization is only determined for permanent-magnet synchronous motors when the motor temperature model 1 (I2t) is activated.		
	For motor temperature model $1(12 \mathrm{t})(\mathrm{p} 0612.0=1)$, the following applies:		
	- r0034 = (motor model temperature - 40 K) / (p0605-40 K) * 100%		
	Refer to: p0611, p0612, p0615		
Notice:	After the drive is switched on, the system starts to determine the motor temperature with an assumed model value. This means that the value for the motor utilization is only valid after a stabilization time.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	For r0034 $=-200.0 \%$, the following applies:		
	The value is invalid (e.g. the motor temperature model is not activated or has been incorrectly parameterized).		
r0035	CO: Motor temperature / Mot temp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: -
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8016, 8017
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Display and connector output for the actual temperature in the motor.		
Note:	For r0035 not equal to $-200.0^{\circ} \mathrm{C}$, the following applies:		
	- this temperature display is valid.		
	- a KTY sensor is connected.		
	- for induction motors, the thermal motor model is activated (p0601 = 0).		
	For r0035 equal to $-200.0^{\circ} \mathrm{C}$, the following applies:		
	- this temperature display is not valid (temperature sensor error).		
	- A PTC sensor or bimetallic NC contact is connected. - for synchronous motors, the thermal motor model is activated (p0601 $=0$).		

2.2 List of parameters

r0036	CO: Power unit overload I2t / PU overload I2t		
	Calculated: -		
	Can be changed: -	Scaling: PERCENT	Data type: FloatingPoint32
	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	$-[\%]$	Factory setting

r0037[0...19]	CO: Power unit temperatures / PU temperatures		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: -	Scaling: p2006	Dyn. index: -
PM250, PM260	Units group: 21_1	Unit selection: p0505	Func. diagram: 8014
	Min	Max	Factory setting
	$-\left[\left[^{\circ} \mathrm{C}\right]\right.$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Display and connector output for the temperature in the power unit.
Index: [0] = Inverter maximum value
[1] = Depletion layer maximum value
[2] = Rectifier maximum value
[3] = Air intake
[4] = Interior of power unit
[5] = Inverter 1
[6] = Inverter 2
[7...10] = Reserved
[11] = Rectifier 1
[12] = Reserved
[13] = Depletion layer 1
[14] = Depletion layer 2
[15] = Depletion layer 3
[16] $=$ Depletion layer 4
[17] = Depletion layer 5
[18] = Depletion layer 6
[19] = Reserved
Notice: Only for internal Siemens troubleshooting.

Note: \quad The value of -200 indicates that there is no measuring signal.
r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]).
r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).
r0037[2]: Maximum value of the rectifier temperatures (r0037[11...12]).
The maximum value is the temperature of the hottest inverter, depletion layer, or rectifier.
r0037[2, 3, 6, 11, 14...18] is only relevant for chassis power units.
In the case of a fault, the particular shutdown threshold depends on the power unit, and cannot be read out.

r0037[0...19]	CO: Power unit temperatures / PU temperatures		
PM330	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: -
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8014
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$

Description: Display and connector output for the temperature in the power unit.
Index:
[0] Inverter maximum value
[1] = Depletion layer maximum value

2.2 List of parameters

p0040	Reset energy consumption display / Energy usage reset		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	1	Factory setting
	0	0	
Description:	Setting to reset the display in r0039 and ro041.		
	Procedure:		
	Set p0040 $=0$--> 1		
Dependency:	The displays are reset and the parameter is automatically set to zero.		
	Refer to: ro039		

r0041	Energy consumption saved / Energy cons saved		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	$-[\mathrm{kWh}]$	Factory setting
	$-[\mathrm{kWh}]$	$-[\mathrm{kWh}]$	
Description:	Displays the saved energy referred to 100 operating hours.		
Dependency:	Refer to: p0040		
Note:	This display is used for a fluid-flow machine.		
	The flow characteristic is entered into p3320 \ldots p3329.		
	For an operating time of below 100 hours, the display is interpolated up to 100 hours.		

p0045	Display values smoothing time constant / Disp_val T_smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6714,8012
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	4.00 [ms]	
Description:	Sets the smoothing time constant for the following display values:		
	r0063[1], r0068[1], ro080[1], r0082[1].		

r0046.0... 31

CO/BO: Missing enable sig / Missing enable sig		
Access level: 1	Calculated: -	Data type: Unsigned32
Can be changed: -	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: 2634
Min	Max	Factory setting
-	-	-

Description: Display and BICO output for missing enable signals that are preventing the closed-loop drive control from being commissioned.

Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	OFF1 enable missing	Yes	No	7954
01	OFF2 enable missing	Yes	No	-
02	OFF3 enable missing	Yes	No	-
03	Operation enable missing	Yes	No	-
04	DC braking enable missing	Yes	No	-
10	Ramp-function generator enable missing	Yes	No	-
11	Ramp-function generator start missing	Yes	No	-
12	Setpoint enable missing	Yes	No	-
16	OFF1 enable internal missing	Yes	No	-
17	OFF2 enable internal missing	Yes	No	-
18	OFF3 enable internal missing	Yes	No	-
19	Pulse enable internal missing	Yes	No	-

	20	DC braking internal enable missing	Yes	No	-
	21	Power unit enable missing	Yes	No	-
	25	Function bypass active	Yes	No	-
	26	Drive inactive or not operational	Yes	No	-
	27	De-magnetizing not completed	Yes	No	-
	30	Speed controller inhibited	Yes	No	-
	31	Jog setpoint active	Yes	No	-
Dependency:	Refer to: r0002				
Note:	The value r0046 $=0$ indicates that all enable signals for this drive are present.				
	Bit $00=1$ (enable signal missing), if:				
	- the signal source in p0840 is a 0 signal.				
	- there is a "switching on inhibited".				
	Bit $01=1$ (enable signal missing), if:				
	- the signal source in p0844 or p0845 is a 0 signal.				
	Bit $02=1$ (enable signal missing), if:				
	- the signal source in p0848 or p0849 is a 0 signal.				
	Bit $03=1$ (enable signal missing), if:				
	- the signal source in p0852 is a 0 signal.				
	Bit $04=1$ (DC brake active) when:				
	- the signal source in p1230 has a 1 signal				
	Bit $10=1$ (enable signal missing), if:				
	- the signal source in p 1140 is a 0 signal.				
	Bit $11=1$ (enable signal missing) if the speed setpoint is frozen, because:				
	- the signal source in p 1141 is a 0 signal.				
	- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p1055) and bit 1 (p1056) have a 1 signal.				
	Bit $12=1$ (enable signal missing), if:				
	- the signal source in p 1142 is a 0 signal.				
	Bit $16=1$ (enable signal missing), if:				
	- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the "switching on inhibited" withdrawn with OFF1 $=0$.				
	Bit $17=1$ (enable signal missing), if:				
	- commissioning mode is selected (p0010 > 0).				
	- there is an OFF2 fault response.				
	- the drive is not operational.				
	Bit $18=1$ (enable signal missing), if:				
	- OFF3 has still not been completed or an OFF3 fault response is present.				
	Bit $19=1$ (internal pulse enable missing), if:				
	- sequence control does not have a finished message.				
	Bit $20=1$ (internal DC brake active), if:				
	- the drive is not in the state "Operation" or in "OFF1/OFF3".				
	- the internal pulse enable is missing (r0046.19 = 0).				
	Bit $21=1$ (enable signal missing), if:				
	- the power unit does not issue an enable signal (e.g. because DC link voltage is too low).				
	- The hibernation mode is active.				
	Bit $25=1$ (function bypass active) if:				
	- the bypass function is active.				
	Bit $26=1$ (enable signal missing), if:				
	- the drive is not operational.				
	Bit $27=1$ (enable signal missing), if:				
	- de-magnetization not completed.Bit $30=1$ (speed controller inhibited), if one of the following reasons is present:				
	- the pole position identification is active.				
	- motor data identification is active (only certain steps).				
	Bit $31=1$ (enable signal missing), if:				
		speed setpoint from jog 1 or 2 is ente			

2.2 List of parameters

Motor data identification and speed controller optimization / MotID and n_opt
r0047

Access level: 1	Calculated: -	Data type: Integer16
Can be changed: -	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0	300	-

Description: Displays the actual status for the motor data identification (stationary measurement) and the speed controller optimization (rotating measurement).
Value:
0: No measurement
115: Measurement q leakage inductance (part 2)
120: Speed controller optimization (vibration test)
140: Calculate speed controller setting
150: Measurement moment of inertia
170: Measurement magnetizing current and saturation characteristic
195: Measurement q leakage inductance (part 1)
200: Rotating measurement selected
220: identification leakage inductance
230: Identification rotor time constant
240: Identification stator inductance
250: Identification stator inductance LQLD
270: Identification stator resistance
290: Identification valve lockout time
295: Calibration output voltage measurement
300: Stationary measurement selected

r0050.0...1	CO/BO: Command Data Set CDS effective / CDS effective		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	-	-	
Description:	Displays the effective Command Data Set (CDS).		

Bit field:		Signal name	1 signal	0 signal	FP
	00	CDS eff bit 0	ON	OFF	-
	01	CDS eff bit 1	ON	OFF	-
Dependency:	Refer to: p0810, p0811, r0836				
Note:	The Command Data Set selected using a binector input (e.g. p0810) is displayed using r0836.				
r0051.0..1	CO/BO: Drive Data Set DDS effective / DDS effective				
	Access level: 2		Calculated: -	Data type: Unsigned8	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 8565	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the effective Drive Data Set (DDS).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DDS eff bit 0	ON	OFF	-
		DDS eff bit 1	ON	OFF	-
Dependency:	Refer to: p0820, p0821, r0837				
Note:	When selecting the motor data identification routine and the rotating measurement, the drive data set changeover is				
r0052.0... 15	CO/BO: Status word $1 /$ ZSW 1				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-		-	-	
Description:	Display and connector output for status word 1.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Rdy for switch on	Yes	No	-
		Ready	Yes	No	-
	02	Operation enabled	Yes	No	-
	03	Fault present	Yes	No	-
	04	Coast down active (OFF2)	No	Yes	-
	05	Quick Stop active (OFF3)	No	Yes	-
	06	Switching on inhibited active	Yes	No	-
	07	Alarm present	Yes	No	-
	08	Deviation setpoint/actual speed	No	Yes	-
	09	Control request	Yes	No	-
	10	Maximum speed reached	Yes	No	-
	11	I, M, P limit reached	No	Yes	-
	13	Alarm motor overtemperature	No	Yes	-
	14	Motor rotates forwards	Yes	No	-
	15	Alarm drive converter overload	No	Yes	-
Notice:	p2080 is used to define the signal sources of the PROFIdrive status word interconnection.				
Note:	Re bit 03:				
	This signal is inverted if it is interconnected to a digital output.				
	Re r0052:				
	The status bits have the following sources:				
	Bit 00: r0899 Bit 0				
	Bit 01: r0899 Bit 1				
	Bit 02: r0899 Bit 2				
	Bit 03: r2139 Bit 3 (or r1214.10 for p1210>0)				
	Bit 04: r0899 Bit 4				
	Bit 05: r0899 Bit 5				
	Bit 06: r0899 Bit 6				
	Bit 07: r2139 Bit 7				
	Bit 08: r2197 Bit 7				

2.2 List of parameters

Bit 09: r0899 Bit 7
Bit 10: r2197 Bit 6
Bit 11: r0056 Bit 13 (negated)
Bit 13: r2135 Bit 14 (negated)
Bit 14: r2197 Bit 3
Bit 15: r2135 Bit 15 (negated)

r0054.0... 15 CO/BO: Control word $1 /$ STW 1

Access level: 2
Can be changed: -
Units group: -
Min

Displays control word 1.
Description:

Calculated: -
Scaling: -
Unit selection: -
Max

Data type: Unsigned16
Dyn. index: -
Func. diagram: -
Factory setting

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	ON/OFF1	Yes	No	-
01	OC / OFF2	Yes	No	-
02	OC / OFF3	Yes	No	-
03	Operation enable	Yes	No	-
04	Ramp-function generator enable	Yes	No	-

	05	Continue ramp-function generator	Yes	No	-		
	06	Speed setpoint enable	Yes	No	-		
	07	Acknowledge fault	Yes	No	-		
	08	Jog bit 0	Yes	No	3030		
	09	Jog bit 1	Yes	No	3030		
	10	Master ctrl by PLC	Yes	No	-		
	11	Direction reversal (setpoint)	Yes	No	-		
	13	Motorized potentiometer raise	Yes	No	-		
	14	Motorized potentiometer lower	Yes	No	-		
	15	CDS bit 0	Yes	No	-		
Note:	The following control bits are displayed in r0054:						
	Bit 00: r0898 Bit 0						
	Bit 01: r0898 Bit 1						
	Bit 02: r0898 Bit 2						
	Bit 03: r0898 Bit 3						
	Bit 04: r0898 Bit 4						
	Bit 05: r0898 Bit 5						
	Bit 06: r0898 Bit 6						
	Bit 07: 22138 Bit 7						
	Bit 08: r0898 Bit 8						
	Bit 09: r0898 Bit 9						
	Bit 10: r0898 Bit 10						
	Bit 11: r1198 Bit 11						
	Bit 13: r1198 Bit 13						
	Bit 14: r1198 Bit 14						
	Bit 15: r0836 Bit 0						
r0055.0... 15	CO/BO: Supplementary control word / Suppl STW						
	Access level: 3		Calculated: -	Data type:			
	Can be changed: - S		Scaling: -	Dyn. index			
	Units group: - U		Unit selection: -	Func. diagr			
	Min M		Max	Factory set			
		Display and BICO output for supplementary control word		-			
Description:	Display and BICO output for supplementary control word.						
Bit field:	Bit			Signal name	1 signal	0 signal	FP
		Fixed setp bit 0	Yes	No	-		
		Fixed setp bit 1	Yes	No	-		
	02	Fixed setp bit 2	Yes	No	-		
		Fixed setp bit 3	Yes	No	-		
	04	DDS select. bit 0	Yes	No	-		
	05	DDS select. bit 1	Yes	No	-		
	08	Technology controller enable	Yes	No	-		
		DC braking enable	Yes	No	-		
	11	Droop enable	Yes	No	-		
		Torque control active	Yes	No	-		
		External fault 1 (F07860)	No	Yes	-		
	15	CDS bit 1	Yes	No	-		
Note:	CDS: Command Data Set						
	DDS: Drive Data Set (DDS)						
	The following control bits are displayed in r0055:						
	Bit 00: r1198.0						
	Bit 01: r1198.1						
	Bit 02: r1198.2						
	Bit 03: r1198.3						
	Bit 04: r0837.0						
	Bit 05: 0837.1						
	Bit 08: r2349.0 (negated)						
	Bit 09: r1239.11						

2.2 List of parameters

```
Bit 11: r1406.11
Bit 12: r1406.12
Bit 13: r2138.13 (negated)
Bit 15: r0836.1
```

r0056.0... 15	CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl				
PM230	Access level: 3		Calculated: -	Data type: Unsigned16	
PM240, PM330	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: -	
			Max	Factory setting	
	-	-		-	
Description:	Display and BICO output for the status word of the closed-loop control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Initialization completed	Yes	No	-
	01	De-magnetizing completed	Yes	No	-
	02	Pulse enable available	Yes	No	-
	04	Magnetizing completed	Yes	No	-
	05	Voltage boost when starting	Active	Inactive	6301
	06	Acceleration voltage	Active	Inactive	6301
	07	Frequency negative	Yes	No	-
	08	Field weakening active	Yes	No	-
	09	Voltage limit active	Yes	No	6714
	10	Slip limit active	Yes	No	6310
	11	Frequency limit active	Yes	No	-
	12	Current limiting controller voltage output active	Yes	No	-
	13	Current/torque limiting	Active	Inactive	6060
	14	Vdc_max controller active	Yes	No	$\begin{aligned} & 6220, \\ & 6320 \end{aligned}$
	15	Vdc_min controller active	Yes	No	$\begin{aligned} & 6220, \\ & 6320 \end{aligned}$

2.2 List of parameters

r0060	CO: Speed setpoint before the setpoint filter / n_set before filt.		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 3_1	Unit selection: p0505	$\begin{aligned} & \text { Func. diagram: 2701, 2704, 5020, } \\ & 6030,6799 \end{aligned}$
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual speed setpoint at the input of the speed controller or U/f characteristic (after the interpolator). Refer to: r0020		
Dependency:			
Note:	The speed setpoint is available smoothed (r0020) and unsmoothed (r0060).		
r0062	CO: Speed setpoint after the filter / n_set after filter		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6020, 6030, 6031
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the speed setpoint after the setpoint filters.		
r0063[0...2]	CO: Speed actual value / n_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6020, 6799
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual speed of the closed-loop speed control and the U/f control.		
	For U/f control and when slip compensation is deactivated (see p1335), the synchronous speed to the output frequency is shown in r0063[0].		
Index:	[0] = Unsmoothed [1] = Smoothed with p0045 [2] = Calculated from f_set - f_slip		
Dependency:	Refer to: r0021, r0022		
Note:	The speed actual value r0063[0] is additionally displayed - smoothed with p0045-in r0063[1].		
	The speed (r0063[2]) calculated from the output frequency and slip can only be compared with the speed actual value (r0063[0]) in the steady-state.		
r0064	CO: Speed controller system deviation / n_ctrl system dev		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 3_1	Unit selection: p0505	Func. diagram: 5040, 6040
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual s	of the speed controller.	
r0065	Slip frequency / f_Slip		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 2_1	Unit selection: p0505	$\begin{aligned} & \text { Func. diagram: 6310, 6700, 6727, } \\ & 6730,6732 \end{aligned}$
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the slip frequency for induction motors (ASM).		

2.2 List of parameters

r0066	CO: Output frequency / f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 2_1	Unit selection: p0505	Func. diagram: 6300, 6310, 6730, 6731, 6799
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Display and connector output for the output frequency of the power unit.		
Dependency:	Refer to: r0024		
Note:	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
	For vector control and operation with encoder ($\mathrm{p} 0400>0$), the following applies:		

r0067	CO: Output current maximum / I_outp max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6300, 6640, 6724
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the maximum output current of the power unit.		
Dependency:	The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection.		
	Refer to: p0290, p0640		

r0068[0...1]	CO: Absolute current actual value / I_act abs val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6300, 6714, 6799, 7017, 8014, 8017, 8018
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays actual absolute current.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0027		
Notice:	The value is updated with the current controller sampling time.		
Note:	Absolute current value $=\operatorname{sqrt}\left(1 q^{\wedge} 2+\mathrm{Id}^{\wedge} 2\right)$		
	The absolute value of the current actual value is available smoothed (r0027 with 300 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).		

r0069[0...6]	CO: Phase current actual value / I_phase act value		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: $6 _5$	Unit selection: p0505	Func. diagram: 6730
	Min	Max	Factory setting
	$-[A]$	$-[A]$	$-[A]$

Description: Display and connector output for the measured actual phase currents as peak value.
Index:
[0] = Phase U
[1] = Phase V
[2] = Phase W
[3] = Phase U offset
[4] = Phase V offset
[5] = Phase W offset
[6] = Total U, V, W

Note:	In indices $3 \ldots 5$, the offset currents of the 3 phases, which are added to correct the phase currents, are displayed. The sum of the 3 corrected phase currents is displayed in index 6 .		
r0070	CO: Actual DC	Vdc act val	
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_2	Unit selection: p0505	Func. diagram: 6723, 6724, 6730, 6731, 6799
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Display and connector output for the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Notice:	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM240) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0071	Maximum output voltage / U_output max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6301, 6640, 6700, 6722, 6723, 6724, 6725, 6727
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the maximum output voltage.		
Dependency:	The maximum output voltage depends on the actual DC link voltage (r0070) and the maximum modulation depth (p1803).		
Note:	As the (driven) motor load increases, the maximum output voltage drops as a result of the reduction in DC link voltage.		
r0072	CO: Output voltage / U_output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 5700, 6730, 6731, 6799
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the actual output voltage of the power unit. Refer to: r0025		
Dependency:			
Note:	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		
r0073	Maximum modulation depth / Modulat_depth max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6723, 6724
	Min	Max	Factory setting
	- [\%]		- [\%]
Description:	Displays the maximum modulation depth.		
Dependency:	Refer to: p1803		

r0074	CO: Modulat_depth / Modulat_depth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 5730, 6730, 6731, 6799, 8940, 8950
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual modulation depth.		
Dependency:	Refer to: r0028		
Note:	For space vector modulation, 100% corresponds to the maximum output voltage without overcontrol.		
	Values above 100% indicate an overcontrol condition - values below 100% have no overcontrol.		
	The phase voltage (phase-to-phase, rms) is calculated as follows:(r0074 \times r0070) / (sqrt(2) $\times 100 \%$).		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		

r0075	CO: Current setpoint field-generating / Id_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: $6 _2$	Unit selection: p0505	Func. diagram: $6700,6714,6725$
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	$-[$ Arms $]$
Description:	Display and connector output for the field-generating current setpoint (Id_set).		
Note:	This value is irrelevant for the U/f control mode.		

r0076	CO: Current actual value field-generating / Id_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 5700, 5714, 5730, 6700, 6714, 6799
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the field-generating current actual voltage (Id_act).		
Dependency:	Refer to: r0029		
Note:	This value is irrelevant for the U/f control mode.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0077	CO: Current setpoint torque-generating / Iq_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6700, 6710
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the torque-generating current setpoint.		
Note:	This value is irrelevant for the U/f control mode.		

Dependency:	Refer to: r0030
Note:	This value is irrelevant for the U/f control mode.
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).

$\mathbf{r 0 0 7 9}$	CO: Torque setpoint / M_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed:	Scaling: p2003	Dyn. index: -
	Units group: $7 _1$	Unit selection: p0505	Func. diagram: $6020,6060,6710$
	Min	Max	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Display and connector output for the torque setpoint at the output of the speed controller.		

r0080[0...1]	CO: Torque actual value / M_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6714, 6799
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for actual torque value.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed with p0045		
Dependency:	Refer to: r0031, p0045		
Note:	The value is available smoothed (r0031 with 100 ms , $\mathrm{r0080}$ [1] with p0045) and unsmoothed (r0080[0]).		
r0082[0..2]	CO: Active power actual value / P_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dyn. index: -
	Units group: 14_5	Unit selection: p0505	Func. diagram: 6714, 6799
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with }} \\ & {[2]=\text { Electric power }} \end{aligned}$		
Dependency:	Refer to: r0032		
Note:	The mechanical active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		

r0083	CO: Flux setpoint / Flex setp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 5722
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the flux setpoint.		

r0084[0...1]	CO: Flux actual value / Flux act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6730,6731
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the flux actual value.		

Index:	$[0]=$ Unsmoothed		
	$[1]=$ Smoothed		
r0087	CO: Actual power factor / Cos phi act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	
Description:	Displays the actual active power factor.		
	This value refers to the electrical power of the basic fundamental signals at the output terminals of the converter.		

r0089[0...2]	Actual phase voltage / U_phase act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_3	Unit selection: p0505	Func. diagram: 6719
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual phase voltage.		
Index:	[0] = Phase U		
	[1] = Phase V		
	[2] = Phase W		
Note:	The values are determined from the transistor power-on duration.		
p0100	IEC/NEMA mot stds / IEC/NEMA mot stds		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1)$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	0
Description:	Defines whether the motor and drive converter power settings (e.g. rated motor power, p0307) are expressed in $[\mathrm{kW}]$ or [hp].		
	Depending on the selection, the rated motor frequency (p0310) is either set to 50 Hz or 60 Hz .		
	For $\mathrm{p} 0100=0,2$, the following applies: The power factor (p 0308) should be parameterized.		
	For $\mathrm{p} 0100=1$, the following applies: The efficiency (p 0309) should be parameterized.		
Value:	0: IEC-Motor (50 Hz 1: NEMA motor (60 2: NEMA motor (60		
Dependency:	If p0100 is changed, all of the rated motor parameters are reset. Only then are possible unit changeovers made.		
	The units of all motor parameters are changed that are involved in the selection of IEC or NEMA (e.g. r0206, p0307, r0333, r0334, p0341, p0344, r1969).		
	Refer to: r0206, p0210, p0300, p0304, p0305, p0307, p0308, p0309, p0310, p0311, p0314, p0320, p0322, p0323, p0335, r0337, p1800		
Note:	The parameter value is not reset when the factory setting is restored (p0010 $=30, \mathrm{p} 0970$).		
p0124[0...n]	CU detection via LED / CU detection LED		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: PDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min		Factory setting
		1	0
Description:	Identification of the Control Unit using an LED.		
Note:	While p0124 = 1, the READY LED flashes green/orange or red/orange with 2 Hz at the appropriate Control Unit.		

2.2 List of parameters

r0200[0...n]	Power unit code number actual / PU code no. act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: PDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	
Description:	Displays the unique code number of the power unit.		
Note:	rO200 $=0:$ No power unit data found		

p0201[0...n]	Power unit code number / PU code no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(2)$	Scaling: -	Func. index: PDS

r0203[0...n]	Actual power unit type / PU actual type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: PDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Fax	Factory setting
	2	400	
Description:	Displays the type of power unit found.		
Value:	$2: \quad$ MICROMASTER 440		
	$3: \quad$ MICROMASTER 411		
	$4: \quad$ MICROMASTER 410		
	$5: \quad$ MICROMASTER 436		

p0205	Power unit application / PU application		
PM230	Access level: 1	Calculated: -	Data type: Integer16
PM330	Can be changed: C(1, 2)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	1

Description: The duty cycles can be overloaded provided that the drive converter is operated with its base load current before and after the overload. This is based on a load duty cycle of 300 s .

Value:	$0: \quad$ Load duty cycle with high overload for vector drives
	$1: \quad$ Load duty cycle with low overload for vector drives
Dependency:	Refer to: r3996
Notice:	The parameter value is not reset when the factory setting is restored (see p0010 = 30, p0970).
	When the power unit use is changed, short-term communication interruptions may occur.

2.2 List of parameters

Note: When the parameter is changed, all of the motor parameters (p0305 ... p0311), the technological application (p0500) and the control mode (p 1300) are pre-assigned according to the selected application. The parameter has no influence when calculating the thermal overload.
p0205 can only be changed to the settings that are saved in the power unit EEPROM.

p0205	Power unit application / PU application		
PM240	Access level: 1	Calculated: -	Data type: Integer16
PM250, PM260	Can be changed: $\mathrm{C}(1,2)$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	The duty cycles can be overloaded provided that the drive converter is operated with its base load current before and after the overload. This is based on a load duty cycle of 300 s .		
Value:	0 : Load duty cycle with high overload for vector drives 1: Load duty cycle with low overload for vector drives		
Dependency:	Refer to: r3996		
Notice:	The parameter value is not reset when the factory setting is restored (see p0010 $=30$, p0970).		
	When the power unit use is changed, short-term communication interruptions may occur.		
Note:	When the parameter is changed, all of the motor parameters (p0305 ... p0311), the technological application (p0500) and the control mode (p1300) are pre-assigned according to the selected application. The parameter has no influence when calculating the thermal overload.		
	p0205 can only be changed to the settings that are saved in the power unit EEPROM.		

r0206[0...4]	Rated power unit power / PU P_rated		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: $14 _6$	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{kW}]$	$-[\mathrm{kW}]$	$-[\mathrm{kW}]$

Description: Displays the rated power unit power for various load duty cycles.

Index:	$[0]=$ Rated value
	$[1]=$ Load duty cycle with low overload
	$[2]=$ Load duty cycle with high overload
	$[3]=$ S1 cont duty cyc
	$[4]=$ S6 load duty cycle
Dependency: \quad	IECdrives $(\mathrm{p} 0100=0)$: Units kW
	NEMA drives $(\mathrm{p} 0100=1)$: Units hp
	Refer to: p0100, p0205

r0207[0...4]	Rated power unit current / PU PI_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	$-[A r m s]$	$-[A r m s]$	- ARrms]

Description: Displays the rated power unit power for various load duty cycles.

Index:	$[0]=$ Rated value
	$[1]=$ Load duty cycle with low overload
	$[2]=$ Load duty cycle with high overload
	$[3]=$ Reserved
	$[4]=$ Reserved
Dependency:	Refer to: p0205

r0208	Rated power unit line supply voltage / PU U_rated		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min		Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the rated line supply voltage of the power unit.		
	r0208 = 400:380-480V+/-10 \%		
	r0208 = 500:500-600 V +/-10 \%		
	r0208 = 690 : 660-690 V +/-10 \%		
r0209[0...4]	Power unit maximum current / PU I_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 8750, 8850, 8950
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the maximum output current of the power unit.		
Index:			
	[1] = Load duty cycle with low overload		
	[2] = Load duty cycle with high overload		
	$[3]=$ Reserved$[4]=$ Reserved		
Dependency:	Refer to: p0205		
p0210	Drive unit line supply voltage / V_connect		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(2), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1 [V]	63000 [V]	400 [V]
Description:	Sets the drive unit supply voltage (rms value of the phase-to-phase line supply voltage).		
Dependency:	Set p1254, p1294 (automatic detection of the Vdc switch-on levels) $=0$.		
	The switch-in thresholds of the Vdc_max controller (r1242, r1282) are then directly determined using p0210.		
Notice:	If, in the switched-off state (pulse inhibit), the supply voltage is higher than the entered value, the Vdc controller may be automatically de-activated in some cases to prevent the motor from accelerating the next time the system is switched on. In this case, an appropriate alarm A07401 is output.		
Note:	Setting ranges for p0210 as a function of the rated power unit voltage:		
	U_rated $=230 \mathrm{~V}$:		
	- p0210 = $200 . . .240 \mathrm{~V}$		
	U_rated $=400 \mathrm{~V}$:		
	- p0210 = $380 . . .480 \mathrm{~V}$		
	U_rated $=690 \mathrm{~V}$:		
	- p0210 = $660 \ldots 690 \mathrm{~V}$		
p0219	Braking resistor braking power / R_brake P_brake		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM330	Can be changed: $\mathrm{C}(1,2), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: 14_6	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	0.00 [kW]	20000.00 [kW]	0.00 [kW]
Description:	Sets the braking power of the connected braking resistor.		
Dependency:	Refer to: p1127, p1240, p1280, p1531		

2.2 List of parameters

Note: \quad\begin{tabular}{l}
When setting a value for the braking power, the following calculations are made:

$-\mathrm{p} 1240, \mathrm{p} 1280:$ Vdc_max control is deactivated.

$-\mathrm{p} 1531=-\mathrm{p} 0219:$ the power limit when generating is set (limited to -p 1530).

- The minimum ramp-down time is calculated (p 1127) as a function of p0341, p0342 and p1082 (not for vector control

with speed encoder).

If the parameter is reset again to zero, then the Vdc_max controller is reactivated and the power limit as well as the

ramp-down time are recalculated.
\end{tabular}

The user must set the following parameters according to the data sheet of the sine-wave filter and also the user must check whether they are permitted.
--> p0233 (power unit, motor reactor) = filter inductance
--> p0234 (power unit sine-wave filter capacitance) = filter capacitance
--> p1082 (maximum speed) = Fmax filter / pole pair number
--> p1800 (pulse frequency) >= nominal pulse frequency of the filter
Refer to: p0233, p0234, p0290, p1082, p1800, p1802
Note: \quad The parameter cannot be changed if the power unit (e.g. PM260) is equipped with an internal sine-wave filter.
For sine-wave filters, the test pulse evaluation to detect short-circuits is always deactivated.
if a filter type cannot be selected, then this filter type is not permitted for the Motor Module.
p0230 = 1:
Power units with output reactor are limited to output frequencies of 150 Hz .
p0230 = 3:
Power units with sine-wave filter are limited to output frequencies of 200 Hz .

p0230	Drive filter type motor side / Drv filt type mot		
PM330	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C(1, 2)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	0
Description:	Sets the type of the filter at the motor side.		

Value:	$0: \quad$ No filter
	$1: \quad$ Motor reactor
	$2: \quad d v / d t$ filter
Dependency:	The following parameters are influenced using p0230:
	p0230 = 1:
	$-->p 0233$ (power unit, motor reactor) = filter inductance
	Refer to: p0233, p0234, p0290, p1082, p1800, p1802
	if a filter type cannot be selected, then this filter type is not permitted for the Motor Module.
Note:	p0230 = 1:
	Power units with output reactor are limited to output frequencies of 150 Hz.

r0231[0...1]	Power cable length maximum / Cable length max		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram:
	Min	Max	Factory setting
	$-[\mathrm{m}]$	$-[\mathrm{m}]$	$-[\mathrm{m}]$

Description: Displays the maximum permissible cable lengths between the drive unit and motor.
Index: $\quad[0]=$ Unshielded
[1] = Shielded
Note: \quad The display value is used to provide information for service and maintenance.

2.2 List of parameters

r0238	Internal power unit resistance / PU R internal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[$ [ohm $]$	- [ohm $]$	
Description:	Displays the internal resistance of the power unit (IGBT and line resistance).		

p0247	Voltage measurement configuring / U_mes config				
PM330		ess level: 3 Calcula		Data type:	
		be changed: $\mathrm{C}(2), \mathrm{U}, \mathrm{T}$ Scalin		Dyn. index:	
		group: - Unit s	on: -	Func. diagr	
	Min	Max		Factory set	
	-	-		00000000	
Description:	Sets the configuration for the output voltage measurement of the power unit.				
Bit field:		Signal name	1 signal	0 signal	FP
		Activate voltage measurement	Yes	No	-
		Siemens internal	Yes	No	-
		Siemens internal	Yes	No	-
		Use voltage measured values for flying restart	Yes	No	-
		Voltage calibration when switching on	Yes	No	-
		Voltage monitoring when switching on	Yes	No	-
	09	Voltage monitoring cyclic	Yes	No	-
Note:	Only special power units support this function (e.g. PM330). Re bit 01: The controller can be set using p0245 and p0246.				

p0287[0...1]	Ground fault monitoring thresholds / Gnd flt threshold		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [\%]	100.0 [\%]	[0] 6.0 [\%]
			[1] 16.0 [\%]
Description:	Sets the shutdown thresholds for the ground fault monitoring.		
	The setting is made as a percentage of the maximum current of the power unit (r0209).		
Index:	[0] = Threshold at which pre-charging starts [1] = Threshold at which pre-charging stops		
Dependency:	Refer to: p1901		
Note:	This parameter is only relevant for chassis power units.		
r0289	CO: Maximum power unit output current / PU I_outp max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the actual m	current of the power	count derating factors.

p0290	Power unit overload response / PU overld response		
PM230	Access level: 3	Calculated: -	Data type: Integer16
PM240	Can be changed: T	Scaling: -	Dyn. index: -
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	0	13	2
Description:	Sets the response to a thermal overload condition of the power unit.		
	The following quantities can result in a response to thermal overload:		
	- heat sink temperature (r0037.0).		
	- chip temperature (r0037.1).		
	- power unit overload l2t (r0036).		
	Possible measures to avoid thermal overload:		
	- reduce the output current limit r0289 and r0067 (for closed-loop speed or torque control) or the output frequency (for U / f control) indirectly via the output current limit and the intervention of the current limiting controller).		
	A reduction, if parameterized, is always realized after an appropriate alarm is output.		
Value:	0: Reduce output current or output frequency		
	1: No reduction shutdown when overload threshold		
	2: Reduce I_output or f_output and f_pulse (not usid		
	3: Reduce the pulse frequency (not using I2t)		
	12: I_output or f_output and automatic pulse frequen		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only responses can be selected without pulse frequency reduction ($\mathrm{p} 0290=0,1$).		
	For a thermal power unit overload, an appropriate alarm or fault is output, and r2135.15 or r2135.13 set.		
	Refer to: r0036, r0037, p0230, r2135		
Notice:	If the thermal overload of the power unit is not sufficiently reduced by the actions taken, the drive is always shut down. This means that the power unit is always protected irrespective of the setting of this parameter.		
Note:	The setting p0290 $=0$, 2 is only practical if the load decreases with decreasing speed (e.g. for applications with variable torque such as for pumps and fans).		
	Under overload conditions, the current and torque limit are reduced, and therefore the motor is braked and forbidden speed ranges (e.g. minimum speed p1080 and suppression [skip] speeds p1091 ... p1094) can be passed through.		
	For $p 0290=2,3,12,13$, the $12 t$ overload detection of the power unit does not influence the response "Reduce pulse frequency".		
	When the motor data identification routine is selected, p0290 cannot be changed.		
	For short-circuit/ground fault detection, when the test pulse evaluation is active via p1901 "Test pulse evaluation configuration", the pulse frequency at the instant of switch on is briefly reduced.		
p0290	Power unit overload response / PU overld response		
PM330	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	0	3	2
Description:	Sets the response to a thermal overload condition of the power unit.		
	The following quantities can result in a response to thermal overload:		
	- heat sink temperature (r0037.0).		
	- chip temperature (r0037.1).		
	- power unit overload I2t (r0036).		
	Possible measures to avoid thermal overload:		
	- reduce the output current limit r0289 and r0067 (for closed-loop speed or torque control) or the output frequency (for U / f control) indirectly via the output current limit and the intervention of the current limiting controller).		
	A reduction, if parameterized, is always realized after an appropriate alarm is output.		

2.2 List of parameters

p0294	Power unit alarm with I2t overload / PU I2t alrm thresh		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	10.0 [\%]	100.0 [\%]	95.0 [\%]
Description:	Sets the alarm threshold for the I2t power unit overload.		
Dependency:	Refer to: r0036, p0290		
Note:	The I2t fault threshold is 100%. If this value is exceeded, fault F30005 is output.		
p0295	Fan run-on time / Fan run-on time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [s]	600 [s]	0 [s]
Description:	Sets the fan run-on time after the pulses for the power unit have been canceled.		

Note: \quad\begin{tabular}{l}

- Under certain circumstances, the fan can continue to run for longer than was set (e.g. as a result of the excessively

high heat sink temperature).

- For values less than 1 s , a 1 s run on time for the fan is active.
\end{tabular}

r0296	DC link voltage undervoltage threshold / Vdc U_lower_thresh		
	Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -
	Min	$-[\mathrm{V}]$	Factory setting
	$-[\mathrm{V}]$	$-[\mathrm{V}]$	
Description:	Threshold to detect a DC link undervoltage.		
	If the DC link voltage falls below this threshold, the drive unit is tripped due to a DC link undervoltage condition.		

r 0297	DC link voltage overvoltage threshold / Vdc U_upper_thresh		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8750, 8760, 8850, 8864, 8950, 8964
	Min	Max	Factory setting
	- [V]	- [V]	
Description:	Threshold to detect a DC link overvoltage.		
p0300[0...n]	Motor type selection / Mot type sel		
PM230	Access level: 2	Calculated: -	Data type: Integer16
PM250, PM260	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	0	100	0
Description:	Selecting the motor type.		

The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list:
1 = Induction motor
2 = Synchronous motor
The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor (p0308) is neither used nor displayed (in the BOP/IOP).

Value:	$0:$	No motor
	$1:$	Induction motor
	$2:$	Synchronous motor
	$10:$	1LE1 induction motor
	$13:$	1LG6 induction motor
	$17:$	1LA7 induction motor
	$19:$	1LA9 induction motor
	$100:$	1LE1 induction motor

	of the thermal motor model are pre-assigned as a function of p0307 and p0311.
Caution:	If a motor is selected, which is not contained in the motor lists ($\mathrm{p} 0300<100$), then the motor code number must be

If a motor is selected, which is not contained in the motor lists ($\mathrm{p} 0300<100$), then the motor code number must be reset (p0301 = 0), if previously a motor was parameterized from the motor list.

Note: Once the Control Unit has been powered up for the first time or if the factory settings have been defined accordingly, the motor type is pre-configured to induction motor ($00300=1$).
If a motor type has not been selected $(\mathrm{p} 0300=0)$, then the drive commissioning routine cannot be exited.

p0300[0...n]	Motor type selection / Mot type sel			
PM240	Access level: 2		Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,3)$		Scaling: -	Dyn. index: MDS, p0130
	Units group: -		Unit selection: -	Func. diagram: 6310
	Min		Max	Factory setting
	0		600	0
Description:	Selecting the motor type.			
	The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list:			
	1 = Induction motor			
	2 = Synchronous motor			
	6 = Synchronous reluctance motor			
	The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor (p 0308) is neither used nor displayed (in the BOP/IOP).			
Value:	0: \quad No motor			
	1: Induction motor			
	2: Synchronous motor			
	6: Reluctance motor			
	10: 1LE1 induction motor			
	13: 1LG6 induction motor			
	17: 1LA7 induction motor			
	19: 1LA9 induction motor			
	100: 1LE1 induction motor600: 1FP1 reluctance motor			
Dependency:	When selecting a motor type from the 1LE1, 1LG6, 1LA7, 1LA9 series, parameters p0335, p0626, p0627, and p0628 of the thermal motor model are pre-assigned as a function of p0307 and p0311.			
Caution:	If a motor is selected, which is not contained in the motor lists ($p 0300<100$), then the motor code number must be reset ($\mathrm{p} 0301=0$), if previously a motor was parameterized from the motor list.			
Note:	Once the Control Unit has been powered up for the first time or if the factory settings have been defined accordingly, the motor type is pre-configured to induction motor ($p 0300=1$).			
	If a motor type has not been selected ($\mathrm{p} 0300=0$), then the drive commissioning routine cannot be exited.			
p0300[0...n]	Mo	r type selectio	pe sel	
PM330	Access level: 2 Can be changed: $\mathrm{C}(1,3)$		Calculated: -	Data type: Integer16
			Scaling: -	Dyn. index: MDS, p0130
	Units group: -		Unit selection: -	Func. diagram: 6310
	Min		Max	Factory setting
	0		100	0
Description:	Selecting the motor type.			
	The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list:			
	1 = Induction motor			
	2 = Synchronous motor			
	The type information must be entered to filter motor-specific parameters and to optimize the operating characteristics and behavior. For example, for synchronous motors, power factor (p 0308) is neither used nor displayed (in the BOP/IOP).			
Value:		$0: \quad$ No motor		
	1:	Induction motor		
	2 :	Synchronous moto		
	10:	1LE1 induction mo		
	13:	1LG6 induction mo		
	14:	1xx1 SIMOTICS F	motor	
	17:	1LA7 induction mo		
	18:	1LA8 / 1PQ8 stand	n motor series	
	$\begin{aligned} & 19: \\ & 100: \end{aligned}$	1LA9 induction mo		
		1LE1 induction mo		

p0304[0...n]	Rated motor voltage / Mot U_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6301, 6724
	Min	Max	Factory setting
	0 [Vrms]	20000 [Vrms]	0 [Vrms]
Description:	Sets the rated motor voltage (rating plate).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.		
	Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.		

p0305[0...n]	Rated motor current / Mot I_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the rated motor current (rating plate).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When the parameter value Once the Control Unit has assigned to match the pow	the connection typ the first time or if th	-delta) must be taken into account. have been restored, the parameter

p0306[0...n]	Number of motors connected in parallel / Motor qty		
	Access level: 1	Calculated: -	Data type: Unsigned8
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	50	1
Description:	Sets the number (count) of motors that can be operated in parallel using one motor data set.		
	Depending on the motor number entered, internally an equivalent motor is calculated.		
	The following should be observed in motors connected in parallel:		
	Rating plate data should only be entered for one motor: p0305, p0307		
	The following parameters are also only valid for one motor: p0320, p0341, p0344, p0350 ... p0361		
	All other motor parameters take into account the replacement/equivalent motor (e.g. r0331, r0333).		
Recommend.:	For motors connected in parallel, external thermal protection should be provided for each individual motor.		
Dependency:	Refer to: r0331, r0370, r0373, r0374, r0376, r0377, r0382		
Caution:	The motors to be connected in parallel must be of the same type and size (same order no. (MLFB)).		
介	The mounting regulations when connecting motors in parallel must be carefully maintained!		
	The number of motors set must correspond to the number of motors that are actually connected in parallel.		
	After changing p0306, it is imperative that the control parameters are adapted (e.g. using automatic calculation with p0340 $=1$, p3900 > 0).		
	For induction motors that are connected in parallel, but which are not mechanically coupled with one another, then the following applies:		
	- an individual motor must not be loaded beyond its stall point.		
Notice:	If p0306 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is appropriately preassigned.		
Note:	Only operation with U/f characteristic makes sense if more than 10 identical motors are connected in parallel.		
p0307[0...n]	Rated motor power / Mot P_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: 14_6	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	0.00 [kW]	100000.00 [kW]	0.00 [kW]
Description:	Sets the rated motor power (rating plate).		
Dependency:	IECdrives (p0100 = 0): Units kW		
	NEMA drives (p0100 = 1): Units hp		
	NEMA drives (p0100 = 2): Unit kW		
	Refer to: p0100		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.		
p0308[0...n]	Rated motor power factor / Mot cos phi rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000	1.000	0.000
Description:	Sets the rated motor power factor (cos phi, rating plate). For a parameter value of 0.000 , the power factor is internally calculated and displayed in r0332.		
Dependency:	This parameter is only available for $00100=0,2$.		
	Refer to: p0100, p0309, r0332		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		

Note: \quad The parameter is not used for synchronous motors (p0300 = 2xx).
Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.

p0309[0...n]	Rated motor efficiency / Mot eta_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [\%]	99.9 [\%]	0.0 [\%]
Description:	Sets the rated motor efficiency (rating plate).		
	For a parameter value of 0.0, the power factor is internally calculated and displayed in r0332.		
Dependency:	This parameter is only visible for NEMA motors ($\mathrm{p} 0100=1,2$).		
	Refer to: p0100, p0308, r0332		
Note:	The parameter is not used for synchronous motors.		
p0310[0...n]	Rated motor frequency / Mot f_rated		
PM230	Access level: 1	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.00 [Hz]	650.00 [Hz$]$	0.00 [Hz$]$
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311), if p0314 $=0$.		
	The rated frequency is restricted to values between 1.00 Hz and 650.00 Hz .		
	Refer to: p0311, r0313, p0314		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p1082, which is also associated with quick commissioning, is pre-assigned accordingly.		
Note:	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.		

p0310[0...n]	Rated motor frequency / Mot f_rated		
PM330	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	$0.00[\mathrm{~Hz}]$	103.00 [Hz]	$0.00[\mathrm{~Hz}]$
Description:	Sets the rated motor frequency (rating plate).		
Dependency:	The number of pole pairs (r0313) is automatically re-calculated when the parameter is changed (together with p0311), if p0314 $=0$.		
	The rated frequency is restricted to values between 1.00 Hz and 100.00 Hz .		
	Refer to: p0311, r0313, p0314		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly.		
Note:	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.		

p0311[0...n]	Rated motor speed / Mot n_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	$210000.0[\mathrm{rpm}]$	Factory setting
	$0.0[r p m]$	$0.0[\mathrm{rpm}]$	
Description:	Sets the rated motor speed (rating plate).		
	Fer		

For p0311 = 0, the rated motor slip of induction motors is internally calculated and displayed in r0330. It is especially important to correctly enter the rated motor speed for vector control and slip compensation for U/f control.

Dependency:	If p 0311 is changed and for $\mathrm{p} 0314=0$, the pole pair (r0313) is re-calculated automatically.
Refer to: p0310, r0313, p0314	
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0311 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082, which is also associated with quick commissioning, is pre-assigned accordingly.
Note:	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.

r0313[0...n]	Motor pole pair number, actual (or calculated) / Mot PolePairNo act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 5300
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of motor pole pairs. The value is used for internal calculations. r0313 = 1: 2-pole motor		
Dependency:	For p0314>0, the entered value is displayed in r0313.		
	For $\mathrm{p} 0314=0$, the pole pair number (r 0313) is automatically calculated from the rated power (p 0307), rated frequency (p 0310) and rated speed (p 0311).		
	Refer to: p0307, p0310, p0311, p0314		
Note:	For the automatic calculation, the pole pair number is set to the value of 2 if the rated speed or the rated frequency is zero.		

p0314[0...n]	Motor pole pair number / Mot pole pair No.		
	Access level: 4	Calculated: -	Data type: Unsigned16

p0316[0...n]	Motor torque constant / Mot kT		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: $\mathrm{C}(1,3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: 28_1	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Nm / A]	400.00 [Nm / A]	0.00 [Nm / A]
Description:	Sets the torque constant of the synchronous motor.		
	p0316 = 0 :		
	The torque constant is calculated from the motor data.		
	p0316 > 0 :		
	The selected value is used as torque constant.		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter is not used for induction motors (p0300 = 1xx).		
p0320[0...n]	Motor rated magnetizing current/short-circuit current / Mot I_mag_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [Arms]	5000.000 [Arms]	0.000 [Arms]
Description:	Induction motors:		
	Sets the rated motor magnetizing current.		
	For p0320 $=0.000$ the magnetizing current is internally calculated and displayed in r0331.		
	Synchronous motors:		
	Sets the rated motor short-circuit current.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The magnetizing current p0320 for induction motors is reset when quick commissioning is exited with p3900 >0. If, for induction motors, the magnetizing current p0320 is changed outside the commissioning phase ($\mathrm{p} 0010>0$), then the magnetizing inductance p0360 is changed so that the EMF r0337 remains constant.		

p0322[0...n]	Maximum motor speed / Mot n_max		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum motor speed.		
Dependency:	Refer to: p1082		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
	If p0322 is changed during quick commissioning ($p 0010=1$), the maximum speed $p 1082$, which is also associated with quick commissioning, is pre-assigned accordingly.		
Note:	The parameter has no significance for a value of p0322 $=0$		
p0323[0...n]	Maximum motor current / Mot I_max		
PM230	Access level: 1	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	20000.00 [Arms]	0.00 [Arms]
Description:	Sets the maximum permissible motor current (e.g. de-magnetizing current for synchronous motors).		

2.2 List of parameters

Notice: \quad When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection. If p0323 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly.
Note: \quad The parameter has no effect for induction motors.
The parameter has not effect for synchronous motors if a value of 0.0 is entered. The user-selectable current limit is entered into p0640.

p0327[0...n]	Optimum motor load angle / Mot phi_load opt		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [${ }^{\circ}$]	135.0 [${ }^{\circ}$]	$90.0{ }^{[}{ }^{\text {] }}$
Description:	Sets the optimum load angle for synchronous motors with reluctance torque. The load angle is measured at the rated motor current.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	This parameter has no significance for induction motors.		
	For synchronous motors without reluctance torque, a angle of 90 degrees must be set.		
	When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0328[0...n]	Motor reluctance torque constant/Mot kT_reluctance		
PM230	Access level: 4	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	$1000.00[\mathrm{mH}]$	Factory setting
	$-1000.00[\mathrm{mH}]$	$0.00[\mathrm{mH}]$	
	Sets the reluctance torque constant for synchronous motors with reluctance torque (e.g. 1FE ... motors).		
Description:	This parameter has no significance for induction motors.		
	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
Notice:	Information in p0300 should be carefully observed when removing write protection.		
	For synchronous motors without reluctance torque, the value 0 must be set.		

r0330[0...n]	Rated motor slip / Mot slip_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the rated motor slip.		
Dependency:	The rated slip is calculated from the rated frequency, rated speed and number of pole pairs. Refer to: p0310, p0311, r0313		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Induction motor:		
	Displays the rated magnetizing current from p0320.		
	For $\mathrm{p} 0320=0$, the internally calculated magnetizing current is displayed.		
	Synchronous motor:		
	Displays the rated short-circuit current from p0320.		
Dependency:	If p0320 was not ent	rameter is calculat	late parameters.

r0332[0...n]	Rated motor power factor / Mot cos phi rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the rated power factor for induction motors.		
	For IEC motors, the following applies (p0100 = 0):		
	For $00308=0$, the internally-calculated power factor is displayed.		
	For p0308 > 0, this value is displayed.		
	For NEMA motors, the following applies (p0100 = 1, 2):		
	For $\mathrm{p} 0309=0$, the internally-calculated power factor is displayed.		
	For $\mathrm{p} 0309>0$, this value is converted into the power factor and displayed.		

2.2 List of parameters

Dependency:	If p 0308 is not entered, the parameter is calculated from the rating plate parameters.
Note:	The parameter is not used for synchronous motors $(\mathrm{p} 0300=2 \mathrm{x})$.

r0333[0...n]	Rated motor torque / Mot M_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: 7_4	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the rated motor torque.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit Nm		
	NEMA drives ($\mathrm{p} 0100=1$): unit lbf ft		
Note:	For induction motors, r0333 is calculated from p0307 and p0311.		
	For synchronous motors, r0333 is calculated from p0305, p0316, p0327 and p0328.		
p0335[0...n]	Motor cooling type / Mot cool type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,3), \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	128	0
Description:	Sets the motor cooling system used.		
Value:	0: \quad Non-ventilated 1: Forced cooling 2: Liquid cooling 128: No fan		
Dependency:	For 1LA7 motors (p0300), the parameter is pre-set as a function of p0307 and p0311.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter influences the thermal 3-mass motor model. 1LA7 motors, frame size 56 are operated without fan.		

r0337[0...n]	Rated motor EMF / Mot EMF_rated		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[V \mathrm{rms}]$	$-[V \mathrm{Vms}]$	$-[V \mathrm{Vms}]$
Description:	Displays the rated EMF of the motor.		
Note:	EMF: Electromotive force		

p0340[0...n]	Automatic calculation motor/control parameters / Calc auto par		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Factory setting	
	0	5	0
Description:	Setting to automatically calculate motor parameters and U/f open-loop and closed-loop control parameters from the		
	rating plate data.		
	$0:$	No calculation	
	$1:$	Complete calculation	
	$2:$	Calculation of equivalent circuit diagram parameters	
	$3:$	Calculation of closed-loop control parameters	
	$4:$	Calculation of controller parameters	
	$5:$	Calculation of technological limits and threshold values	

2.2 List of parameters

r0343[0...n]	Rated motor current identified / Mot I_rated ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	[Arms]	
Description:	Displays the identified rated motor current.		

p0344[0...n]	Motor weight (for the thermal motor model) / Mot weight th mod		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: 27_1	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	0.0 [kg]	50000.0 [kg]	0.0 [kg]
Description:	Sets the motor weight.		
Dependency:	IEC drives (p0100 = 0): unit kg		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter influences the thermal 3 mass model of the induction motor. The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		

r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [s]	- [s]	- [s]
Description:	Displays the rated motor starting time.		
	This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with motor rated torque (r0333).		
Dependency:	Refer to: r0313, r0333, p0341, p0342		

p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the excitation build-up time of the motor.		
	This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction motor is magnetized during this time.		
Caution: 1	If there is insufficient magnetization under load or if the acceleration rate is too high, then an induction motor can stal (refer to the note).		

Note: \quad The parameter is calculated using p0340 $=1,3$.
For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 s (internal limit: 0.1 * r0384).
For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat		
	Access level: 3	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled. The inverter pulses cannot be switched in (enabled) within this delay time.		
Note:	The parameter is calculated using p $0340=1,3$.		
	if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated and the motor is rotating).		

p0350[0...n]	Motor stator resistance cold / Mot R_stator cold		
	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00000 [ohm]	2000.00000 [ohm]	0.00000 [ohm]
Description:	Sets the stator resistance of the motor at ambient temperature p0625 (phase value).		
Dependency:	Refer to: p0625, r1912		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The motor identification routin resistance (p0352).	mines the stator resistance	tal stator resistance minus the cable

p0352[0...n]	Cable resistance / R_cable		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: -	Unit selection: -	Max
	Min	$120.00000[\mathrm{ohm}]$	Factory setting
	$0.00000[\mathrm{ohm}]$	0.00000 [ohm]	
Description:	Resistance of the power cable between the power unit and motor.		
Caution:	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by		
	which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be		

Note: \quad The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900 > 0 .

p0352[0...n]	Cable resistance / R_cable		
PM330	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00000 [ohm]	120.00000 [ohm]	0.00000 [ohm]
Description:	Resistance of the power cable between the power unit and motor.		
Caution:	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be repeated.		

Note:
The difference with which p0352 was manually changed, must also be subtracted from reference parameter p0629 of the Rs measurement.
The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p 0352 is zero at the time that the measurement is made. If $p 0352$ is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900 >0.

p0354[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,2$	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6727
	Min	300.00000 [ohm]	Factory setting
	$0.00000[o h m]$	0.00000 [ohm]	
Description:	Sets the rotor/secondary section resistance of the motor at the ambient temperature p0625.		
	This parameter value is automatically calculated using the motor model (p0340 = 1, 2) or using the motor data		
	identification routine (p1910).		
Dependency:	Refer to: p0625		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected.		
	Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 = 2).		

For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is, therefore, ideal for a low current.

p0357[0...n]	Motor stator inductance d axis / Mot L_stator d		
PM230	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
PM240	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00000 [mH]	$1000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	Sets the stator direct-axis inductance of the synchronous motor. This parameter value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor identification routine (p1910).		
Note:	For permanent-magnet synchronous motors ($\mathrm{p} 0300=2$), this is the non-saturated value and is ideal for a low current.		

p0358[0...n]	Motor rotor leakage inductance / Mot L_rot leak		
	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6727
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$1000.00000[\mathrm{mH}]$	$0.00000[\mathrm{mH}]$
Description:	Sets the rotor/secondary section leakage inductance of the motor.		
	The value is automatically calculated using the motor model ($\mathrm{p} 0340=1,2$) or using the motor identification routine (p1910).		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	If the rotor leakage inductanc 0), then the magnetizing indu to repeat the measurement for) for induction motors is ch p0360) is automatically ada turation characteristic (p19	ide the commissioning phase (p0010 > new EMF (r0337). You are then advised

p0360[0...n]	Motor magnetizing inductance / Mot Lh		
	Access level: 3	Calculated: p0340 $=1,2$	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6727
	Min	Max	Factory setting
	$0.00000[\mathrm{mH}]$	$10000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	Sets the magnetizing inductance of the motor.		
	This parameter value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor identification routine (p1910).		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 = 2).		

p0362[0...n]	Motor saturation characteristic flux 1 / Mot saturat.flux 1		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	60.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 1st value pair of the characteristic.		
	Sets the first flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100\%).		
Dependency:	The following applies for the flux values:		
	Refer to: p0366		
Note:	For induction motors, p0362 = 100% corresponds to the rated motor flux.		
	When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0363[0...n]	Motor saturation characteristic flux 2 / Mot saturat.flux 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723,6726
	Min	$800.0[\%]$	Factory setting
	$10.0[\%]$	85.0 [\%]	
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the y coordinate (flux) for the 2nd value pair of the characteristic.		

2.2 List of parameters

Dependency:	The following applies for the flux values:
	$\mathrm{p} 0362<\mathrm{p} 0363<\mathrm{p} 0364<\mathrm{p} 0365$
	Refer to: p 0367
Note:	For induction motors, $\mathrm{p} 0363=100 \%$ corresponds to the rated motor flux.
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been
selected (p 0300).	

p0364[0...n]	Motor saturation characteristic flux 3 / Mot saturat.flux 3		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	115.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 3rd value pair of the characteristic.		
	Sets the third flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100\%).		
Dependency:	The following applies for the flux values:		
	p0362 < p0363 < p0364 < p0365		
	Refer to: p0368		
Note:	For induction motors, p0364 = 100 \% corresponds to the rated motor flux.		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0365[0...n]	Motor saturation characteristic flux 4 / Mot saturat.flux 4		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	10.0 [\%]	800.0 [\%]	125.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 4th value pair of the characteristic. Sets the fourth flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100 \%)		
Dependency:			
	p0362 < p0363 < p0364 < p0365		
	Refer to: p0369		
Note:	For induction motors, p0365 = 100 \% corresponds to the rated motor flux.		
	When quick commissioning is selected (p0300).	with p3900 > 0, then	reset if a catalog motor has

p0366[0...n]	Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	50.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 1st value pair of the characteristic. Sets the first magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents: p0366 < p0367 < p0368 < p0369		
	Refer to: p0362		
Note:	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0367[0...n]	Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	75.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the x coordinate (magnetizing current) for the 2 nd value pair of the characteristic.		
	Sets the second magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p0367 < p 0368 < p0369		
	Refer to: p0363		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		
p0368[0...n]	Motor saturation characteristic I_mag 3/ Mot sat. I_mag 3		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723,6726
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	150.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the x coordinate (magnetizing current) for the 3rd value pair of the characteristic.		
	Sets the third magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:		
	Refer to: p0364		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p 0300).		
p0369[0...n]	Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	210.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the x coordinate (magnetizing current) for the 4th value pair of the characteristic.		
	Sets the fourth magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p 0367 < p 0368 < p 0369		
	Refer to: p0365		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

2.2 List of parameters

r0370[0...n]	Motor stator resistance cold / Mot R_stator cold		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the motor stator resistance at an ambient temperature (p0625). The value does not include the cable resistance.		
Dependency:	Refer to: p0625		
r0372[0...n]	Cable resistance / Mot R_cable		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
			Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the total cable resistance between power unit and motor, as well as the internal converter resistance.		
Dependency:	Refer to: r0238, p0352		
r0373[0...n]	Motor rated stator resistance / Mot R_stator rated		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the rated motor stator resistance at rated temperature (total of p0625 and p0627).		
Dependency:	Refer to: p0627		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$) .		
r0374[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the motor rotor resistance at an ambient temperature p0625. Refer to: p0625		
Dependency:			
Note:	Refer to: p0625 The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0376[0...n]	Rated motor rotor resistance / Mot rated R_rotor		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the nominal rotor resistance of the motor at the rated temperature. The rated temperature is the sum of p0625 and p0628.		
Dependency:	Refer to: p0628		
Note:	The parameter is not used for synchronous motors ($03300=2 \mathrm{xx}$).		

$\mathbf{r 0 3 7 7 [0 . . . n] ~}$	Motor leakage inductance total / Mot L_Ieak total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$
Description:	Displays the stator leakage inductance of the motor including the motor reactor (p0233).		

r0382[0...n]	Motor magnetizing inductance transformed / Mot L_magn transf		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the magnetizing inductance of the motor.		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0384[0...n]	Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the rotor time constant.		
Note:	The parameter is not used for synchronous motors.		
	The value is calculated from the total of the inductances on the rotor side ($\mathrm{p} 0358, \mathrm{p} 0360$) divided by the rotor resistance (p 0354). The temperature adaptation of the rotor resistance for induction motors is not taken into account.		

r0386[0...n]	Motor stator leakage time constant / Mot T_stator leak		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the stator leakage time constant.		
Note:	The value is calculated from the total of all leakage inductances ($\mathrm{p} 0233, \mathrm{p} 0356, \mathrm{p} 0358$) divided by the total of all motor resistances ($\mathrm{p} 0350, \mathrm{p} 0352$, p 0354). The temperature adaptation of the resistances is not taken into account.		
r0395[0...n]	Actual stator resistance / R_stator act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the actual stator resistance (phase value).		
	The parameter value also contains the temperature-independent cable resistance.		
Dependency:	In the case of induction motors the parameter is also affected by the motor temperature model. Refer to: p0350, p0352, p0620		
Note:	In each case, only the stator resistance of the active Motor Data Set is included with the stator temperature of the thermal motor model.		

r0396[0...n]	Actual rotor resistance / R_rotor act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6730
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the actual rotor resistance (phase value).		
	The parameter is affected by the motor temperature model.		
Dependency:	Refer to: p0354, p0620		
Note:	In each case, only the rotor resistance of the active Motor Data Set is included with the rotor temperature of the thermal motor model.		
	This parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$) .		
p0500	Technology application / Tec application		
PM230	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,5), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	3	3	3
Description:	Sets the technology application.		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using p0340 $=5$.		
Value:	3: Pumps and fans, efficiency optimization		
Notice:	If the technological application is set to p0500 $=0 \ldots 3$ during commissioning ($p 0010=1,5,30$), the operating mode (p 1300) is pre-set accordingly.		
Note:	The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900 > 0 - when writing p0340 $=1,3,5$		
	For $\mathrm{p} 0500=3$ and when the calculation is initiated, the following parameters are set:		
	- p1574 = 2 V		
	- p1580 = 80% (efficiency optimization)		
	- p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.		
	- p1802 = 10 (SVM/FLB with overmodulation and modulation depth reduction over 57 Hz)		
	- p1803 = 115%		
p0500	Technology application / Tec application		
PM240	Access level: 2	Calculated: -	Data type: Integer16
PM250, PM260	Can be changed: $\mathrm{C}(1,5), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	0
Description:	Sets the technology application.		
	The parameter influences the calculation of open-loop and closed-loop control parameters that is e.g. initiated using $\mathrm{p} 0340=5$.		
Value:	0: Standard drive		
	1: Pumps and fans		
	2: Sensorless closed-loop control down to $\mathrm{f}=0$ (passive loads)		
	3: Pumps and fans, efficiency optimization		
Notice:	If the technological application is set to p0500 $=0 \ldots 3$ during commissioning ($p 0010=1,5,30$), the operating mode (p1300) is pre-set accordingly.		
Note:	The calculation of parameters dependent on the technology application can be called up as follows: - when exiting quick commissioning using p3900 > 0 - when writing p0340 $=1,3,5$		

For $\mathrm{p} 0500=0,5$ and when the calculation is initiated, the following parameters are set:

- p1574 = 10 V
- p1611 = 80% (only p0500 = 5)
- p1750.2 = 0
- p1802 $=4($ SVM/FLB without overcontrol $)(P M 240: ~ p 1802=0$, PM260: p1802 $=2)$
- p1803 = 106 \% (PM260: p1803 = 103%)

For $\mathrm{p} 0500=1$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V
$-\mathrm{p} 1750.2=0$
- p1802 = 4 (SVM/FLB without overcontrol) (PM240: p1802 = 0)
- p1803 = 106 \% (PM260: p1803 = 103 \%)

For $\mathrm{p} 0500=2$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V (separately-excited synchronous motor: 4 V)
- p1750.2 = 1
- p1802 = 4 (SVM/FLB without overcontrol) (PM240: p1802 = 0)
- p1803 = 106 \% (PM260: p1803 = 103 \%)

For $p 0500=3$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V
$-\mathrm{p} 1750.2=1$
- p1802 = 4 (SVM/FLB without overcontrol) (PM240: p1802 = 0)
- p1803 = 106 \% (PM260: p1803 = 103%)

Re p1750:
The setting of $p 1750$ is only relevant for induction motors.
p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
This operating mode is possible for passive loads. These include applications where the load does not generate regenerative torque when breaking away and the motor comes to a standstill (zero speed) itself when the pulses are inhibited.
Re p1802 / p1803:
p1802 and p1803 are only changed, in all cases, if a sine-wave output filter ($\mathrm{p} 0230=3,4$) has not been selected.

2.2 List of parameters

```
For p0500 = 3 and when the calculation is initiated, the following parameters are set:
- p1570 = 103% (flux boost for full load)
-p1580 = 100% (efficiency optimization)
-p1574 = 2 V
-p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
- p1802 = 9 or 19 (optimized pulse pattern for p0300=14)
-p1803 = 106 %
```

p0505	Selecting the system of units / Unit sys select		
	Calculated: -		
	Access level: 1	Scaling: -	Data type: Integer16

Description:	Setting to inhibit the calculation of reference parameters (e.g. p2000) when automatically calculating the motor and closed-loop control parameters ($\mathrm{p} 0340, \mathrm{p} 3900$).
Value:	$\begin{array}{ll} 0: & \text { No } \\ \text { 1: } & \text { Yes } \end{array}$
Notice:	The inhibit for the reference value calculation is canceled when new motor parameters (e.g. p0305) are entered and only one drive data set exists ($\mathrm{p} 0180=1$). This is the case during initial commissioning.
	Once the motor and control parameters have been calculated ($\mathrm{p} 0340, \mathrm{p} 3900$), the inhibit for the reference value calculation is automatically re-activated.
Note:	If value $=0$:
	The automatic calculation (p0340, p3900) overwrites the reference parameters.
	If value $=1$:
	The automatic calculation (p0340, p3900) does not overwrite the reference parameters.

p0595

Technological unit selection / Tech unit select		
Access level: 1	Calculated: -	Data type: Integer16
Can be changed: C(5)	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
1	46	1

Description: Selects the units for the parameters of the technology controller. For p0595 = 1, 2, the reference quantity set in p0596 is not active.
\%
2: $\quad 1$ referred no dimensions
3: bar

Data type: Integer16
Dyn. index: -
Func. diagram: -
Factory setting
1

Value:

p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type	
	Access level: 2	Calculated: -
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -
	Units group: -	Unit selection: -
	Min	Data type: Integer16

Note:	The hysteresis is 2 K . When quick commissioning selected (p0300).	with p3900 > 0, the	reset if a catalog motor has no
p0610[0...n]	Motor overtemperat	onse / Mot tem	
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 8016, 8017
	Min	Max	Factory setting
	0	12	12
Description:	Sets the system response	motor temperature	hreshold.
Value:	0: No response only a	duction of I_max	
	1: Messages, reductio		
	2: Messages, no redu	max	
	12: Messages, no redu	max, temperature st	
Dependency:	Refer to: p0601, p0604, p0	4, p0615	
Note:	The I_max reduction is not	for PTC (p0601 =	ontact (p0601 = 4).
	The I_max reduction results	r output frequency.	
	If value = 0:		
	An alarm is output and I_m	duced.	
	If value $=1$:		
	An alarm is output and a tim - for KTY84, the following app	ed. A fault is outpu max. is reduced	active after this timer has exp
	- for PTC, the following is v	. is not reduced	
	If value $=2$:		
	An alarm is output and a tim If value $=12$:	ed. A fault is outpu	active after this timer has exp
	Behavior is always the sam	lue 2.	
	For motor temperature mon a non-volatile fashion. Whe calculation. As a conseque	out temperature se g on, the same valu L508C specification	ing off, the model temperature 14) is taken into account in the

p0611[0...n]	I2t motor model thermal time constant / I2t mot_mod T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 8017
	Min	Max	Factory setting
	0 [s]	20000 [s]	0 [s]
Description:	Sets the winding time constant.		
	The time constant specifies the warm-up time of the cold stator winding when loaded with the motor standstill current (rated motor current, if the motor standstill current is not parameterized) up until a temperature rise of 63% of the continuously permissible winding temperature has been reached.		
Dependency:	This parameter is only used for synchronous motors (p0300 = 2xx, 4).		
	Refer to: r0034, p0612, p0615		
Notice:	This parameter is automatically pre-set from the motor database for motors from the motor list (p0301).		
	When selecting a catalog motor, this parameter cannot be changed (write protection). Information in p0300 should be carefully observed when removing write protection.		
	When exiting commissioning, p0612 is checked, and where relevant, is preassigned to a value that matches the motor power, if a temperature sensor was not parameterized (see p0601).		
Note:	When parameter p0611 is reset to 0 , then this switches out the thermal 12 t motor model (refer to p0612).		
	If no temperature sensor is parameterized, then the ambient temperature for the thermal motor model is referred to p0625.		

p0612[0...n]	Mot_temp_mod activation / Mot_temp_mod act					
	Acc	ess level: 2	Calculated: p0340 = 1		Data type: Unsigned16	
		be changed: U, T	Scaling: -		Dyn. index: MDS	
		group: -	Unit selection: -		Func. diagram: 8017	
	Min		Max		Factory setting	
	-		-		0000001000000010 bin	
Description:	Setting to activate the motor temperature model.					
Bit field:		Signal name		1 signal	0 signal	FP
		00 Activating motor te	del 1 (I2t)	Yes	No	-
	01 Activate motor tem		el 2	Yes	No	-
		Activate motor temperature model 2 expansions		Yes	No	-
Dependency:	For synchronous motors, when exiting commissioning, temperature model 1 is automatically activated if a time constant has been entered in p0611.					
	Refer to: r0034, p0604, p0605, p0611, p0615, p0625, p0626, p0627, p0628					
Note:	Mot_temp_mod: motor temperature model					
	Re bit 00:					
	This bit is used to activate/deactivate the motor temperature model for permanent-magnet synchronous motors Re bit 01:					
		bit is used to activat	the motor te	mperature m	ction motors.	

p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [\%]	100 [\%]	30 [\%]
Description:	Sets the reduction factor for the overtemperature of the thermal adaptation of the stator/rotor resistance. The value is a starting value when switching on. Internally, after switch-on, the reduction factor has no effect corresponding to the thermal time constant.		
Dependency:	Refer to: p0610		
Note:	The reduction factor is only effective for $\mathrm{p} 0610=12$, and refers to the overtemperature.		

p0615[0...n]	Mot_temp_mod 1 (12t) fault threshold / I2t F thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8017
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	220.0 [${ }^{\circ} \mathrm{C}$]	180.0 [${ }^{\circ} \mathrm{C}$]
Description:	Sets the fault threshold for monitoring the motor temperature for motor temperature model $1(12 \mathrm{t})$. - Fault F07011 is output after the fault threshold is exceeded. - fault threshold for r0034 = 100% * (p0615-40) / (p0605-40).		
Dependency:	The parameter is only used for permanent-magnet synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$). Refer to: r0034, p0611, p0612		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis is 2 K .		

p0622[0...n]	Motor excitation time for Rs_ident after powering up again / t_excit Rs_id		
	Access level: 3	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$20.000[\mathrm{~s}]$	0.000 [s]
Description:	Sets the excitation time of the motor for the stator resistance identification after powering up again (restart).		
Dependency:	Refer to: p0621, r0623		

2.2 List of parameters

Notice:	When selecting a standard induction motor listed in the catalog ($\mathrm{p} 0300>100, \mathrm{p} 0301>10000$), this parameter is automatically preassigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p 0300).
p0628[0...n]	Motor overtemperature rotor winding / Mot T_over rotor
	Access level: $4 \quad$ Calculated: $\mathrm{p} 0340=1,2 \mathrm{Cata}$ type: FloatingPoint32
	Can be changed: C(3), U, T Scaling: - Dyn. index: MDS
	Units group: 21_2 Unit selection: p0505 Func. diagram: 8017
	Min Max Factory setting
	$20[\mathrm{~K}]$ 200 [K] 100 [K]
Description:	Defines the rated overtemperature of the squirrel cage rotor referred to ambient temperature.
Dependency:	For 1LA7 motors (p0300), the parameter is pre-set as a function of p0307 and p0311. Refer to: p0625
Notice:	When selecting a standard induction motor listed in the catalog ($\mathrm{p} 0300>100, \mathrm{p} 0301>10000$), this parameter is automatically preassigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p 0300).
p0629[0...n]	Stator resistance reference / R_stator ref
PM330	Access level: 3 Calculated: $\mathrm{p} 0340=1,2$ Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$ Scaling: - Dyn. index: MDS, p0130
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	0.00000 [ohm] 2000.00000 [ohm] 0.00000 [ohm]
Description:	Reference value for the identification of the stator resistance every time the drive is powered up.
Dependency:	The measurement of the reference value is activated by the automatic calculation ($\mathrm{p} 0340=1,2$), if the following conditions apply:
	- the motor temperature is at this instant in time less than $30^{\circ} \mathrm{C}$ (r0035).
	- a KTY temperature sensor is not being used (p0601).
	Refer to: p0621, r0623
Note:	The reference value to identify the stator resistance is determined at the first identification. This must be realized when the motor is in a cold state, as the value refers to the ambient temperature p0625. The feeder cable resistance should be entered into p0352 before the measurement.
	The result must be saved after the first measurement so that the reference is available after the CU has a powered up. When changing p0350 or p0352, the reference value p0629 should be re-determined.

r0630[0...n]	Mot_temp_mod ambient temperature / Mod T_ambient		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8017
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$\left.-{ }^{\circ} \mathrm{C}\right]$	$\left.-{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the ambient temperature of the motor temperature model (models 2 and 3).		

r0631[0...n]	Mot_temp_mod stator iron temperature / Mod T_stator		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8017
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator iron temperature of the motor temperature model (models 2 and 3).		

r0632[0...n]	Mot_temp_mod stator winding temperature / Mod T_winding		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8017
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator winding temperature of the motor temperature model (models 2 and 3).		

r0633[0...n]	Mot_temp_mod rotor temperature / Mod rotor temp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8017
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the rotor temperature of the motor temperature model (model 2).		
Note:	For motor temperature model $3(\mathrm{p} 0612.2=1)$, this parameter is not valid:		

p0640[0...n]	Current limit / Current limit		
	Access level: 2	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 5722, 6640
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit.		
Dependency:	Refer to: r0209, p0323		
Note:	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0305. The current limit p0640 is limited to r0209.		
	The resulting current limit is displayed in r0067 and if required, r0067 is reduced by the thermal model of the power unit.		
	The torque and power limits ($\mathrm{p} 1520, \mathrm{p} 1521, \mathrm{p} 1530, \mathrm{p} 1531$) matching the current limit are automatically calculated when exiting the quick commissioning using $\mathrm{p} 3900>0$ or using the automatic parameterization with p0340 $=3,5$.		
	p0640 must be entered when commissioning the system. This is the reason that p0640 is not calculated by the automatic parameterization when exiting the quick commissioning (p3900>0).		

p0641[0...n]	CI: Current limit variable / Curr lim var		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6640
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the variable current limit.		
	The value is referred to p0640.		
p0644[0...n]	Current limit excitation induction motor / Imax excitat ASM		
PM330	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}, \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	50.0 [\%]	300.0 [\%]	300.0 [\%]
Description:	Maximum excitation current of the induction motor referred to the permissible rated current of the power unit (r0207[0]).		

2.2 List of parameters

Dependency:	Only effective for vector control.
Note:	The parameter is preassigned in the automatic calculation for chassis power units.

p0650[0...n]	Actual motor operating hours / Mot t_oper act		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [h]	4294967295 [h]	0 [h]
Description:	Displays the operating hours for the corresponding motor.		
	The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved.		
Dependency:	Refer to: p0651		
Note:	The operating hours counter in p0650 can only be reset to 0 .		
	The operating hours counter only runs with drive data set 0 and 1 (DDS).		

p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Factory setting	
	$0[\mathrm{~h}]$	$0[\mathrm{~h}]$	
Description:	Sets the service/maintenance intervals in hours for the appropriate motor.		
	An appropriate fault is output when the operating hours set here are reached.		
Dependency:	Refer to: p0650		
Note:	For p0651 $=0$, the operating hours counter is disabled.		
	When setting p0651 to 0, then p0650 is automatically set to 0.		
	The operating hours counter only runs with drive data set 0 and 1 (DDS).		

r0720[0...4]	CU number of inputs and outputs / CU I/O count		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2119
	Min	Max	Factory setting
	-	-	
Description:	Displays the number of inputs and outputs		
Index:	$[0]=$ Number of digital inputs		
	$[1]=$ Number of digital outputs		
	$[2]=$ Number of digital input/outputs bidirectional		
	$[3]=$ Number of analog inputs		
	$[4]=$ Number of analog outputs		

r0721	CU digital inputs terminal actual value / CU DI term act val				
	Access level: 2		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2201, 2221, 2256	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the actual value at the digital inputs.				
	This means that the actual input signal can be checked at terminal DI x or DI/DO \times prior to switching from the simulation mode ($p 0795 \cdot x=1$) to terminal mode ($p 0795 \cdot x=0$).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		DI 0 (T. 5)	High	Low	
		DI 1 (T. 6)	High	Low	-
	02	DI 2 (T. 7)	High	Low	-

2.2 List of parameters

p0724	CU digital inputs debounce time / CU DI t_debounce		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [ms]	20.000 [ms]	4.000 [ms]
Description:	Sets the debounce time for digital inputs.		
Note:	The digital inputs are read in cyclically every 2 ms (DI 11, DI 12 every 4 ms).		
	To debounce the signals, the set debounce time is converted into integer multiple debounce clock cycles $\mathrm{Tp}(\mathrm{Tp}=$ p0724 / 2 ms).		
	DI: Digital Input		
p0730	BI: CU signal source for terminal DO 0 / CU S_src DO 0		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2119, 2030, 2130
	Min	Max	Factory setting
	-	-	52.3
Description:	Sets the signal source for terminal DO 0 (NO: T. 19 / NC: T. 18).		
Recommend.:	r0052.0 Ready for switching on		
	r0052.1 Ready for operation		
	r0052.2 Operation enabled		
	r0052.3 Fault present		
	r0052.4 Coast down active (OFF2)		
	r0052.5 Quick stop active (OFF3)		
	r0052.6 Switching on inhibited active		
	r0052.7 Alarm present		
	r0052.9 Control request		
	r0052.14 Motor rotates forwards		
	r0053.0 DC braking active		
	r0053.1 n_act > p2167 (n_off)		
	r0053.2 n_act <= p1080 (n_min)		
	r0053.3 I_act > p2170		
	r0053.4 n_act > p2155		
	r0053.5 n_act <= p2155		
	r0053.6 n_act >= n_set		
	r0053.10 Technology controller output at the lower limit		
	r0053.11 Technology controller output at the upper limit		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	DO: Digital Output		
	T: Terminal		
	Relay output: NO = normally open, NC = normally closed		
p0731	BI: CU signal source for terminal DO 1 / CU S_src DO 1		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 2119, 2030, 2130
	Min	Max	Factory setting
	-	-	52.7
Description:	Sets the signal source for terminal DO 1 (NO: T. 21).		
Recommend.:	r0052.0 Ready for switching on		
	r0052.1 Ready for operation		
	r0052.2 Operation enabled		

	r0052.3 Fault present
	r0052.4 Coast down active (OFF2)
	r0052.5 Quick stop active (OFF3)
	r0052.6 Switching on inhibited active
	r0052.7 Alarm present
	r0052.9 Control request
	r0052.14 Motor rotates forwards
	r0053.0 DC braking active
	r0053.1 n_act > p2167 (n_off)
	r0053.2 n_act <= p1080 (n_min)
	r0053.3 I_act > p2170
	r0053.4 n_act > p2155
	r0053.5 n_act <= p2155
	r0053.6 n_act >= n_set
	r0053.10 Technology controller output at the lower limit
	r0053.11 Technology controller output at the upper limit
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	DO: Digital Output
	T: Terminal
	Relay output: NO = normally open, NC = normally closed
p0732	BI: CU signal source for terminal DO 2 / CU S_src DO 2
	Access level: 2 Calculated: - Data type: U32 / Binary
	Can be changed: U, T Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: 2119, 2030, 2130
	Min Max Factory setting
	- - 52.2
Description:	Sets the signal source for terminal DO 2 (NO: T. 24 / NC: T. 23).
Recommend.:	r0052.0 Ready for switching on
	r0052.1 Ready for operation
	r0052.2 Operation enabled
	r0052.3 Fault present
	r0052.4 Coast down active (OFF2)
	r0052.5 Quick stop active (OFF3)
	r0052.6 Switching on inhibited active
	r0052.7 Alarm present
	r0052.9 Control request
	r0052.14 Motor rotates forwards
	r0053.0 DC braking active
	r0053.1 n_act > p2167 (n_off)
	r0053.2 n_act <= p1080 (n_min)
	r0053.3 I_act > p2170
	r0053.4 n_act > p2155
	r0053.5 n_act <= p2155
	r0053.6 n_act >= n_set
	r0053.10 Technology controller output at the lower limit
	r0053.11 Technology controller output at the upper limit
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	DO: Digital Output
	T: Terminal
	Relay output: NO = normally open, NC = normally closed

2.2 List of parameters

$\overline{\mathrm{r0747}}$	CU digital outputs status / CU DO status		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	```Func. diagram: 2130, 2131, 2132, 2133```
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status of digital outputs.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 DO 0 (NO: T. 19 / NC: T. 18)	High	Low
	01 DO 1 (NO: T. 21)	High	Low
	02 DO 2 (NO: T. 24 / NC: T. 23)	High	Low
Note:	DO: Digital Output		
	T: Terminal		
	Relay output: $\mathrm{NO}=$ normally open, $\mathrm{NC}=$ normally closed		
	Inversion using p0748 has been taken into account.		

p0748	CU invert digital outputs / CU DO inv			
	Access level: 3 C	Calculated: -	Data type: Unsigned32	
	Can be changed: U, T Sc	Scaling: -	Dyn. index: -	
	Units group: - Un	Unit selection: -	Func. diagram: 2201, 2242	
	Min M	Max	Factory setting	
	-	-	0000 bin	
Description:	Setting to invert the signals at the digital outputs.			
Bit field:		1 signal	0 signal	FP
	$00 \text { DO } 0 \text { (NO: T. } 19 \text { / NC: T. 18) }$	Inverted	Not inverted	-
	$\begin{array}{ll} 00 & \text { DO } 0 \text { (NO: T. } 19 / \mathrm{NC}: ~ T . ~ \\ 01 & \text { DO } 1 \text { (NO: T. 21) } \end{array}$	Inverted	Not inverted	-
	02 DO 2 (NO: T. 24 / NC: T. 23	Inverted		-
Note:	DO: Digital Output			
	T: Terminal			
	Relay output: NO = normally open, NC = normally closed			
r0751.0... 10	BO: CU analog inputs status word / CU Al status word			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: - S	Scaling: -	Dyn. index: -	
	Units group: - U	Unit selection: -	Func. diagram: 2251, 2252	
	Min M	Max	Factory setting	
	-		-	
Description:	Display and binector output for the status of the analog inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Analog input AIO wire breakage	Yes	No	-
	01 Analog input Al1 wire breakage	Yes	No	-
	02 Analog input AI2 wire breakage	Yes	No	-
	08 Analog input AIO no wire breakage	e Yes	No	-
	09 Analog input Al1 no wire breakage	Yes	No	-
	10 Analog input Al2 no wire breakage	Yes	No	-
Note:	AI: Analog Input			

r0752[0...3]	CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual input voltage in \vee when set as voltage input.		
	Displays the actual input current in mA when set as current input and with the load resistor switched in. Displays the actual temperature in ${ }^{\circ} \mathrm{C}$ when set as temperature sensor and the voltage divider is switched in.		
Index:	$[0]=\mathrm{AlO}(\mathrm{~T} .3 / 4)$		
	[2] = Al2 (T. 50/51)		
	[3] = AI3 (T. 52/53)		
Dependency:	The type of analog input Alx (voltage, current or temperature input) is set using p0756.		
	Refer to: p0756		
Note:	AI: Analog Input		
	T: Terminal		
p0753[0...3]	CU analog inputs smoothing time constant / CU AI T_smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description: Index:	Sets the smoothing time constant of the 1st-order low pass filter for the analog inputs.		
	$[1]=$ Al1 (T. 10/11)		
	[2] = Al2 (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Note:	AI: Analog Input		
	T: Terminal		
r0755[0...3]	CO: CU analog inputs actual value in percent / CU AI value in \%		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the currently referred input value of the analog inputs.		
	When interconnected, th	referred to the referen	200x and p205x.
Index:	$[0]=\mathrm{AlO}$ (T. 3/4)		
	[1] = Al1 (T. 10/11)		
	[2] Al ((T. 50/51)		
	[3] = Al3 (T. 52/53)		
Note:	Al: Analog Input		
	T : Terminal		

p0756[0...3]	CU analog inputs type / CU Al type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	0	8	[0] 4
			[1] 4
			[2] 2
			[3] 8
Description:	Sets the type of analog inputs.		
	p0756[0...1] $=0,1,4$ corresponds to a voltage input (r0752, p0757, p0759 are displayed in V).		
	p0756[0...2] = 2, 3 corresponds to a current input (r0752, p0757, p0759 are displayed in mA).		
	$\mathrm{p} 0756[2 \ldots 3]=6,7$ corresponds to a resistor input for temperature measurement (r0752, p0757, p0759 are displayed in ${ }^{\circ} \mathrm{C}$).		
	p0756[2...3] = 8 No temperature sensor connected. Mode for de-activating sensor monitoring (alarm A03520).		
	For the current input, DIP switch AIO/1 or Al2 must be set to "I"		
	For the temperature input, DIP switch A12 must be set to "TEMP".		
Value:	0 : Unipolar voltage input ($0 \mathrm{~V} \ldots+10 \mathrm{~V}$)		
	1: Unipolar voltage input monitored (+2 V $\ldots+10 \mathrm{~V}$)		
	2: Unipolar current input ($0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)		
	3: Unipolar current input monitored (+4 mA to +20 mA)		
	4: Bipolar voltage input ($-10 \mathrm{~V} \ldots+10 \mathrm{~V}$)		
	6: Temperature sensor LG-Ni1000		
	7: Temperature sensor PT1000		
	8: \quad No sensor connected		
Index:	$[0]=$ AlO (T. 3/4)		
	$[1]=$ Al1 (T. 10/11)		
	[2] $=$ Al2 (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Warning:	The maximum voltage difference between analog input terminals $\mathrm{Al}+$, Al -, and the ground must not exceed 35 V .		
\triangle	If the system is operated when the load resistor is switched on (DIP switch set to "l"), the voltage between differential inputs Al+ and AI- must not exceed 10 V or the injected 80 mA current otherwise the input will be damaged.		
Note:	When changing p 0756 , the parameters of the scaling characteristic ($\mathrm{p} 0757, \mathrm{p} 0758$, $\mathrm{p} 0759, \mathrm{p} 0760$) are overwritten with the following default values:		
	For $\mathrm{p} 0756=0,4, \mathrm{p} 0757$ is set to $0.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=10.0 \mathrm{~V}$ and $\mathrm{p} 0760=100.0 \%$.		
	For p0756 $=1$, p 0757 is set to $2.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%$, p $0759=10.0 \mathrm{~V}$ and p $0760=100.0 \%$.		
	For p0756 $=2$, p 0757 is set to $0.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=20.0 \mathrm{~mA}$ and $\mathrm{p} 0760=100.0 \%$.		
	For p0756 $=3, \mathrm{p} 0757$ is set to $4.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%$, p0759 $=20.0 \mathrm{~mA}$ and p $0760=100.0 \%$.		
	For p0756 $=6,7$, p0757 is set to $0^{\circ} \mathrm{C}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=100^{\circ} \mathrm{C}$ and p0760 $=100.0 \%$.		

p0757[0...3]	CU analog inputs characteristic value $\times 1 / \mathrm{CU}$ Al char x 1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-50.000	160.000	0.000
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate ($\mathrm{V}, \mathrm{mA},{ }^{\circ} \mathrm{C}$) of the 1 st value pair of the characteristic.		
Index:	$[0]=$ AlO (T. 3/4)		
	[1] = Al1 (T. 10/11)		
	[2] $\mathrm{Al2}$ (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Note:	The parameters for the characteristic do not have a limiting effect.		

p0758[0...3]	CU analog inputs characteristic value y1 / CU Al char y1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 1st value pair of the characteristic.		
Index:	[0] = AIO (T. 3/4)		
	[1] = Al1 (T. 10/11)		
	[2] = AI2 (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0759[0...3]	CU analog inputs characteristic value x2 / CU Al char x2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min		Factory setting
	-50.000	160.000	[0] 10.000
			[1] 10.000
			[2] 20.000
			[3] 100.000
Description:	Sets the scaling charact	analog inputs.	
	The scaling characteristic	log inputs is defined	
	This parameter specifie	nate ($\mathrm{V}, \mathrm{mA},{ }^{\circ} \mathrm{C}$) of	of the characteristic.
Index:	[0] = AIO (T. 3/4)		
	[1] = Al1 (T. 10/11)		
	[2] = Al2 (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Note:	The parameters for the	do not have a limiti	
p0760[0...3]	CU analog inputs characteristic value y2 / CU Al char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\mathrm{AlO}(\mathrm{~T} .3 / 4)} \\ & {[1]=\mathrm{Al} 1(\mathrm{~T} .10 / 11)} \\ & {[2]=\mathrm{Al} 2(\mathrm{~T} .50 / 51)} \\ & {[3]=\mathrm{Al} 3(\mathrm{~T} .52 / 53)} \end{aligned}$		
Note:	The parameters for the	do not have a limiti	

2.2 List of parameters

p0761[0...3]	CU analog inputs wire breakage monitoring response threshold / CU WireBrkThresh		
	Access level: 2	Calculated: -	Data
	Can be changed: U, T	Scaling: -	Dyn.
	Units group: -	Unit selection: -	Func
	Min	Max	Facto
	0.00	20.00	2.00
Description:	Sets the response threshold for the wire breakage monitoring of the analog inputs.		
	The unit for the parameter value depends on the set analog input type.		
Index:	$[0]=$ AIO (T. 3/4)		
	[1] = Al1 (T. 10/11)		
	[2] = Al2 (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Dependency:	For the following analog input type, the wire breakage monitoring is active: p0756[0...1] = 1 (unipolar voltage input monitored ($+2 \mathrm{~V} \ldots+10 \mathrm{~V}$)), unit [V]		
	p0756[0...2] = 3 (unipolar current input monitored ($+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}$), unit [mA]		
	p0756[3]: Wire breakage monitoring is not supported for this analog input.		
	Refer to: p0756		
Note:	Al: Analog Input		
	When p0761 $=0$, wire breakage monitoring is not carried out.		

p0762[0...3]	CU analog inputs wire breakage monitoring delay time / CU wire brk t_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	100 [ms]
Description:	Sets the delay time for the wire breakage monitoring of the analog inputs.		
Index:	[0] = AIO (T. 3/4)		
	[1] = Al1 (T. 10/11)		
	[2] = Al2 (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Note:	AI: Analog Input		

p0764[0...3]	CU analog inputs dead zone / CU AI dead zone		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2251
	Min	Max	Factory setting
	0.000 [V]	20.000 [V]	0.000 [V]
Description:	Determines the width of the dead zone at the analog input.		
	Analog input type unipolar (e.g. $0 \ldots+10 \mathrm{~V}$):		
	The dead zone starts with the characteristic value $\mathrm{x} 1 / \mathrm{y} 1$ (p0757/p0758).		
	Analog input type bipolar (e.g. $-10 \mathrm{~V} \ldots+10 \mathrm{~V}$):		
	The dead zone is located at the symmetrical center between characteristic value $\mathrm{x} 1 / \mathrm{y} 1$ ($\mathrm{p} 0757 / \mathrm{p} 0758$) and $\mathrm{x} 2 / \mathrm{y} 2$ ($\mathrm{p} 0759 / \mathrm{p} 0760$). The set value doubles the dead zone.		
Index:	[0] = AIO (T. 3/4)		
	[1] $=$ Al1 (T. 10/11)		
	[2] = Al2 (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Note:	AI: Analog Input		
	T : Terminal		

p0771[0...1]	CI: CU analog outputs signal source / CU AO S_src		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 2261
	Min	Max	Factory setting
	-	-	[0] 21 [0]
			[1] 27[0]
Description:	Sets the signal source for the analog outputs. [0] = AOO (T 12/13)		
Index:			
	$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T ~ 26 / 27)} \end{aligned}$		
Note:	AO: Analog Output		
	T: Terminal		
r0772[0...1]	CU analog outputs output value currently referred/ CU AO outp act ref		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description: Index:	Displays the actual referred output value of the analog outputs.		
	$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T 26 / 27)} \end{aligned}$		
Note:	AO: Analog Output		
	T: Terminal		
p0773[0...1]	CU analog outputs smoothing time constant / CU AO T_smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	0.0 [ms]	1000.0 [ms]	0.0 [ms]
Description:	Sets the smoothing time constant of the 1st-order low pass filter for the analog outputs.		
Index:	$\begin{aligned} & {[0]=A O O(T 12 / 13)} \\ & {[1]=\text { AO1 (T 26/27) }} \end{aligned}$		
Note:	AO: Analog Output		
	T: Terminal		
r0774[0...1]	CU analog outputs output voltage/current actual / CU AO U/I_outp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual output voltage or output current at the analog outputs.		
Index:	$\begin{aligned} & {[0]=A O O(T 12 / 13)} \\ & {[1]=A O 1(T 26 / 27)} \end{aligned}$		
Dependency:	Refer to: p0776		
Note:	AO: Analog Output		
	T: Terminal		

2.2 List of parameters

p0775[0...1]	CU analog outputs activate absolute value generation / CU AO absVal act		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	0	1	0
Description:	Activates the absolute value generation for the analog outputs.		
Value:	0 : No absolute value generation 1: Absolute value generation switched in		
Index:	$[0]=A O O(T 12 / 13)$		
Note:	AO: Analog Output		
	T: Terminal		

p0776[0...1]	CU analog outputs type / CU AO type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	0	2	0
Description:	Sets the analog output type.		
	$\mathrm{p} 0776[\mathrm{x}]=1$ corresponds to a voltage output (p 0774 , p0778, p 0780 are displayed in V).		
	$\mathrm{p} 0776[\mathrm{x}]=0,2$ corresponds to a current output ($\mathrm{p} 0774, \mathrm{p} 0778, \mathrm{p} 0780$ are displayed in mA).		
Value:	0: Current output ($0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)		
	2: Current output (+	mA)	
Index:	$[0]=\mathrm{AOO}$ (T 12/13)		
	[1] = AO1 (T 26/27)		
Note:	When changing p0776, the parameters of the scaling characteristic (p 0777 , p 0778 , $\mathrm{p} 0779, \mathrm{p} 0780$) are overwritten with the following default values:		
	For p0776 $=0, \mathrm{p} 0777$ is set to 0.0%, p0778 $=0.0 \mathrm{~mA}, \mathrm{p} 0779=100.0 \%$ and p0780 to 20.0 mA .		
	For p0776 $=1, \mathrm{p} 0777$ is set to $0.0 \%, \mathrm{p} 0778=0.0 \mathrm{~V}, \mathrm{p} 0779=100.0 \%$ and p0780 to 10.0 V .		
	For p0776 $=2$, p0777 is set to 0.0%, p0778 $=4.0 \mathrm{~mA}, \mathrm{p} 0779=100.0 \%$ and p0780 to 20.0 mA .		

p0777[0...1]	CU analog outputs characteristic value $\mathrm{x} 1 / \mathrm{CU}$ AO char x 1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the x coordinate (percentage) of the 1 st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=A O 0(T 12 / 13)} \\ & {[1]=A O 1(T 26 / 27)} \end{aligned}$		
Dependency:	Refer to: p0776		
Notice:	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
Note:			

p0778[0...1]	CU analog outputs characteristic value y1 / CU AO char y1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	0.000 [V]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in V or output current in mA) of the 1st value pair of the characteristic.		
Index:	[0] = AOO (T 12/13)		
	[1] = AO1 (T 26/27)		
Dependency:	The unit of this parameter (V or mA) depends on the analog output type.		
	Refer to: p0776		
Notice:	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0779[0..1]	CU analog outputs characteristic value x2 / CU AO char x2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the x coordinate (percentage) of the 2 nd value pair of the characteristic.		
Index:	[0] = AO0 (T 12/13)		
	[1] = AO1 (T 26/27)		
Dependency:	Refer to: p0776		
Notice:	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0780[0...1]	CU analog outputs characteristic value y2 / CU AO char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9572
	Min	Max	Factory setting
	-20.000 [V]	20.000 [V]	20.000 [V]
Description:	Sets the scaling characteristic for the analog outputs.		
	The scaling characteristic for the analog outputs is defined using 2 points.		
	This parameter specifies the y coordinate (output voltage in V or output current in mA) of the 2 nd value pair of the characteristic.		
Index:	$[0]=\mathrm{AOO}(\mathrm{~T} 12 / 13)$		
Dependency:	The unit of this parameter (V or mA) depends on the analog output type.		
	Refer to: p 0776		
Notice:	This parameter is automatically overwritten when changing p0776 (type of analog outputs).		
Note:	The parameters for the characteristic do not have a limiting effect.		

2.2 List of parameters

	$11 \quad \mathrm{DI} 11(\mathrm{~T} .3,4) \mathrm{Al} 0$	Simulation
Dependency:	$12 \quad$ DI $12(\mathrm{~T} .10,11) \mathrm{Al} 1$	Simulation

p0796	CU digital inputs simulation mode setpoint / CU DI simul setp		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2201, 2221, 2256
	Min	Max	Factory setting
	-	-	0000000000000000 bin
Description:	Sets the setpoint for the input signals in the digital input simulation mode.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 DI 0 (T. 5)	High	Low
	01 DI 1 (T. 6)	High	Low
	02 DI 2 (T. 7)	High	Low
	03 DI 3 (T. 8)	High	Low
	04 DI 4 (T. 16)	High	Low
	05 DI 5 (T. 17)	High	Low
	11 DI 11 (T. 3, 4) Al 0	High	Low
	12 DI 12 (T. 10, 11) Al 1	High	Low
Dependency:	The simulation of a digital input is selected using p0795.		
	Refer to: p0795		
Note:	This parameter is not saved when data is backed up (p0971).		
	AI: Analog Input		
	DI: Digital Input		
	T: Terminal		

p0797[0...3]	CU analog inputs simulation mode / CU Al sim_mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the simulation mode for the analog inputs.		
Value:	0 : Terminal evalua 1: Simulation for a	input x	
Index:	$\begin{aligned} & {[0]=\text { AIO }(\mathrm{T} .3 / 4)} \\ & {[1]=\mathrm{Al} 1(\mathrm{~T} .10 / 11)} \\ & {[2]=\mathrm{Al} 2(\mathrm{~T} .50 / 51)} \\ & {[3]=\text { AI3 (T. 52/53) }} \end{aligned}$		
Dependency:	The setpoint for the input Refer to: p0798	pecified via p0798.	
Note:	This parameter is not saver AI: Analog Input	a is backed up (p 0	

p0798[0...3]	CU analog inputs simulation mode setpoint / CU AI sim setp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-50.000	2000.000	0.000
Description:	Sets the setpoint for the input value in the simulation mode of the analog inputs.		
Index:	[0] = AlO (T. 3/4)		
	[1] = Al1 (T. 10/11)		
	[2] = Al2 (T. 50/51)		
	[3] = Al3 (T. 52/53)		
Dependency:	The simulation of an analog input is selected using p0797.		
	If Al x is parameterized as a voltage input (p 0756), the setpoint is a voltage in V .		
	If Al x is parameterized as a current input (p 0756), the setpoint is a current in mA.		
	Refer to: p0756, p0797		
Note:	This parameter is not saved when data is backed up (p0971).		
	Al: Analog Input		

p0802	Data transfer: memory card as source/target / mem_card src/targ		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	100	0
Description:	Sets the number for data transfer of a parameter backup from/to memory card.		
	Transfer from memory card to device memory (p0804 = 1):		
	- Sets the source of parameter backup (e.g. p0802 = 48 --> PS048xxx.ACX is the source).		
	Transfer from non-volatile device memory to memory card (p0804 = 2):		
	- Sets the target of parameter backup (e.g. p0802 = 23 --> PS023xxx.ACX is the target).		
Dependency:	Refer to: p0803, p0804		
Notice:	If the data between the volatile and non-volatile device memories differ, then it may be necessary to save the data on the memory card in a non-volatile fashion prior to the transfer (e.g. p0971 $=1$).		

p0803	Data transfer: device memory as source/target / Dev_mem src/targ		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	12	0
Description:	Sets the number for data transfer of a parameter backup from/to device memory.		
	Transfer from memory card to device memory (p0804 = 1):		
	- Sets the target of the parameter backup (e.g. p0803 = 10 --> PS010xxx.ACX is the target).		
	Transfer from non-volatile device memory to memory card (p0804 = 2):		
	- Sets the source of the parameter backup (e.g. p0803 = 11 --> PS011xxx.ACX is the source).		
Value:	0: Source/target		
	10: Source/target		
	11: Source/target		
	12: Source/target		
Dependency:	Refer to: p0802, p0804		
Notice:	If the data between the volatile and non-volatile device memories differ, then it may be necessary to save the data on the memory card in a non-volatile fashion prior to the transfer (e.g. p0971 = 1).		

p0804	Data transfer start / Data transf start
CU230P-2_BT	Access level: 3 Calculated: - Data type: Integer16
CU230P-2_CAN	Can be changed: T Scaling: - Dyn. index: -
CU230P-2_HVAC	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	011000
Description:	Sets the transfer direction and start of data transfer between the memory card and non-volatile device memory. Example 1:
	The parameter backup is to be transferred from the device memory to the memory card with setting 0 . The parameter backup is to be stored on the memory card with setting 22.
	p0802 $=22$ (parameter backup stored on memory card as target with setting 22)
	p0803 $=0$ (parameter backup stored in device memory as source with setting 0)
	p0804 = 2 (start data transfer from device memory to memory card)
	--> PS000xxx.ACX is transferred from device memory to memory card and stored as PS022xxx.ACX.
	Example 2:
	The parameter backup is to be transferred from the memory card to the device memory with setting 22. The parameter backup is to be stored in the device memory as setting 0.
	p0802 $=22$ (parameter backup stored on memory card as source with setting 22)
	$\mathrm{p} 0803=0$ (parameter backup stored in device memory as target with setting 0)
	p0804 = 1 (start data transfer from memory card to device memory)
	--> PS022xxx.ACX is transferred from memory card to device memory and stored as PS000xxx.ACX.
	Example 3 (only supported for PROFIBUS/PROFINET):
	The PROFIBUS or PROFINET device master data (GSD) should be transferred from the device memory to the memory card.
	p0802 $=($ not relevant $)$
	p0803 = (not relevant)
	p0804 = 12 (start transferring the GSD files to the memory card)
	--> The GSD files are transferred from the device memory to the memory card and stored in the /SIEMENS/SINAMICS/DATA/CFG directory.
Value:	0 : Inactive
	1: Memory card to device memory
	2: Device memory to memory card
	1001: File on memory card cannot be opened
	1002: File in device memory cannot be opened
	1003: Memory card not found
	1100: File cannot be transferred
Dependency:	Refer to: p0802, p0803
Notice:	The memory card must not be removed while data is being transferred.
	For p0014 = 1, the following applies:
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note:	If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory.
	When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM").
	Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value > 1000. Possible fault causes:
	p0804 = 1001:
	The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card.
	p0804 = 1002:
	The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory.
	p0804 = 1003:
	No memory card has been inserted.

p0804	Data transfer start / Data transf start
CU230P-2_DP	Access level: 3 Calculated: - Data type: Integer16
CU230P-2_PN	Can be changed: T Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	011000
Description:	Sets the transfer direction and start of data transfer between the memory card and non-volatile device memory. Example 1:
	The parameter backup is to be transferred from the device memory to the memory card with setting 0 . The parameter backup is to be stored on the memory card with setting 22.
	p0802 $=22$ (parameter backup stored on memory card as target with setting 22)
	p0803 $=0$ (parameter backup stored in device memory as source with setting 0)
	p0804 $=2$ (start data transfer from device memory to memory card)
	--> PS000xxx.ACX is transferred from device memory to memory card and stored as PS022xxx.ACX.
	Example 2:
	The parameter backup is to be transferred from the memory card to the device memory with setting 22. The parameter backup is to be stored in the device memory as setting 0 .
	p0802 $=22$ (parameter backup stored on memory card as source with setting 22)
	p0803 $=0$ (parameter backup stored in device memory as target with setting 0)
	p0804 = 1 (start data transfer from memory card to device memory)
	--> PS022xxx.ACX is transferred from memory card to device memory and stored as PS000xxx.ACX.
	Example 3 (only supported for PROFIBUS/PROFINET):
	The PROFIBUS or PROFINET device master data (GSD) should be transferred from the device memory to the memory card.
	p0802 $=$ (not relevant)
	p0803 $=$ (not relevant)
	p0804 $=12$ (start transferring the GSD files to the memory card)
	--> The GSD files are transferred from the device memory to the memory card and stored in the /SIEMENS/SINAMICS/DATA/CFG directory.
Value:	0 0: Inactive
	1: Memory card to device memory
	2: Device memory to memory card
	12: Device memory (GSD files) to memory card
	1001: File on memory card cannot be opened
	1002: File in device memory cannot be opened1003: Memory card not found
	1100: File cannot be transferred
Dependency:	Refer to: p0802, p0803
Notice:	The memory card must not be removed while data is being transferred.
	For p0014 = 1, the following applies:
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.
Note:	If a parameter backup with setting 0 is detected on the memory card when the Control Unit is switched on (PS000xxx.ACX), this is transferred automatically to the device memory.
	When the memory card is inserted, a parameter backup with setting 0 (PS000xxx.ACX) is automatically written to the memory card when the parameters are saved in a non-volatile memory (e.g. by means of "Copy RAM to ROM").
	Once the data has been successfully transferred, this parameter is automatically reset to 0 . If an error occurs, the parameter is set to a value > 1000. Possible fault causes:
	p0804 $=1001$:
	The parameter backup set in p0802 as the source on the memory card does not exist or there is not sufficient memory space available on the memory card.
	The parameter backup set in p0803 as the source in the device memory does not exist or there is not sufficient memory space available in the device memory.
	p0804 = 1003:No memory card has been inserted.

p0806	BI: Inhibit master control / PcCtrl inhibit			
	Access level: 3	Calculated: -	Data type: U32 / Binary	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source to block the master control.			
Dependency:	Refer to: r0807			
Note:	The commissioning software (drive control panel) uses the master control, for example.			
r0807.0	BO: Master control active / PcCtrl active			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays what has the master control.			
	The drive can be controlled via the BICO interconnection or from external (e.g. the commissioning software).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Master control active	Yes	No	3030
Dependency:	Refer to: p0806			
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device.			
Note:	Bit $0=0$: BICO interconnection active			
	Bit $0=1$: Master control for PC/AOP			
	The commissioning software (drive control panel) uses the master control, for example.			
p0809[0...2]	Copy Command Data Set CDS / Copy CDS			
	Access level: 2	Calculated: -	Data type: Unsigned8	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: 8560	
	Min	Max	Factory setting	
	0	3	0	
Description:	Copies one Command Data Set (CDS) into another.			
Index:	$\begin{aligned} & {[0]=\text { Source Command Data Set }} \\ & {[1]=\text { Target Command Data Set }} \\ & {[2]=\text { Start copying procedure }} \end{aligned}$			
Dependency:	Refer to: r3996			
Notice:	When the command data sets are copied, short-term communication interruptions may occur.			
Note:	Procedure:			
	1. In Index 0, enter which command data set should be copied.			
	2. In Index 1, enter the command data set that is to be copied into.			
	3. Start copying: Set index 2 from 0 to 1 .			
	p0809[2] is automatically set to 0 when copying is completed.			
p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0			
CU230P-2_BT	Access level: 2	Calculated: -	Data type: U32 / Binary	
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: -	
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 8560	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).			
Dependency:	Refer to: r0050, p0811, r0836			

2.2 List of parameters

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad The Command Data Set selected using the binector inputs is displayed in r0836.
The currently effective command data set is displayed in r0050.
A Command Data Set can be copied using p0809.

p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
CU230P-2_DP	Access level: 2	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	-	-	722.3
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		
Dependency:	Refer to: r0050, p0811, r0836		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		
p0811	BI: Command data set selection CDS bit 1 / CDS select., bit 1		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Command Data Set bit 1 (CDS bit 1).		
Dependency:	Refer to: r0050, p0810, r0836		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		

p0819[0...2]	Copy Drive Data Set DDS / Copy DDS		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: C(15)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8565
	Min	Max	Factory setting
	0	3	0
Description:	Copies one Drive Data Set (DDS) into another.		
Index:	$[0]=$ Source Drive Data Set[1] $=$ Target Drive Data Set[2] S Start copying procedure		
Dependency:	Refer to: r3996		
Notice:	When the drive data sets are copied, short-term communication interruptions may occur.		
Note:	Procedure:		
	1. In Index 0 , enter which drive data set is to be copied.		
	2. In Index 1, enter the drive data set data that is to be copied into.		
	3. Start copying: Set index 2 from 0 to 1.		
	p0819[2] is automatically set to 0 when copying is completed.		

p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: $\mathrm{C}(15), \mathrm{T}$	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 8565
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 0 (DDS, bit 0).		
Dependency:	Refer to: r0051, p0826, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: $\mathrm{C}(15), \mathrm{T}$	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 8565, 8570
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0826[0...n]	Motor changeover motor number / Mot_chng mot No.		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	0
Description:	Sets the freely-assignable motor number for the drive data set changeover.		
	If the same motor is driven by different drive data sets, the same motor number must also be entered in these data sets.		
	If the motor is also switched with the drive data set, different motor numbers must be used. In this case, the data set can only be switched when the pulse inhibit is set.		
Note:	If the motor numbers are identical, the same thermal motor model is used for calculation after data set changeover. If different motor numbers are used, different models are also used for calculating (the inactive motor cools down in each case).		
	For the same motor number, the correction values of the Rs, Lh or kT adaptation are applied for the data set changeover (refer to r1782, r1787, r1797).		

r0835.2.. 8	CO/BO: Data set changeover status word / DDS_ZSW					
	Acc	ess level: 2	Calculated: -		Data type: Unsigned16	
	Can	be changed: -	Scaling: -		Dyn. index: -	
	Uni	group: -	Unit selection: -		Func. diagram: 8575	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the status word for the drive data set changeover.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	02	Internal param	ctive	Yes	No	-
	04	Armature short		Yes	No	-
	05	Identification ru		Yes	No	-
	07	Rotating meas		Yes	No	-
	08	Motor data iden		Yes	No	-

Note:
Re bit 02:
A data set changeover is delayed by the time required for the internal parameter calculation. Re bit 04:
A data set changeover is only carried out when the armature short circuit is not activated.

2.2 List of parameters

Re bit 05:
A data set changeover is only carried out when pole position identification is not running.
Re bit 07:
A data set changeover is only carried out when rotating measurement is not running.
Re bit 08:
A data set changeover is only carried out when motor data identification is not running.

r0836.0.. 1	CO/BO: Command Data Set CDS selected / CDS selected			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: 8560	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the command data set (CDS) selected via the binector input.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 CDS select. bit 0	ON	OFF	-
	01 CDS select. bit 1	ON	OFF	-
Dependency:	Refer to: r0050, p0810, p0811			
Note:	Command data sets are selected via binector input p0810 and following.			
	The currently effective command data set is displayed in r0050.			

r0837.0... 1	CO/BO: Drive Data Set DDS selected / DDS selected			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: 8565	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the drive data set (DDS) selected via the binector input.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DDS select. bit 0	ON	OFF	-
	01 DDS select. bit 1	ON	OFF	-
Dependency:	Refer to: r0051, p0820, p0821			
Note:	Drive data sets are selected via binector input p0820 and following.			
	The currently effective drive data set is displayed in r0051.			
	If there is only one data set, then a value of 0 is displayed in this parameter and not the selection via binector inputs.			

p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Max selection: -	Func. diagram: 2501, 2610, 8720,
	Min	-	Factory setting

Notice:	For binector input p0840 = 0 signal, the motor can be moved, jogging using binector input p1055 or p1056.
	The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.
	For binector input p0840 $=0$ signal, the switch-on inhibit is acknowledged.
	Only the signal source that originally powered up can also power down again.
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	For drives with closed-loop speed control (p1300 = 20), the following applies:
	- BI: p0840 = 0 signal: OFF1 (braking with the ramp-function generator, then pulse suppression and switch-on inhibit)
	For drives with closed-loop torque control (p1300 = 22), the following applies:
	- BI: p0840 = 0 signal: immediate pulse suppression
	For drives with closed-loop torque control (activated using p1501), the following applies:
	- BI: p0840 = 0 signal: No dedicated braking response, but pulse cancelation when standstill is detected (p1226, p1227)
	For drives with closed-loop speed/torque control, the following applies:
	- BI: p0840 = 0/1 signal: ON (pulses can be enabled)

p0840[0...n]	Bl: ON / OFF (OFF1) / ON / OFF (OFF1)		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 2610, 8720, 8820, 8920
	Min	Max	Factory setting
	-	-	[0] 2090.0
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for the command "ON/OFF (OFF1)".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p1055, p1056		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056. The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.		
	Only the signal source that originally powered up can also power down again.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For drives with closed-loop speed control (p1300 = 20), the following applies:		
	- BI: p0840 = 0 signal: OFF1 (braking with the ramp-function generator, then pulse suppression and switch-on inhibit)		
	For drives with closed-loop torque control ($\mathrm{p} 1300=22$), the following applies:		
	- BI: p0840 = 0 signal: immediate pulse suppression		
	For drives with closed-loop torque control (activated using p1501), the following applies:		
	- BI: p0840 = 0 signal: No dedicated braking response, but pulse cancelation when standstill is detected (p1226, p1227)		
	For drives with closed-loop speed/torque control, the following applies:		

2.2 List of parameters

2.2 List of parameters

BI: p0848 = 1 signal and $\mathrm{BI}:$ p0849 $=1$ signal

- No OFF3 (enable is possible)
Caution: When "master control from PC" is activated, this binector input is ineffective

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: For drives with closed-loop torque control (activated using p1501), the following applies:
BI: p0848 = 0 signal:

- No dedicated braking response, but pulse suppression when standstill is detected (p1226, p1227).

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note: \quad For drives with closed-loop torque control (activated using p1501), the following applies: BI: p0848 = 0 signal:

- No dedicated braking response, but pulse suppression when standstill is detected ($\mathrm{p} 1226, \mathrm{p} 1227$).

p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2		
PM230	Access level: 3	Calculated: -	Data type: U32 / Binary
PM240	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI: p0848 = 0 signal or BI : p0849 $=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit)		
	$\mathrm{BI}: \mathrm{p} 0848=1$ signal and BI: p0849 = 1 signal		
	- No OFF3 (enable is possible)		
Caution:	When "master control	vated, this binector	

Note:	For drives with closed-loop torque control (activated using p1501), the following applies:
	BI: p0849 $=0$ signal:
	- No dedicated braking response, but pulse suppression when standstill is detected (p1226, p1227).

p0849[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2		
PM330	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	4022.2
Description:	Sets the second signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI : p0848 $=0$ signal or BI : $\mathrm{p} 0849=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit)		
	$\mathrm{BI}: \mathrm{p} 0848=1$ signal and $\mathrm{BI}:$ p0849 = 1 signal		
	- No OFF3 (enable is possible)		
Caution:	When "master control from PC " is activated, this binector input is effective.		
Note:	For drives with closed-loop torque control (activated using p1501), the following applies:		
	BI: p0849 = 0 signal:		
	- No dedicated brakin	pulse suppression	detected (p1226, p1227).

p0852[0...n]	BI: Enable operation/inhibit operation / Operation enable		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable operation/inhibit operation".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).		
	BI: p0852 $=0$ signal		
	Inhibit operation (suppress pulses).		
	BI: $00852=1$ signal		
	Enable operation (pulses can be enabled).		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		

Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0852[0...n]	BI: Enable operation/inhibit operation / Operation enable		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	$[0] 2090.3$
		$[1] 1$	
		$[2] 2090.3$	
		$[3] 2090.3$	

[^0]
2.2 List of parameters

BI: p0852 $=0$ signal
Inhibit operation (suppress pulses).
$\mathrm{BI}: \mathrm{p} 0852=1$ signal
Enable operation (pulses can be enabled).
Caution: When "master control from PC" is activated, this binector input is ineffective.

Notice:
The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "control by PLC/no control by PLC".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).		
	BI: p0854 $=0$ signal		
	No control by PLC		
	BI: p0854 = 1 signal		
	Master control by PLC.		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
\triangle			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 .		
	If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration ($\mathrm{p} 0922=999$).		

p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting

[0] 2090.10
[1] 1
[2] 2090.10
[3] 2090.10

Description:	Sets the signal source for the command "control by PLC/no control by PLC".
For the PROFldrive profile, this command corresponds to control word 1 bit 10 (STW1.10).	
BI: p0854 = 0 signal	
	No control by PLC
BI: p0854 = 1 signal	
Master control by PLC.	
Caution:	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed. Note:
	This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1. If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration (p0922 = 999).

p0857	Power unit monitoring time / PU t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8760, 8864, 8964
	Min	Max	Factory setting
	100.0 [ms]	60000.0 [ms]	10000.0 [ms]
Description:	Sets the monitoring time for the power unit.		
	The monitoring time is started after an 0/1 edge of the ON/OFF1 command. If the power unit does not return a READY signal within the monitoring time, fault F07802 is output.		
Notice:	The maximum time to pre-charge the DC link is monitored in the power unit and cannot be changed. The maximum pre-charging duration depends on the power unit.		
	The monitoring time for the pre-charging is started after the ON command (BI: p0840 $=0 / 1$ signal). Fault F 30027 is output when the maximum pre-charging duration is exceeded.		
Note:	The factory setting for p0857 depends on the power unit.		
	The monitoring time for the ready signal of the power unit includes the time to pre-charge the DC link and, if relevant, the de-bounce time of the contactors.		
	If an excessively low value is entered into p0857, then after enable, this results in the corresponding fault.		
p0860	BI: Line contactor feedback signal / Line contact feedb		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	863.1
Description:	Sets the signal source for the feedback signal from the line contactor.		
Recommend.:	When the monitoring is activated (BI : p0860 not equal to r0863.1), then to control the line contactor, signal BO: r0863.1 of its own drive object should be used.		
Dependency:	Refer to: p0861, r0863		
Notice:	The line contactor monitoring is de-activated if the control signal of the particular drive object is set as the signal source for the feedback signal of the line contactor (BI: $00860=r 0863.1$).		
Note:	The state of the line contactor is monitored depending on signal BO: r0863.1.		
	When the monitoring is activated (BI: p0860 not equal to r0863.1), fault F07300 is then also output if the contactor is closed before it is controlled using r0863.1.		
p0861	Line contactor monitoring time / LineContact t_mon		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	5000 [ms]	100 [ms]
Description:	Sets the monitoring time of the line contactor.		
	This time starts each time that the line contactor switches (r0863.1). If a feedback signal is not received from the line contactor within the time, a message is output.		
Dependency:	Refer to: p0860, r0863		
Note:	The monitoring function is disabled for the factory setting of p0860.		
r0863.1	CO/BO: Drive coupling status word/control word / CoupleZSW/STW		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	
Description:	Display and BICO output for the status word and control word of the drive coupling.		

Bit field:

Note:

1 signal

Yes

0 signal
No

Re bit 01:
Bit 1 is used to control an external line contactor.

p0869

Bit field:	Bit Signal name	$\mathbf{1}$ signal	F signal	No
	$00 \quad$ Keep main contactor closed for STO	Yes		
Dependency:	Refer to: p0867			
Note:	Re bit 00:			
	After withdrawing the OFF1 enable (source of p0840), the main contactor is opened after the main contactor holding			

For p0869.0 = 1, after withdrawing STO, the switch-on inhibit must be acknowledged via the source of p0840 = 0 (OFF1) - and before the main contactor holding time expires (p0867), should go back to 1 , otherwise the main contactor will open.

r0898.0... 10	CO/BO: Control word sequence control / STW seq_ctrl				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Dyn. index: -	
	Units group: - U		Unit selection: -	Func. diagram: 2501	
	Min		Max	Factory setting	
	-	-	-	-	
Description:	Display and connector output for the control word of the sequence control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
	03	Operation enable	Yes	No	-
	04	Ramp-function generator enable	Yes	No	-
	05	Continue ramp-function generator	r Yes	No	-
	06	Speed setpoint enable	Yes	No	-
	08	Jog 1	Yes	No	3001
	09	Jog 2	Yes	No	3001
	10	Master ctrl by PLC	Yes	No	-

Note:	OC: Operating condition			
r0899.0... 11	CO/BO: Status word sequence control / ZSW seq_ctrl			
	Access level: 2	Calculated: -	Data type: Unsi	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram:	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and BICO output for the status word of the sequence control.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Rdy for switch on	Yes	No	-
	01 Ready	Yes	No	-
	02 Operation enabled	Yes	No	-
	03 Jog active	Yes	No	-
	04 No coasting active	OFF2 inactive	OFF2 active	-
	05 No Quick Stop active	OFF3 inactive	OFF3 active	-
	06 Switching on inhibited active	Yes	No	-
	07 Drive ready	Yes	No	-
	08 Controller enable	Yes	No	-
	09 Control request	Yes	No	-
	11 Pulses enabled	Yes	No	-
Note:	Re bits 00, 01, 02, 04, 05, 06, 09:			
	For PROFIdrive, these signals are used for status word 1.			
p0918	PROFIBUS address / PB address			
CU230P-2_DP	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection:	Func. diagram: 2401, 2410	
		Max	Factory setting	
		126	126	
Description:	Displays or sets the PROFIBUS address for PROFIBUS interface on the Control Unit.			
	The address can be set as follows:			
	1) Using the DIP switch on the Control Unit.			
	--> p0918 can then only be read and displays the selected address.			
	--> A change only becomes effective after a POWER ON.			
	2) Using p0918			
	--> Only if all of the DIP switches are set to ON or OFF.			
	--> The address is saved in a non-volatile fashion using the function "copy from RAM to ROM".			
	--> A change only becomes effective after a POWER ON.			
Notice:	For p0014 = 1, the following applies:			
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when r3996 $=0$.			
	For p0014 = 0, the following applies:			
	Before a changed setting becomes permanently effective, a non-volatile RAM to ROM data save is required. To do this, set p0971 = 1 or p0014 $=1$.			
Note:	Permissible PROFIBUS addresses: $1 . . .126$			
	Address 126 is used for commissioning.			
	Every PROFIBUS address change only becomes effective after a POWER ON.			
p0922	PROFIdrive PZD telegram selection / PZD telegr_sel			
CU230P-2_DP	Access level: 1	Calculated: -	Data type: Unsi	
CU230P-2_PN	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: 2401, 2420	
	Min	Max	Factory setting	
	1	999	1	
Description:	Sets the send and receive telegram.			

2.2 List of parameters

| Value: | $1: \quad$ Standard telegram 1, PZD-2/2 |
| :--- | :--- | :--- |
| | $20: \quad$ Standard telegram 20, PZD-2/6 |
| | $350: \quad$ SIEMENS telegram 350, PZD-4/4 |
| $352: \quad$ SIEMENS telegram 352, PZD-6/6 | |
| | $353: \quad$ SIEMENS telegram 353, PZD-2/2, PKW-4/4 |
| | $354: \quad$ SIEMENS telegram 354, PZD-6/6, PKW-4/4 |
| | $999: \quad$ Free telegram configuration with BICO |
| Dependency: | Refer to: p2038 |
| Note: | For p0922 = $100 \ldots 199$, p2038 is automatically set to 1 and p2038 can no longer be changed. This means that for |
| | these telegrams, the "SIMODRIVE 611 universal" interface mode is set and cannot be changed. |
| | If a value is not equal to 999, a telegram is set and the automatically set interconnections in the telegram are |
| | inhibited. |
| | The inhibited interconnections can only be changed again after setting value 999. |

r0944	CO: Counter for fault buffer changes / Fault buff change		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	-	Factory setting
	-	-	
Description:	Displays fault buffer changes. This counter is incremented every time the fault buffer changes.		
Recommend.:	Used to check whether the fault buffer has been read out consistently.		
Dependency:	Refer to: ro945, r0947, ro948, ro949, r2109		

r0945[0...63]	Fault code /Fault code		
	Access level: 3	Calculated: -	Data type: Unsigned16

r0946[0...65534]	Fault code list / Fault code list		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	-	Factory setting
Description:	-	-	
	Lists the fault codes stored in the drive unit.		
Dependency:	The indices can only be accessed with a valid fault code.		
	The parameter assigned to the fault code is entered in r0951 under the same index.		

r0947[0..63]	Fault number / Fault number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	-	-	-
Description:	This parameter is identic		
r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0949, r2109, r2130, r2133, r2136, p8400		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		
r0949[0...63]	Fault value / Fault value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the fault that occurred (as integer number).		
Dependency:	Refer to: r0945, r0947, r0948, r2109, r2130, r2133, r2136, r3120, r3122		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
p0952	Fault cases counter / Fault cases qty		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6700, 8060
	Min	Max	Factory setting
	0	65535	0
Description:	Number of fault situations that have occurred since the last reset.		
Dependency:	The fault buffer is deleted (cleared) by setting p0952 to 0.		
	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
r0963	PROFIBUS baud rate / PB baud rate		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the corresponding value for the PROFIBUS baud rate.		
Value:	0: $9.6 \mathrm{kbit} / \mathrm{s}$ 1: $19.2 \mathrm{kbit} / \mathrm{s}$ 2: $93.75 \mathrm{kbit} / \mathrm{s}$		

2.2 List of parameters

p0969	System runtime relat	System relative	
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	0 [ms]	4294967295 [ms]	0 [ms]
Description:	Displays the system runtime in ms since the last POWER ON.		
Note:	The value in p0969 can only be reset to 0 .		
	The value overflows after approx. 49 days.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		
p0970	Reset drive parameters / Drive par reset		
	Access level: 1	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(1,30)$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	300	0
Description:	The parameter is used to initiate the reset of the drive parameters.		
	Parameters p0100, p0205 are not reset.		
	The following motor parameters are defined in accordance with the power unit: p0300 ... p0311.		
	When downloading settings $10,11,12$, the buffer memory mode is automatically deactivated (p0014 = 0).		
Value:	0 : Inactive		
	1: Start a parameter reset		
	3: Start download of volatile parameters from RAM		
	10: Start loading the parameters saved with p0971=10		
	11: Start loading the parameters saved with p0971=11		
	12: \quad Start loading the parameters saved with $p 0971=12$		
	100: Start a BICO interconnection reset		
	300: Only Siemens int		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
	When the buffer memory is active (see p0014), the actual parameters are backed up from RAM to ROM when a parameter set is loaded ($\mathrm{p} 0970=10,11,12$).		
	Peculiarities of communication via PROFIBUS DP:		
	- Communication with Class 1 masters (e.g. S7 controllers) is interrupted.		
	- Communication with Class 2 masters (e.g. STARTER) is retained.		
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset).		
	At the end of the calculations, p0970 is automatically set to 0 .		
	Parameter reset is completed with p0970 = 0 and r3996[0] $=0$.		
	The following generally applies:		
	One index of parameters p2100, p2101, p2118, p2119, p2126, p2127 is not reset, if a parameterized message is precisely active in this index.		
p0971	Save parameters / Save par		
	Access level: 1	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	12	0
Description:	Setting to save parameters in the non-volatile memory.		
	When saving, only the adjustable parameters intended to be saved are taken into account.		
Value:	0 : Inactive		
	1: Save drive object		
	10: Save in non-volatile	as setting 10	

2.2 List of parameters

	11: \quad Save in non-volatile memory as setting 11 12: \quad Save in non-volatile memory as setting 12		
Dependency:	Refer to: p0970, p1960, r3996		
Caution:	If a memory card (optional) is inserted - and the USB interface is not used, the following applies		
A	The parameters are also saved on the card and therefore overwrite any existing data!		
Notice:	The Control Unit power supply may only be powered down after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0).		
	Writing to parameters is inhibited while saving.		
	The progress while saving is displayed in r3996.		
Note:	Parameters saved with p0971 = 10, 11, 12 can be loaded again with p0970 = 10, 11 or 12.		
	Identification and maintenance data (I\&M data, p8806 and following) are only saved for p0971 =		
p0972	Drive unit reset / Drv_unit reset		
	Access level: 3	Calculated: -	Data type: Unsign
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	0
Description:	Sets the required procedure to execute a hardware reset for the drive unit.		
Value:	0 : Inactive		
	1: Hardware-Reset		
	2: Hardware reset		
	3: Hardware reset	mmunication has fa	
Danger: Note:	It must be absolutely ensured that the system is in a safe condition.		
	The memory card/device memory of the Control Unit must not be accessed.		
	If value = 1:		
	Reset is immediately executed and communications interrupted.		
	After communications have been established, check the reset operation (refer below).		
	If value $=2$:		
	Help to check the reset operation.		
	Firstly, set p0972 $=2$ and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted.		
	After communications have been established, check the reset operation (refer below).		
	If value $=3$:		
	The reset is executed after interrupting cyclic communication. This setting is used to implement a synchronized reset by a control for several drive units.		
	If cyclic communication is not active, then the reset is immediately executed.		
	After communications have been established, check the reset operation (refer below).		
	To check the reset operation:		
	After the drive unit has been restarted and communications have been established, read p0972 and check the following:		
	p0972 = 0 ? --> The reset was successfully executed.		
	p0972 > 0? --> The reset was not executed.		

r0980[0...299]	List of existing parameters $1 /$ List avail par 1	
	Access level: 4	Calculated: -
	Can be changed: -	Scaling: -
	Units group: -	Unit selection: -
	Min	Max
	-	Fyn. index: -
	Factory setting	
Description:	Displays the parameters that exist for this drive.	-
Dependency:	Refer to: r0981, r0989	
Note:	The existing parameters are displayed in indices 0 to 298. If an index contains the value 0, then the list ends here. In	
	a long list, index 299 contains the parameter number at which position the list continues.	

This list consists solely of the following parameters: r0980[0...299], r0981[0...299] ... r0989[0...299]
The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).

r0981[0...299]	List of existing parameters 2 / List avail par 2		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0989		
Note:	The existing parameters are displayed in indices 0 to 298 . If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0989[0...299]	List of existing parameters 10 / List avail par 10		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0981		
Note:	The existing parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here. This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0990[0...99]	List of modified parameters 1 / List chang par 1		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	Refer to: r0991, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

2.2 List of parameters

| r0991[0...99] | List of modified parameters $2 /$ List chang par 2 | |
| :--- | :--- | :--- | :--- |
| | Calculated: - | Data type: Unsigned16 |

r0999[0...99]	List of modified parameters $\mathbf{1 0} /$ List chang par 10		
	Access level: 4	Calculated: -	Sata type: Unsigned16
	Can be changed: -	Unit selection: -	Dyn. index: -
	Units group: -	Max	Func. diagram: -
	Min	-	Factory setting

p1000[0...n]	Speed setpoint selection / n_set sel		
CU230P-2_BT	Access level: 1	Calculated: -	Data type: Integer16
CU230P-2_HVAC	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	200	2
Description:	Sets the source for the speed setpoint.		
	For single-digit values, the following applies:		
	The value specifies the main setpoint.		
	For double-digit values, the following applies:		
	The left-hand digit specifies the supplementary setpoint, the right-hand digit the main setpoint.		
	Example:		
	Value $=26$		

Value:
--> The analog setpoint (2) supplies the supplementary setpoint.
--> The fieldbus (6) supplies the main setpoint.
No main setpoint
Motorized potentiometer
Analog setpoint
Fixed speed setpoint
Fieldbus
Analog setpoint 2
Motor potentiometer + no main setpoint
Motor potentiometer + motor potentiometer
Motor potentiometer + analog setpoint
Motor potentiometer + fixed speed setpoint
Motor potentiometer + fieldbus

2.2 List of parameters

	17:	Motor potentiometer + analog setpoint 2
	20:	Analog setpoint + no main setpoint
	21:	Analog setpoint + motor potentiometer
	22:	Analog setpoint + analog setpoint
	23:	Analog setpoint + fixed speed setpoint
	27:	Analog setpoint + analog setpoint 2
	30:	Fixed speed setpoint + no main setpoint
	31:	Fixed speed setpoint + motor potentiometer
	32:	Fixed speed setpoint + analog setpoint
	33:	Fixed speed setpoint + fixed speed setpoint
	37:	Fixed speed setpoint + analog setpoint 2
	70:	Analog setpoint $2+$ no main setpoint
	71:	Analog setpoint $2+$ motor potentiometer
	72:	Analog setpoint $2+$ analog setpoint
		Analog setpoint $2+$ fixed speed setpoint
		Analog setpoint $2+$ analog setpoint 2
	200:	Analog output connection
Dependency:	When	changing this parameter, the following settings
	Refer	: p1070, p1071, p1075, p1076
Caution:	If p 1000	0 is selected as the main setpoint of the fieldb
i	p2051	$1]=$ r0063
Notice:	The p	rameter is possibly protected as a result of p0
	$\begin{aligned} & \text { For Pr } \\ & 999 . \end{aligned}$	FIBUS/PROFINET Control Units, the follow
	When	xecuting a specific macro, the corresponding

p1000[0...n]	Speed setpoint selection / n_set sel		
CU230P-2_DP	Access level: 1	Calculated: -	Data type: Integer16
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	200	6

Description: Sets the source for the speed setpoint.

For single-digit values, the following applies:
The value specifies the main setpoint.
For double-digit values, the following applies:
The left-hand digit specifies the supplementary setpoint, the right-hand digit the main setpoint.
Example:
Value $=26$
--> The analog setpoint (2) supplies the supplementary setpoint.
--> The fieldbus (6) supplies the main setpoint.

Value

$0:$	No main setpoint
1:	Motorized potentiometer
$2:$	Analog setpoint
$3:$	Fixed speed setpoint
$6:$	Fieldbus
$7:$	Analog setpoint 2
$10:$	Motor potentiometer + no main setpoint
11:	Motor potentiometer + motor potentiometer
12:	Motor potentiometer + analog setpoint
13:	Motor potentiometer + fixed speed setpoint
16:	Motor potentiometer + fieldbus
17:	Motor potentiometer + analog setpoint 2
$20:$	Analog setpoint + no main setpoint
$21:$	Analog setpoint + motor potentiometer
$22:$	Analog setpoint + analog setpoint
$23:$	Analog setpoint + fixed speed setpoint
$26:$	Analog setpoint + fieldbus
$27:$	Analog setpoint + analog setpoint 2
$30:$	Fixed speed setpoint + no main setpoint

p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 4.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 5 .		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 6.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint 8 / n_set_fixed 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 8.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1010[0...n]	CO: Fixed speed setpoint 10 / n_set_fixed 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 14.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Setting and connector output for fixed speed setpoint 15.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1016	Fixed speed setpoint select mode / n_set_fix select		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 3010, 3011
	Min	Max	Factory setting
	1	2	1
Description:	Sets the mode to select the fixed speed setpoint.		
Value:	$\begin{array}{ll} \text { 1: } & \text { Direct } \\ \text { 2: } & \text { Binary } \end{array}$		
Note:	Rep1016 = 1:		
	In this mode, the setpoint is entered via the fixed speed setpoints p1001 ... p1004.		
	Up to 16 different setpoints are obtained by adding the individual fixed speed setpoints.		
	Rep1016 = 2:		
	In this mode, the setpoint is entered via the fixed speed setpoints p1001 ... p1015.		
p1020[0...n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3010, 3011
	Min	Max	Factory setting
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixe Displays the number of Sets the values for the fix Refer to: p1021, p1022,	oint using p1020 ... p1023 d speed setpoint in r1197. tpoints 1 ... 15 using p10	
Note:	If a fixed speed setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, r 1197=0$), then r1024 $=0($ setpoint $=0)$.		

2.2 List of parameters

Note:	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015. Refer to: p1070, r1197			
r1025.0	BO: Fixed speed setpoint	atus / n_setp_fix		
	Access level: 3	Calculated: -	Data type:	
	Can be changed: -	Scaling: -	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
	-	-	-	
Description:	Display and binector output for the status when selecting the fixed speed setpoints.			
Bit field:	Bit Signal name 00 Fixed speed setpoint selected	1 signal Yes	0 signal No	$\begin{aligned} & \text { FP } \\ & 3011 \end{aligned}$
Dependency:	Refer to: p1016			
Note:	When the fixed speed setpoints are directly selected ($\mathrm{p} 1016=1$), this bit is set if at least 1 fixed speed setpoint is selected.			

p1030[0...n]	Motorized potentiometer configuration / Mop configuration		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	00000110 bin

Description: Sets the configuration for the motorized potentiometer.

Bit field:

Notice:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Data save active	Yes	No	-
01	Automatic mode ramp-function generator	Yes	No	-
	active			
02	Initial rounding-off active	Yes	No	-
03	Save in NVRAM active	Yes	No	-
04	Ramp-function generator always active	Yes	No	-

For p0014 = 1, the following applies:
After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note:
Re bit 00:
0 : The setpoint for the motorized potentiometer is not saved and after ON is entered using p1040.
1: The setpoint for the motorized potentiometer is saved after OFF and after ON set to the saved value. In order to save in a non-volatile fashion, bit 03 should be set to 1 .

Re bit 01:
0 : Without ramp-function generator in the automatic mode (ramp-up/ramp-down time $=0$).
1: With ramp-function generator in the automatic mode.
For manual operation (0 signal via $\mathrm{BI}: \mathrm{p} 1041$), the ramp-function generator is always active.
Re bit 02:
0 : Without initial rounding-off
1: With initial rounding-off. The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is a sensitive way of specifying small changes (progressive reaction when keys are pressed).
The jerk for the initial rounding-off is independent of the ramp-up time and only depends on the selected maximum speed (p1082). It is calculated as follows:
$r=0.01$ \% * p1082 [1/s] / 0.13^2 [s^2]
The jerk acts up until the maximum acceleration is reached (a_max = p1082 [1/s] / p1047 [s]), and then the drive continues to run linearly with a constant rate of acceleration. The higher the maximum acceleration (the lower that p1047 is), the longer the ramp-up time increases with respect to the set ramp-up time.
Re bit 03:
0 : Non-volatile data save de-activated.
1: The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for bit $00=1$).

Re bit 04:
When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r1050.

p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyit selection: -
CU230P-2_HVAC	Units group: -	Max	Func. diagram: 2505,3020
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is		
	present (BI: p1035).		
Dependency:	Refer to: p1036	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.	
Notice:			

p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3020
	Min	Max	Factory setting
	-	-	[0] 2090.13
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035).		
Dependency:	Refer to: p1036		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2505, 3020
	Min		Factory setting
			0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r 1050) depends on the set ramp-down time (p 1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

2.2 List of parameters

p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3020
	Min	Max	Factory setting
	-	-	[0] 2090.14
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r1050) depends on the set ramp-down time (p1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		
p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the minimum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		
$\overline{p 1039[0 \ldots n]}$	BI: Motorized potentiometer inversion / MotP inv		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
			0
Description:	Sets the signal source to invert the minimum speed/velocity or the maximum speed/velocity for the motorized potentiometer.		
Dependency:	Refer to: p1037, p1038		
Note:	The inversion is only active during "motorized potentiometer raise" or "motorized potentiometer lower".		

p1040[0...n]	Motorized potentiometer starting value / Mop start value		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been powered up.		
Dependency:	Only effective if p1030.0 $=0$.		
	Refer to: p1030		
p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to change over from manual to automatic when using a motorized potentiometer.		
	In the manual mode, the setpoint is changed using two signals - raise and lower. In the automatic mode, the setpoint must be interconnected via a connector input.		
Dependency:	Refer to: p1030, p1035, p1036, p1042		
Note:	The effectiveness of the internal ramp-function generator can be set in automatic mode.		
p1042[0...n]	CI: Motorized potentiometer automatic setpoint / Mop auto setpoint		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for the setpoint of the motorized potentiometer in the automatic mode.		
Dependency:	Refer to: p1041		
p1043[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to accept the setting value for the motorized potentiometer.		
Dependency:	Refer to: p1044		
Note:	The setting value (CI: p1044) becomes effective for a 0/1 edge of the setting command (BI: p 1043).		
p1044[0...n]	CI: Motorized potentiometer setting value / Mop set val		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:	Refer to: p1043		
Note:	The setting value (CI: p1044) becomes effective for a $0 / 1$ edge of the setting command (BI: p1043).		

2.2 List of parameters

r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: $3 _1$	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	$-[$ rpm $]$	$-[r p m]$	$-[r p m]$
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator.		

p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	The setpoint is changed from zero up to the speed/velocity limit (p1082) within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1048, p1082		
Note:	When the initial rounding-off is activated (p1030.2) the ramp-up time is correspondingly extended.		
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer. The setpoint is changed from the speed/velocity limit (p1082) to zero within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1047, p1082		
Note:	The deceleration time is extended corresponding to the activated initial rounding-off (p1030.2).		
r1050	CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3001, 3020
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint after the internal motorized potentiometer ramp-function generator. This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).		
Recommend.:	Interconnect the signal with main setpoint (p1070).		
Dependency:	Refer to: p1070		
Note:	For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation, suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p 1030.0).		

$\overline{\text { p1051[0...n] }}$	CI: Speed limit RFG positive direction of rotation / n_limit RFG pos		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction on the ramp-function generator input. The OFF3 ramp-down time (p 1135) is effective when the limit is reduced.		
Note:			
p1052[0...n]	CI: Speed limit RFG negative direction of rotation / n_limit RFG neg		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1086[0]
Description:	Sets the signal source for the speed limit of the negative direction on the ramp-function generator input.		
Note:	The OFF3 ramp-down time (p1135) is effective when the limit is reduced.		
p1055[0...n]	BI: Jog bit 0 / Jo		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 1.		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p0840, p1058		
Notice:	The drive is enabled for jogging using BI: p1055 or BI: p1056.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		
p1055[0...n]	BI: Jog bit 0 / Jo		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
	-		[0] 0
			[1] 722.0
			[2] 0
			[3] 0
Description:	Sets the signal source for jog 1.		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:			
Notice:	Refer to: p0840, p1058The drive is enabled for jogging using BI: p 1055 or BI: p1056.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		

2.2 List of parameters

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 2.		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p0840, p1059		
Notice:	The drive is enabled for jogging using BI: p1055 or BI : p1056.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
	-	-	[0] 0
			[1] 722.1
			[2] 0
			[3] 0

Description:	Sets the signal source for jog 2.
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate
signal change of the source.	
Dependency:	Refer to: p0840, p1059
Notice:	The drive is enabled for jogging using $\mathrm{BI}: \mathrm{p} 1055$ or $\mathrm{BI}: \mathrm{p} 1056$.
	The command "ON/OFF1" can be issued using $\mathrm{BI}: \mathrm{p} 0840$ or using $\mathrm{BI}: \mathrm{p} 1055 / \mathrm{p} 1056$.
	Only the signal source that was used to power up can also be used to power down again.

p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	$-210000.000[\mathrm{rpm}]$	150.000 [rpm]	
Description:	Sets the speed for jog 1.		
	Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: p 1055, p1056		

$\mathbf{p 1 0 5 9 [0 . . . n] ~}$	Jog 2 speed setpoint / Jog 2 n_set		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3001,3030
	Min	Max	Factory setting
	$-210000.000[\mathrm{rpm}]$	$-150.000[\mathrm{rpm}]$	
Description:	Sets the speed for jog 2.		
	Jogging (JOG) is level-triggered, and allows the motor to be incrementally traversed.		
Dependency:	Refer to: $\mathrm{p} 1055, \mathrm{p} 1056$		

p1063[0...n]	Speed limit setpoint channel / n_limit setp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3040
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	210000.000 [rpm]
Description:	Sets the speed limit/velocity limit effective in the setpoint channel.		
Dependency:	Refer to: p1082, p1083, p1085, p1086, p1088		
p1070[0...n]	CI: Main setpoint / Main setpoint		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
CU230P-2_CAN	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	[0] 755[0]
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for the main setpoint.		
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the ramp-function generator		
Dependency:	Refer to: p1071, r1073, r1078		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1070[0...n]	CI: Main setpoint / Main setpoint		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
CU230P-2_PN	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	[0] 2050[1]
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for the main setpoint.		
	Examples:		
	r1024: Fixed speed setpoint effective		
	r1050: Motor. potentiometer setpoint after the ramp-function generator		
Dependency:	Refer to: p1071, r1073, r1078		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1071[0...n]	CI: Main setpoint scaling / Main setp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the main setpoint.		

2.2 List of parameters

r1073	CO: Main setpoint effective / Main setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective main setpoint.		
	The value shown is the main setpoint after scaling.		
p1075[0...n]	CI: Supplementary setpoint / Suppl setp		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the supplementary setpoint.		
Dependency:	Refer to: p1076, r1077, r1078		
p1076[0...n]	CI: Supplementary setpoint scaling / Suppl setp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3001, 3030
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the supplementary setpoint.		
r1077	CO: Supplementary setpoint effective / Suppl setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		
r1078	CO: Total setpoint effective / Total setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the total effective setpoint.		
	The value indicates the sum of the effective main setpoint and supplementary setpoint.		
Note:	If the fixed speed setpoint is the source for the speed setpoint, then when the extended service mode is activated $(r 3889.0=1)$ fixed speed setpoint 15 is displayed.		

p1080[0...n]	Minimum speed / n		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050, 8020
	Min	Max	Factory setting
	0.000 [rpm]	19500.000 [rpm]	0.000 [rpm]
Description:	Sets the lowest possible motor speed.		
	This value is not undershot in operation.		
Dependency:	Refer to: p1106		
Notice:	The effective minimum speed is formed from p1080 and p1106.		
Note:	The parameter value applies for both motor directions.		
	In exceptional cases, the motor can operate below this value (e.g. when reversing).		

p1081	Maximum speed scaling / n_max scal		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 3050, 3095
	Min	Max	Factory setting
	100.00 [\%]	105.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the maximum speed (p 1082).		
	For a higher-level speed control, this scaling allows the maximum speed to be briefly exceeded.		
Dependency:	Refer to: p1082		
Notice:	Continuous operation above a scaling of 100% is not permitted.		

p1082[0...n]	Maximum speed / n_max		
	Access level: 1	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020, 3050, 3070
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed.		
	Example:		
	Induction motor p0310 $=50 / 60 \mathrm{~Hz}$ without output filter and Blocksize power unit		
	p1082 < $=60 \times 240 \mathrm{~Hz} / \mathrm{r0313}$ (vector control)		
	p1082 < = 60 x $550 \mathrm{~Hz} / \mathrm{r} 0313$ (U/f control)		
Dependency:	For vector control, the maximum speed is restricted to $60.0 /(8.333 \times 500 \mu \mathrm{~s} \times \mathrm{r} 0313)$. This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.		
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). When using sine-wave filters ($\mathrm{p} 0230=$ 3,4), the maximum speed r1084 is limited to 70% of the resonant frequency of the filter capacitance and the motor leakage inductance.		
	For reactors and dU/dt filters, it is limited to 120 Hz / r0313.		
	Refer to: p0230, r0313, p0322		
Notice:	After the value has been modified, Modifications can be made again	further parameter modific $\text { n r3996 = } 0$	e made and the status is shown in r3996.
Note:	The parameter applies for both motor directions.		
	The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0310, p0311, p0322.		
	The following limits are always effective for p 1082 :		
	p 1082 < $=60 \times$ minimum ($15 \times \mathrm{p} 0310,550 \mathrm{~Hz}$) / r0313		
	p1082 <= 60 x maximum power unit pulse frequency / ($\mathrm{k} \times \mathrm{r0313}$), with $\mathrm{k}=12$ (vector control), $k=6.5$ (U/f control)		

2.2 List of parameters

During automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$), the parameter value is assigned the maximum motor speed (p 0322). For $\mathrm{p} 0322=0$ the rated motor speed (p 0311) is used as default (pre-assignment) value. For induction motors, the synchronous no-load speed is used as the default value ($\mathrm{p} 0310 \times 60 / \mathrm{r} 0313$).
For synchronous motors, the following additionally applies:
During automatic calculation (p0340, p3900), p1082 is limited to speeds where the EMF does not exceed the DC link voltage.
p1082 is also available in the quick commissioning (p0010 = 1) ; this means that when exiting via $p 3900>0$, the value is not changed.

$\mathbf{p 1 0 8 3 [0 . . . n] ~}$	CO: Speed limit in positive direction of rotation / n_limit pos		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	$0.000[\mathrm{rpm}]$	$210000.000[\mathrm{rpm}]$	$210000.000[\mathrm{rpm}]$
Description:	Sets the maximum speed for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

r1084	CO: Speed limit positive effective / n_limit pos eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050, 7958
	Min		Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active positive speed limit.		
Dependency:	Refer to: p1082, p1083, p1085		
p1085[0...n]	CI: Speed limit in positive direction of rotation / n_limit pos		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction.		
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	-210000.000 [rpm]	0.000 [rpm]	-210000.000 [rpm]
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

r1087	CO: Speed limit negative effective / n_limit neg eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050, 7958
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Display and connector output for the active negative speed limit.		
Dependency:	Refer to: p1082, p10		

p1088[0...n]	CI: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1086[0]
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		
p1091[0...n]	Skip speed 1 / n_skip 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 1.		
Dependency:	Refer to: p1092, p1093, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
Note:	The skip (suppression) speeds can be used to prevent the effects of mechanical resonance.		
p1092[0...n]	Skip speed 2 / n_skip 2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 2.		
Dependency:	Refer to: p1091, p1093, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1093[0...n]	Skip speed 3 / n_skip 3		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 3.		
Dependency:	Refer to: p1091, p1092, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1094[0...n]	Skip speed 4 / n_skip 4		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		

2.2 List of parameters

p1098[0...n]	CI: Skip speed scaling / n_skip scal			
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32	
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: 3050	
	Min	Max	Factory setting	
	-	-	1	
Description:	Sets the signal source for scaling the skip speeds.			
Dependency:	Refer to: p1091, p1092, p1093, p1094			
r1099.0	CO/BO: Skip band status word / Skip band ZSW			
	Access level: 3	Calculated: -	Data type: U	
	Can be changed: -	Scaling: -	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagra	
	Min	Max	Factory sett	
	-	-	-	
Description:	Display and BICO output for the skip bands.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 r 1170 within the skip band	Yes	No	3050
Dependency:	Refer to: r1170			
Note:	Re bit 00:			
	With the bit set, the setpoint speed is within the skip band after the ramp-function generator (r1170). The signal can be used to switch over the drive data set (DDS).			

p1101[0...n]	Skip speed bandwidth / n_skip bandwidth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the bandwidth for the skip speeds/velocities 1 to 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1094		
Note:	The setpoint (reference) speeds are skipped (suppressed) in the range of the skip speed +/-p1101.		
	Steady-state operation is not possible in the skipped (suppressed) speed range. The skip (suppression) range is skipped.		
	Example:		
	p1091 = 600 and p1101 = 20		
	--> setpoint speeds between 580 and 620 [rpm] are skipped.		
	For the skip bandwidths, the following hysteresis behavior applies:		
	For a setpoint speed coming from below, the following applies:		
	$\mathrm{r} 1170<580$ [rpm] and 580 [rpm] <= r1114 <= 620 [rpm] --> r1119 = 580 [rpm]		
	For a setpoint speed coming from above, the following applies:		
	r1170 > 620 [rpm] and $580[\mathrm{rpm}]<=r 1114<=620[\mathrm{rpm}]-\mathrm{s}$ r1119 $=620$ [rpm]		

p1106[0...n]	CI: Minimum speed signal source / n_min s_src		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source for lowest possible motor speed.		
Dependency:	Refer to: p1080		
Notice:	The effective minimum speed is formed from p1080 and p1106.		

p1108[0...n]	BI: Total setpoint selection / Total setp sel		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the total setpoint.		
Dependency:	If the energy-saving mode function is activated (p2398 = 1), an interconnection is made to r2399.7. Refer to: p1109		
Caution:	If the technology controller is to supply the total setpoint using p1109, then it is not permissible to disable the interconnection to its status word (r2349.4). If the energy-saving mode function is activated, then it is not permissible to disable the interconnection to status word r2399.		
p1109[0...n]	CI: Total setpoint / Total setp		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the total setpoint.		
	For p1108 = 1 signal, the total setpoint is read in via p1109.		
Dependency:	The signal source of the total setpoint is automatically interconnected to the output of the technology controller $(r 2294)$ if the technology controller is selected ($\mathrm{p} 2200>0$) and operated in the mode $\mathrm{p} 2251=0$.		
Caution:	If the technology controller is to supply the total setpoint using p1109, then it is not permissible to disable the interconnection to its output (r2294). If the energy-saving mode function is activated, then it is not permissible to withdraw the interconnection to setpoint r2398[0].		
p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3040
	Min	Max	Factory setting
		-	1
Description:	Sets the signal source to disable the negative direction.		
Dependency:	Refer to: p1111		
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to disable the positive direction.		
Dependency:	Refer to: p1110		

2.2 List of parameters

r1112	CO: Speed setpoint after minimum limiting / n_set aft min_lim		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint after the minimum limiting.		
Dependency:			
p1113[0...n]	BI: Setpoint inversion / Setp inv		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2441, 2442, 2505, 3040
	Min	Max	Factory setting
	-	-	[0] 722.1
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	Refer to: r1198		
Caution: \qquad	If the technology controller is being used as the speed main setpoint ($\mathrm{p} 2251=0$), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1113[0...n]	BI: Setpoint inversion / Setp inv		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2441, 2442, 2505, 3040
	Min	Max	Factory setting
			[0] 2090.11
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	Refer to: r1198		
Caution: \qquad !	If the technology controller is being used as the speed main setpoint (p2251 = 0) , do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r1114	CO: Setpoint after the direction limiting / Setp after limit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3001, 3040, 3050
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		

p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
PM330	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	20.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p1082) in this time.		
Dependency:	Refer to: p1082, p1123		
Note:	The ramp-up time can be scaled via connector input p1138.		
	The parameter is adapted during the rotating measurement ($\mathrm{p} 1960>0$). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized.		
	For U/f control and sensorles be based on the startup time	control (see p1300) of the motor.	0 s is not expedient. The setting should

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
PM230	Access level: 1	Calculated: -	Data type: FloatingPoint32
PM330	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	30.000 [s]
Description:	Sets the ramp-down time for the ramp-function generator.		
	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p 1082) down to standstill (setpoint $=0$) in this time.		
	Further, the ramp-down time is always effective for OFF1.		
Dependency:	The parameter is pre-assigned depending on the size of the power unit.		
	Refer to: p1082, p1127		
Note:	For U/f control and sensorless vector control (see p1300), a ramp-down time of 0 s is not expedient. The setting should be based on the startup times (r0345) of the motor.		

p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
PM240	Access level: 1	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the ramp-function generator.		
	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$) in this time.		
	Further, the ramp-down time is always effective for OFF1.		
Dependency:	Refer to: p1082, p1127		
Note:	For U/f control and sensorless vector control (see p1300), a ramp-down time of 0 s is not expedient. The setting should be based on the startup times (r0345) of the motor.		
p1122[0...n]	BI: Bypass ramp-function generator / Bypass RFG		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for bypassing the ramp generator (ramp-up and ramp-down times $=0$).		
Caution: $\$	If the technology controller is operated in mode p2251 = 0 (technology controller as main speed setpoint), or the energy-saving mode function is activated, then it is not permissible to disable the interconnection to the relevant status word (r2349, r2399).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	In the case of sensorless vector control, the ramp-function generator must not be bypassed, other than indirectly by means of interconnection with r2349 or r2399.		

p1123[0...n]	Ramp-function generator minimum ramp-up time / RFG t_RU min		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	0.000 [s]
Description:	Sets the minimum ramp-up time.		
	The ramp-up time (p1120) is limited internally to this minimum value.		
Dependency:	Refer to: p1082		
Note:	The setting should be based on the startup times (r0345) of the motor.		
	If the maximum speed p1082 changes, p1123 is re-calculated.		
p1127[0...n]	Ramp-function generator minimum ramp-down time / RFG t_RD min		
PM230	Access level: 4	Calculated: p0340 $=1$	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	0.000 [s]
Description:	Sets the minimum ramp-down time.		
	The ramp-down time (p 1121) is limited internally to this minimum value.		
Dependency:	Refer to: p1082		
Note:	For U/f control and sensorless vector control (see p1300), a ramp-down time of 0 s is not expedient. The setting should be based on the startup times (r0345) of the motor.		
	If the maximum speed p1082 changes, p1127 is re-calculated.		

p1127[0...n]	Ramp-function generator minimum ramp-down time / RFG t_RD min		
PM240	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	0.000 [s]
Description:	Sets the minimum ramp-down time.		
	The ramp-down time (p1121) is limited internally to this minimum value.		
Dependency:	Refer to: p1082		
Note:	For U/f control and sensorless vector control (see p1300), a ramp-down time of 0 s is not expedient. The setting should be based on the startup times (r0345) of the motor.		
	If the maximum speed p1082 changes, p1127 is re-calculated.		
	If a braking resistor is connected to the DC link ($\mathrm{p} 0219>0$), then the minimum ramp-down time is automatically adapted using p1127.		
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round		
PM230	Access level: 2	Calculated: -	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	2.000 [s]
Description:	Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down.		
Note:	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round		
PM240	Access level: 2	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
Note:			
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay		
PM230	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	2.000 [s]
Description:	Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down.		
Note:	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay		
PM240	Access level: 2	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down.		
Note:	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		

p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay		
PM330	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	3.000 [s]
Description:	Sets the final rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down.		
Note:	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1134[0...n]	Ramp-function generator rounding-off type / RFG round-off type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0	1	0
Description:	Sets the smoothed response to the OFF1 command or the reduced setpoint for the extended ramp-function generator.		
Value:	0 : Cont smoothing 1: Discont smoothing		
Dependency:	No effect up to initial rounding-off time (p1130) > 0 s .		
Note:	p1134 = 0 (continuous smoothing)		
	If the setpoint is reduced while ramping-up, initially a final rounding-off is carried out and then the ramp-up completed. During the final rounding-off, the output of the ramp-function generator continues to go in the direction of the previous setpoint (overshoot). After the final rounding-off has been completed, the output goes toward the new setpoint.		
	p1134 = 1 (discontinuous smoothing)		
	If the setpoint is reduced while ramping-up, then the output goes immediately in the direction of the new setpoint. For the setpoint change there is no rounding-off.		

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
PM230	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	5400.000 [s]	30.000 [s]
Description:	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.The parameter is pre-assigned depending on the size of the power unit.		
Dependency:			
Note:	This time can be exceeded if the DC link voltage reaches its maximum value.		

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
PM240	Access level: 2	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: C(1), U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	0.000 [s]	
Description:	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.		
Note:	This time can be exceeded if the DC link voltage reaches its maximum value.		

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
PM330	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	5400.000 [s]	3.000 [s]
Description:	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.		
Dependency:	The parameter is pre-assigned depending on the size of the power unit.		
Note:	This time can be exceeded if the DC link voltage reaches its maximum value.		
p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	2.000 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		

p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$30.000[\mathrm{~s}]$	0.000 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		

p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
PM330	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$30.000[\mathrm{~s}]$	$0.500[\mathrm{~s}]$
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		

p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$30.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$
Description:	Sets the final rounding-off time for OFF3 for the extended ramp generator.		

p1138[0...n]	CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the ramp-up time of the ramp-function generator.		
Dependency:	Refer to: p1120		
Note:	The ramp-up time is set in p1120.		

2.2 List of parameters

p1139[0...n]	CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the ramp-down time of the ramp-function generator.		
Dependency:	Refer to: p1121		
Note:	The ramp-down time is set in p 1121.		
p1140[0...n]	BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator".		
	For the PROFldrive profile, this command corresponds to control word 1 bit 4 (STW1.4).		
	BI: p1140 = 0 signal:		
	Inhibits the ramp-function generator (the ramp-function generator output is set to zero).		
	BI: p1140 = 1 signal:		
	Ramp-function generator enable.		
Dependency:	Refer to: r0054, p1141, p1142		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1140[0...n]	BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	[0] 2090.4
			[1] 1
			[2] 2090.4
			[3] 2090.4
Description:	Sets the signal source for the command "enable ramp-function generator/inhibit ramp-function generator".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 4 (STW1.4).		
	BI: $\mathrm{p} 1140=0$ signal: \quad		
	Inhibits the ramp-function generator (the ramp-function generator output is set to zero).		
	BI: p1140 = 1 signal:		
	Ramp-function generator enable.		
Dependency:	Refer to: r0054, p1141, p1142		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

2.2 List of parameters

p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable			
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary	
CU230P-2_CAN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170	
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2501	
	Min	Max	Factory setting	
	-	-	1	
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".			
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).			
	BI: p1142 $=0$ signal			
	Inhibits the setpoint (the ramp-function generator input is set to zero).			
	BI: $\mathrm{p} 1142=1$ signal			
	Setpoint enable.			
Dependency:	Refer to: p1140, p1141			
Caution:	When "master control from PC" is activated, this binector input is ineffective.			
1				
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
Note:	When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard:			
	BI: p1142 $=0$ signal			
p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable			
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary	
CU230P-2_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: 2501	
	Min	Max	Factory setting	
		-	[0] 2090.6	
	-		[1] 1	
			[2] 2090.6	
			[3] 2090.6	
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".			
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).			
	BI: p1142 = 0 signal			
	Inhibits the setpoint (the ramp-function generator input is set to zero).			
	BI: $\mathrm{p} 1142=1$ signal			
	Setpoint enable.			
Dependency:	Refer to: p1140, p1141			
Caution: \uparrow	When "master control from PC" is activated, this binector input is ineffective.			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
Note:	When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard:			
	BI: p1142 $=0$ signal			
p1143[0...n]	BI: Ramp-function generator, accept setting value / RFG accept set v			
	Access level: 3	Calculated: -	Data type: U32 / Binary	
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: 3070	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source for accepting the setting value of the ramp-function generator.			
Dependency:	The signal source for the ramp-function generator setting value is set using parameters.			

Note:	0/1 signal:		
	The ramp-function generator output is immediately (without delay) set to the setting value of the ramp-function generator.		
	The setting value of the ramp-function generator is effective.		
	The input value of the ramp-function generator is effective. The ramp-function generator output is adapted to the input value using the ramp-up time or the ramp-down time.		
	0 signal:		
	The input value of the ramp-function generator is effective.		
p1144[0...n]	CI: Ramp-function generator setting value / RFG setting value		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the ramp-function generator setting value.		
Dependency:	The signal source for accepting the setting value is set using parameters.		
	Refer to: p1143		
p1145[0...n]	Ramp-function generator tracking intensity. / RFG track intens		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3080
	Min	Max	Factory setting
	0.0	50.0	0.0
Description:	Sets the ramp-function generator tracking.		
	The output value of the ramp-function generator is tracked (corrected) corresponding to the maximum possible drive acceleration.		
	The reference value is the deviation at the speed/velocity controller input that is necessary to ensure that the motor accelerates at the torque/force limit.		
Recommend.:	If at least one speed setpoint filter/velocity setpoint filter is activated ($p 1414$), then the ramp-function generator tracking should be deactivated ($\mathrm{p} 1145=0.0$). When the speed setpoint filter is activated, the output value of the ramp-function generator can no longer be tracked (corrected) corresponding to the maximum possible drive acceleration.		
	Re p1145 = 0.0:		
	This value de-activates the ramp-function generator tracking.		
	$\operatorname{Re} \mathrm{p} 1145=0.0 \ldots 1.0$:		
	Generally, these values are not practical. They cause the motor to accelerate below its torque limit. The lower the selected value, the greater the margin between the controller and torque limit when accelerating.		
	Re p1145 > 1.0:		
	The greater the value, the higher the permissible deviation between the speed setpoint and speed actual value.		
Notice:	If ramp-function generator tracking is activated and the ramp time is set too short, this can cause unsteady acceleration.		
	Remedy:		
	- switch off ramp-function generator tracking (p1145 = 0).		
	- increase the ramp-up/ramp-down time (p1120, p1121).		
Note:	In the U/f mode, ramp-fu	ator tracking is not	

p1148[0...n]	Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act				
	Access level: 3	Calculated: -	Data type: FloatingPoint32		
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180		
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3070		
	Min	Max	Factory setting		
	0.000 [rpm]	1000.000 [rpm]	19.800 [rpm]		
Description:	Sets the tolerance value for the status of the ramp-function generator (ramp-up active, ramp-down active). If the input of the ramp-function generator does not change in comparison to the output by more than the entered tolerance time, then the status bits "ramp-up active" and "ramp-down active" are not influenced.				
Dependency:	Refer to: r1199				
r1149	CO: Ramp-function generator acceleration / RFG acceleration				
	Access level: 3	Calculated: -	Data type: FloatingPoint32		
	Can be changed: -	Scaling: p2007	Dyn. index: -		
	Units group: 39_1	Unit selection: p0505	Func. diagram: 3070		
	Min	Max	Factory setting		
	- [rev/s $\left.{ }^{2}\right]$	- [rev/s $\left.{ }^{2}\right]$	- [rev/s $\left.{ }^{2}\right]$		
Description: Dependency:	Displays the acceleration of the ramp-function generator. Refer to: p1145				
r1170	CO: Speed controller setpoint sum / n_ctrl setp sum				
	Access level: 3	Calculated: -	Data type: FloatingPoint32		
	Can be changed: -	Scaling: p2000	Dyn. index: -		
	Units group: 3_1	Unit selection: p0505Max	Func. diagram: 3001, 3080, 6300		
			Factory setting		
	- [rpm] ${ }^{\text {Display and connector output for }}$	- [rpm]	- [rpm]		
Description:	Display and connector output for the speed setpoint after selecting the ramp-function generator. The value is the sum of speed setpoint 1 (p 1155) and speed setpoint 2 (p 1160).				
r1197	Fixed speed setpoint number actual / n_set_fixed No act				
	Access level: 4	Calculated: -	Data type: Unsigned32		
	Can be changed: -	Scaling: -	Dyn. index: -		
	Units group: -	Unit selection: -	Func. diagram: 3010		
	Min	Max	Factory setting		
	-	-	-		
Description:	Displays the number of the selected fixed speed/velocity setpoint.				
Dependency:					
Note:	If a fixed speed setpoint has not been selected (p1020 ... p1023 $=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).				
r1198.0... 15	CO/BO: Control word setpoint channel / STW setpoint chan				
	Access level: 3	Calculated: -	Data type: Unsigned16		
	Can be changed: -	Scaling: -	Dyn. index: -		
	Units group: -	Unit selection: -	Func. diagram: 2505		
	Min	Max	Factory setting		
	-	-	-		
Description:	Display and BICO output for the control word of the setpoint channel.				
Bit field:	Bit Signal name 00 Fixed setp bit 0 01 Fixed setp bit 1 02 Fixed setp bit 2 03 Fixed setp bit 3 05 Inhibit negative direction 06 Inhibit positive direction	$\begin{aligned} & 1 \text { signal } \\ & \text { Yes } \end{aligned}$	0 signal FP		
			No	3010	
			No	3040	
			No	3040	

2.2 List of parameters

If p 1200 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1200 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).

p1201[0...n]	BI: Flying restart enable signal source / Fly_res enab S_src		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source to enable the "flying restart" function.		
Dependency:	Refer to: p1200		
Note:	Withdrawing the enable signal has the same effect as setting p1200 $=0$.		
p1202[0...n]	Flying restart search current / FlyRest I_srch		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	400 [\%]	90 [\%]
Description:	Sets the search current for the "flying restart" function. The value is referred to the motor magnetizing current.		
Dependency:	The parameter is pre-assigned depending on the size of the power unit.		
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.		
Note:	In U/f control mode, the flying restart function. frequency on the basis	rves as a threshold hold value is reach uts.	ing the current at the beginn search current is set depende
	Reducing the search current can also improve flying restart high, for example).		the system moment of inertia

p1202[0...n]	Flying restart search current / FlyRest I_srch		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM250	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
PM260, PM330	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$10[\%]$	$100[\%]$	
Description:	Sets the search current for the "flying restart" function.		
	The value is referred to the motor magnetizing current.		
Dependency:	Refer to: r0331		
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.		

In U/f control mode, the parameter serves as a threshold value for establishing the current at the beginning of the flying restart function. When the threshold value is reached, the prevailing search current is set dependent upon the frequency on the basis of voltage inputs.
Reducing the search current can also improve flying restart performance (if the system moment of inertia is not very high, for example).

p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	4000 [\%]	150 [\%]
Description:	Sets the factor for the search speed for flying restart.		
	The value influences the rate at which the output frequency is changed during a flying restart. A higher value results in a longer search time.		
Recommend.:	For encoderless vector control and motor cables longer than 200 m , set the factor p1203 >= 300%.		
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.		
	For vector control, a value that is too low or too high can cause flying restart to become unstable.		
Note:	The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart).		
	With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U/f control and low speeds), we recommend that the search rate is reduced (by increasing p1203).		

p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM250	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
PM260, PM330	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$10[\%]$	$4000[\%]$	$100[\%]$

Description: Sets the factor for the search speed for flying restart.
The value influences the rate at which the output frequency is changed during a flying restart . A higher value results in a longer search time.

Recommend.: For encoderless vector control and motor cables longer than 200 m , set the factor p1203 >= 300 \%.

Caution:

 An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.

For vector control, a value that is too low or too high can cause flying restart to become unstable.
Note: \quad The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart).
With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U/f control and low speeds), we recommend that the search rate is reduced (by increasing p1203).

r1204.0... 13	CO/BO: Flying restart U/f control status / FlyRest Uf st				
PM230	Access level: 4		Calculated: -	Data type: Unsigned16	
PM240	Can be changed: -		Scaling: -	Dyn. index: -	
PM250, PM260	Units group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status for checking and monitoring flying restart states in the U/f control mode.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Current impressed	Yes	No	-
	01	No current flow	Yes	No	-
	02	Voltage input	Yes	No	-
	03	Voltage reduced	Yes	No	-
	04	Start ramp-function generator	Yes	No	-
	05	Wait for execution	Yes	No	-
	06	Slope filter act	Yes	No	-
	07	Positive gradient	Yes	No	-
	08	Current < thresh	Yes	No	-
	09	Current minimum	Yes	No	-
	10	Search in the positive direction	Yes	No	-

2.2 List of parameters

2.2 List of parameters

Value:	0 :	Inhibit automatic restart
	1:	Acknowledge all faults w
	4:	Restart after line supply
	6:	Restart after fault with ad
	14:	Restart after line supply
	16:	Restart after fault followi
	26:	Acknowledging all faults
Recommend.:	For brief line supply failures, the motor shaft may still be rotating when restarting. The "flying restart" function (p1200) might need to be activated to restart while the motor shaft is still rotating.	
Dependency:	The automatic restart requires an active ON command (e.g., via a digital input). If, for p1210 > 1, there is no active ON command, then the automatic restart is interrupted.	
	When using an Operator Panel in the LOCAL mode, then there is no automatic start.	
	For p1210 $=14,16$, a manual acknowledgement is required for an automatic restart.	
	Refer to: p0840, p0857, p1267	
Danger:	If the automatic restart is activated ($\mathrm{p} 1210>1$) if there is an ON command (refer to p 0840), the drive is powered up as soon as any fault messages that are present can be acknowledged. This also occurs after the line supply returns or the Control Unit boots if the DC link voltage is present again. This automatic power-up sequence can only be interrupted by withdrawing the ON command.	
Notice:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1). When faults are present, therefore, the parameter cannot be changed.	
	For p1210>1, the motor is automatically started.	
Note:	Re p1210 = 1:	
	Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment, then these are also automatically acknowledged again. p1211 has no influence on the number of acknowledgment attempts.	
	Re p1210 = 4:	
	An automatic restart is only performed if fault F30003 has occurred on the power unit. If additional faults are present, then these faults are also acknowledged and when successful, starting continues.	
	Re p1210 = 6:	
	An automatic restart is carried out if any fault has occurred.	
	Rep1210 = 14:	
	As for p1210 = 4. However, faults that are present must be manually acknowledged.	
	Rep1210 = 16:	
	As for p1210 = 6. However, faults that are present must be manually acknowledged.	
	Re p1210 = 26:	
	The inter the	ame as for $\mathrm{p} 1210=6$. For pted with either OFF2 or ve is restarted by setting

p1211

Automatic restart start attempts / AR start attempts

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: U, T	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0	10	3

Description: \quad Sets the start attempts of the automatic restart function for $p 1210=4,6,14,16,26$.
Dependency: A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Refer to: p1210, r1214
Notice: \quad After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
After a complete power failure the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1 . If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 / 2, the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2.

Note: A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized (r0056.4 = 1) and an additional delay time of 1 s has expired.

As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgement starts again from the beginning.
Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start attempts is again available.
At least one start attempt is always carried out.
After a line supply failure, acknowledgement is immediate and when the line supply returns, the system is powered up. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgement also causes the start counter to be decremented.
Re p1210 = 26:
The start counter is decremented if after a successful fault acknowledgement, the on command is present.

$\mathbf{p 1 2 1 2}$
Description:
Dependency:

Automatic restart delay time start attempts / AR t_wait start		
Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: U, T	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
$0.1[\mathrm{~s}]$	$1000.0[\mathrm{~s}]$	$1.0[\mathrm{~s}]$

This parameter setting is active for $p 1210=4,6,26$.
For p1210 = 1, the following applies:
Faults are only automatically acknowledged in half of the waiting time, no restart.
Refer to: p1210, r1214
Notice: \quad A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Note: \quad The faults are automatically acknowledged after half of the delay time has expired and the full delay time.

If the cause of a fault is not removed in the first half of the delay time, then it is no longer possible to acknowledge in the delay time.

p1213[0..1]	Automatic restart monitoring time / AR t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [s]	10000.0 [s]	[0] 60.0 [s]
			[1] 0.0 [s]
Description:	Sets the monitoring time of the automatic restart (AR).		
Index:	[0] = Restart		
Dependency:	Refer to: p1210, r1214		
Notice:	After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.		
Note:	Re index 0:		
	The monitoring time starts when the faults are detected. If the automatic acknowledgements are not successful, the monitoring time runs again. If, after the monitoring time has expired, the drive has still not successfully started again (flying restart and magnetizing of the motor must have been completed: r0056.4 = 1), then fault F07320 is output.		
	The monitoring is de-activated with p1213 = 0 . If p1213 is set lower than the sum of p1212, the magnetizing time p0346 and the additional delay time due to the flying restart, then fault F07320 is generated at each restart. If, for p1210 = 1, the time in p1213 is set lower than in p1212, then fault F07320 is also generated at each restart.		
	The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).		
	In the case of $p 1210=14,16$, the faults which are present must be acknowledged manually within the time in $\mathrm{p} 1213[0]$. Otherwise, fault F07320 is generated after the set time.		

2.2 List of parameters

Re index 1:
The start counter (refer to r1214) is only set back to the starting value p1211 if, after successful restart, the time in p1213[1] has expired. The delay time is not effective for fault acknowledgement without automatic restart (p1210 = 1). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p1211, if F07320 occurred, the power-on command is withdrawn and the fault is acknowledged.
The start counter is immediately updated if the starting value p1211 or the mode p1210 is changed.
For p1210 = 26, the fault must have been successfully acknowledged and the switch-on command issued within the time in p1213[0]. Otherwise, fault F07320 is generated after the set time.

2.2 List of parameters

Re bit 04 in addition:
For p1210 = 26, the system waits in this state until the switch-on command is available.

p1226[0...n]	Threshold for zero speed detection / n_standst n_thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8020
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	20.00 [rpm]
Description:	Sets the speed threshold for the standstill identification.		
	Acts on the actual value and setpoint monitoring.		
	When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified.		
Dependency:	Refer to: p1227		
Caution:	For closed-loop speed and torque control without encoder, the following applies:		
1	If p1226 is set to values under approx. 1% of the rated motor speed, then the model switchover limits of the vector control must be increased in order to guarantee reliable shutdown (see p1755, p1750 bit 7).		
Notice:	For reasons relating to the compatibility to earlier firmware versions, a parameter value of zero in indices 1 to 31 is overwritten with the parameter value in index 0 when the Control Unit boots.		
Note:	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.		
	The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the speed threshold is too low.		
p1227	Zero speed detection monitoring time / n_standst t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	300.000 [s]	300.000 [s]
Description:	Sets the monitoring time for the standstill identification.		
	When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226 (also refer to p1145).		
Dependency:	The parameter is pre-assigned depending on the size of the power unit.		
	Refer to: p1226		
Notice:	For p1145 > 0.0 (RFG tracking) the setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not suppressed.		
Note:	Standstill is identified in the following cases:		
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.		
	For p1227 $=300.000 \mathrm{~s}$, the following applies:		
	Monitoring is de-activated.		
	For p1227 $=0.000 \mathrm{~s}$, the following applies:		
	With OFF1 or OFF3 and a ramp-down time $=0$, the pulses are immediately suppressed and the motor "coasts" down. Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.		

p1228	Pulse suppression delay time / Pulse suppr t_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8020
	Min	Max	Factory setting
	0.000 [s]	299.000 [s]	0.010 [s]
Description:	Sets the delay time for pulse suppression.		
	After OFF1 or OFF3, the pulses are canceled, if at least one of the following conditions is fulfilled:		
	- the speed actual value falls below the threshold in p1226 and the time started after this in p1228 has expired.		
	- the speed setpoint falls	reshold in p1226	after this in p1227 has expired.
Dependency:	Refer to: p1226, p1227		
p1230[0...n]	BI: DC braking activation / DC brake act		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7017
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to activate DC braking.		
Dependency:	Refer to: p1231, p1232, p1233, p1234, r1239		
Note:	1 signal: DC braking activated.		
	0 signal: DC braking de-activated.		
p1231[0...n]	DC braking configuration / DCBRK config		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: 7014, 7016, 7017
	Min	Max	Factory setting
	0	14	0
Description:	Setting to activate DC braking.		
Value:	0 : No function		
	4: DC braking		
	5: DC braking for OFF1/OFF3		
	14: DC braking below starting speed		
Dependency:	Refer to: p0300, p1232,	4, r1239	
Note:	DCBRK: DC Braking		
	Rep1231 = 4:		
	The function is activated as soon as the activation criterion is fulfilled.		
	- the function can be superseded by an OFF2 response.		
	Activation criterion (one of the following criteria is fulfilled):		
	- binector input p1230 $=1$ signal (DC braking activation, depending on the operating mode).		
	- the drive is not in the state "S4: Operation" or in "S5x".		
	- the internal pulse enable is missing (r0046.19 = 0).		
	DC braking can only be withdrawn $(\mathrm{p} 1231=0)$ if it is not being used as a fault response in p 2101 .		
	DC braking is activated if the OFF1 or OFF3 command is present. Binector input p1230 is ineffective. If the drive speed still lies above the speed threshold p1234, then initially, the drive is ramped-down to this threshold, demagnetized (see p0347) and is then switched into DC braking for the time set in p1233. After this, the drive is switched-off. If, at OFF1, the drive speed is below p1234, then it is immediately demagnetized and switched into braking. A change is made into normal operation if the OFF1 command is withdrawn prematurely. Flying restart m be activated if the motor is still rotating.		
	DC braking by means of fault response continues to be possible.		

Re p1231 $=14$:
In addition to the function for p1231 = 5, binector input p1230 is evaluated.
DC braking is only automatically activated when the speed threshold p1234 is fallen below if binector input p1230 $=1$ signal. This is also the case, if no OFF command is present.
After demagnetization and after the time in p1233 has expired, the drive changes back into normal operation or is switched-off (for OFF1/OFF3).
If a 0 signal is applied to binector input p1230, for OFF1 and OFF3 no DC braking is executed.

Note:	Re bit 12, 13 : Only effective for $\mathrm{p} 1231=14$.
p1240[0...n]	Vdc controller configuration (vector control) / Vdc ctr config vec
PM230	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: U, T Scaling: - Dyn. index: DDS, p0180
	Units group: - Unit selection: - Func. diagram: 6220
	Min Max Factory setting
	031
Description:	Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode. For U/f control: see p1280.
Value:	0: Inhib Vdc ctrl 1: Enable Vdc_max controller 3: Enable Vdc_min controller and Vdc_max controller
Dependency:	Refer to: p1245 An excessively high value in p1245 can possibly negatively influence the normal operation of the drive.
Notice:	
Note:	$\mathrm{p} 1240=1,3$:
	When the DC link voltage limit specified for the power unit is reached the following applies: - the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.
	- set the input voltage p0210 as low as possible in line with the supply voltage (in so doing avoid A07401). p1240 = 3:
	When the switch-in threshold of the Vdc_min controller is reached (p1245), the following applies: - the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.
	- the motor is braked in order to use its kinetic energy to buffer the DC link.
	- the Vdc_min controller cannot be used when the line voltage is permanently below 380 V (if required, p1247 should be reduced).

p1240[0...n]	Vdc controller configuration (vector control) / Vdc ctr config vec		
PM240	Access level: 3	Calculated: -	Data type: Integer16
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	0	3	1
Description:	Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode. For U/f		

Value: $0: \quad$ Inhib Vdc ctrl

1:	Enable Vdc_max controller
2:	Enable Vdc_min controller (kinetic buffering)

$$
\text { 3: } \quad \text { Enable Vdc_min controller and Vdc_max controller }
$$

Notice: \quad An excessively high value in p1245 can possibly negatively influence the normal operation of the drive.
Note: If a braking resistor is connected to the DC link ($\mathrm{p} 0219>0$), then the Vdc_max control is automatically deactivated. p1240 = 1, 3:
When the DC link voltage limit specified for the power unit is reached the following applies:

- the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.
- the ramp-down times are automatically increased.
p1240 = 2, 3:
When the switch-in threshold of the Vdc_min controller is reached (p 1245), the following applies:
- the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.
- the motor is braked in order to use its kinetic energy to buffer the DC link.

r1242	Vdc_max controller switch-in level / Vdc_max on_level		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1254 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies:		
	$\mathrm{r} 1242=1.15$ * sqrt(2) * p0210 (supply voltage)		
	PM230: r1242 is limited to Vdc_max-50.0 V.		
	If p1254 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies:		
	$\mathrm{r} 1242=\mathrm{Vdc}$ _max -50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
	r1242 = Vdc_max -25.0 V (for 230 V power units)		
Notice:	If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.		
Note:	The Vdc_max controller is not switched back off until the DC-link voltage falls below the threshold 0.95 * r1242 and the controller output is zero.		
p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor		
PM230	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1243.		
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	65 [\%]	150 [\%]	73 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering).		
	The value is obtained as follows:		
Dependency:	Refer to: p0210		
Warning:	An excessively high value may adversely affect normal drive operation.		
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	65 [\%]	150 [\%]	76 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering). The value is obtained as follows:r1246[V] = p1245[\%] * sqrt(2) * p0210		

Dependency:	Refer to: p0210		
Warning:	An excessively high value may adversely affect normal drive operation.		
r1246	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
Note:	The Vdc_min controller is not switched back off until the DC-link voltage rises above the threshold 1.05 * p1246 and the controller output is zero.		

$\mathbf{p 1 2 4 9 [0 . . n] ~}$	Vdc_max controller speed threshold/Vdc_max \mathbf{n} _thresh		
PM230	Access level: 3	Calculated: p0340 $=1$	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: $3 _1$	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	$0.00[\mathrm{rpm}]$	$210000.00[\mathrm{rpm}]$	$10.00[\mathrm{rpm}]$

Description: Sets the lower speed threshold for the Vdc_max controller. When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.
Note: \quad For fast braking where the ramp-function generator tracking was active, it is possible to prevent the drive rotating in the opposite direction by increasing the speed threshold and setting a final rounding-off time in the ramp-function generator (p 1131). This is supported using a dynamic setting of the speed controller.

p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh		
PM250	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	10.00 [rpm]
Description:	Sets the lower speed threshold for the Vdc_max controller.		
	When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.		
Note:	For fast braking where the opposite direction by generator (p 1131). This	ion generator tracking w e speed threshold and s using a dynamic setting	possible to prevent the drive rotating in rounding-off time in the ramp-function controller.

p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	1.00
Description:	Sets the proportional gain for the DC-link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective proportional gain is obtained taking into account p1243 (Vdc_max controller dynamic factor) and the DC link capacitance of the power unit.		
p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	0 [ms]
Description:	Sets the integral time for the DC-link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
Note:	p1251 = 0: The integral component is de-activated.		
p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the rate time constant for the DC-link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
PM230	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	0 : Automatic detection inhibited		
p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
PM240	Access level: 3	Calculated: -	Data type: Integer16
PM330	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	1
Description:	Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	$\begin{array}{ll}\text { 0: } & \text { Automatic detec } \\ \text { 1: } & \text { Automatic detec }\end{array}$		

p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	1800.000 [s]	0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: p1256 = 1		
Notice:	If a time threshold has been parameterized, the Vdc_max controller should also be activated ($\mathrm{p} 1240=3$) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		

p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response		
PM230	Access level: 3	Calculated: -	Data type: Integer16
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0

Description: Sets the response for the Vdc_min controller (kinetic buffering).
Value: $\quad 0: \quad$ Buffer Vdc until undervoltage, n<p1257-> F07405
1: Buff. Vdc until undervolt., n<p1257 -> F07405, t>p1255 -> F07406

p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
PM230	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized Kinetic buffering is not started below the speed threshold.		
Note:	Exiting the Vdc_min con increasing significantly However, the maximum	aching motor standstill pr and after a pulse inhibit, e can be set via the appr	generative braking current from the motor coasts down. e limiting.

r1258	CO: Vdc controller output / Vdc_ctrl output		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6220
	Min	Max	Factory setting
	$-[$ [Arms $]$	$-[A r m s]$	
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
Note:	The regenerative power limit p1531 is used for vector control to pre-control the Vdc_max controller. The lower the		
	power limit is set, the lower the correction signals of the controller when the voltage limit is reached.		

p1260	Bypass configuration / Bypass config		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	0	0
Description:	Sets the configuration for the bypass function.		

2.2 List of parameters

p1269[0...1]	BI: Bypass switch feedback signal / Bypass FS		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	[0] 1261.0
			[1] 1261.1
Description:	Sets the signal source for the feedback signal of the bypass switch.		
Index:	[0] = Switch motor/drive		
Note:	In the case of switches without a feedback signal, interconnect the corresponding control bit as the signal source:BI: p1269[0] = r1261.0		
	BI: p1269[1] = r1261.1		
	Entering p1269 $=0$ sets this interconnection automatically for switches without a feedback signal.		

p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir		
PM230	Access level: 3	Calculated: -	Data type: Floati
PM240	Can be changed: U, T	Scaling: -	Dyn. index: DDS
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [Hz]	650 [Hz]	0 [Hz]
Description:	Sets the maximum search frequency for a flying restart in an inhibited setpoint direction (p1110, p1111).		
Note:	The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3).		
p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir		
PM330	Access level: 3	Calculated: -	Data type: Floatin
	Can be changed: U, T	Scaling: -	Dyn. index: DDS,
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [Hz]	650 [Hz]	$5[\mathrm{~Hz}]$
Description:	Sets the maximum search frequency for a flying restart in an inhibited setpoint direction (p1110, p1111).		
Note:	The parameter has no effect for an operating mode, which only searches in the setpoint direction (p1200 > 3).		
p1274[0...1]	Bypass switch monitoring time / Switch t_monit		
	Access level: 3	Calculated: -	Data type: Floatin
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	5000 [ms]	1000 [ms]
Description:	Sets the monitoring time for the bypass switch.		
Index:	[0] = Switch motor/drive [1] = Switch motor/line sup		
Note:	The monitoring is de-activated with p1274 $=0 \mathrm{~ms}$.		
	The changeover time for the bypass (p 1262) is extended by the value in this parameter.		
p1280[0...n]	Vdc controller configuration (U/f) / Vdc_ctr config U/f		
PM230	Access level: 3	Calculated: -	Data type: Intege
	Can be changed: U, T	Scaling: -	Dyn. index: DDS
	Units group: -	Unit selection: -	Func. diagram: 6
	Min	Max	Factory setting
	0	1	1
Description:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode.		
Value:	0: Inhib Vdc ctrl 1: Enable Vdc_max controller		
Note:	For high input voltages (p0210), the following settings can improve the degree of ruggedness of the Vdc_max controller: - Set the input voltage as low as possible, and in so doing, avoid A07401 (p0210). - set the rounding times (p1130, p1136). - Increase the ramp-down times (p1121). - Reduce the integral time of the controller (p1291), factor 0.5. - Activate the Vdc correction in the current controller (p1810.1 = 1) or reduce the derivative action time of the controller (p1292, factor 0.5). In this case, we generally recommend to use vector control $(p 1300=20)(V d c$ controller, see $p 1240)$.		

p1280[0...n]	Vdc controller configuration (U/f) / Vdc_ctr config U/f		
PM240	Access level: 3	Calculated: -	Data type: Integer16
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300, 6320
	Min	Max	Factory setting
	0	3	1
Description:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode.		
Value:	0: Inhib Vdc ctrl 1: Enable Vdc_ma 2: Enable Vdc_min 3: Enable Vdc_min	netic buffering) d Vdc_max control	
Note:	For high input voltages controller: - Set the input voltage a - set the rounding times - Increase the ramp-down - Reduce the integral tim - Activate the Vdc corre controller (p1292, factor In this case, we generall The following measures - Optimize the Vdc_min - Activate the Vdc corre If a braking resistor is c	ollowing settings ca ible, and in so doin 6). 21). roller (p1291), facto rrent controller (p1 to use vector con to improve the Vdc e p1287). rrent controller (p 18 e DC link (p0219 >	ee of ruggedness of the Vdc_max 0210). e the derivative action time of the dc controller, see p1240). max control is automatically deactiv

r1282	Vdc_max controller switch-in level (U/f) / Vdc_max on_level		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1294 $=0$ (automatic sensing of the switch-in level $=$ off), then the following applies:		
	$r 1282=1.15$ * sqrt(2) * p0210 (supply voltage)		
	If p1294 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies:		
	r1282 = Vdc_max - 50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
	r1282 = Vdc_max - 25.0 V (for 230 V power units)		
Notice:	If the activation level of the Vdc_max controller is already exceeded in the deactivated state (pulse inhibit) by the DC link voltage, then the controller can be automatically deactivated (see F07401), so that the drive is not accelerated the next time that it is activated.		
Note:	The Vdc_max controller is not switched back off until the DC-link voltage falls below the threshold 0.95 * r1282 and the controller output is zero.		
p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor		
PM230	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used in accordance with their basic settings and on the basis of a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1283.		

p1284[0...n]	Vdc_max controller time threshold (U/f)/Vdc_max t_thresh		
PM230	Access level: 3	Calculated: p0340 =1	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.000[s]$	$4.000[\mathrm{~s}]$	
Description:	Sets the monitoring time for the Vdc_max controller.		
	If the down ramp of the speed setpoint is held for longer than the time set in p1284, then fault F07404 is output.		

p1285[0...n]	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	65 [\%]	150 [\%]	76 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering). The value is obtained as follows:p1286[V] = p1285[\%] * sqrt(2) * p0210		
Warning: \triangle	An excessively high value may adversely affect normal drive operation.		
r1286	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM330	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
Note:	The Vdc_min controller is not switched back off until the DC-link voltage rises above the threshold 1.05 * p1286 and the controller output is zero.		
p1287[0...n]	Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_facto		
PM240	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p1292 are weighted with the dynamic factor p1287.		

p1290[0...n]	Vdc controller proportional gain (U/f)/Vdc_ctrl Kp		
PM230	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	0.00	100.00	1.00
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
Note:	The gain factor is proportional to the capacitance of the DC link.		
	The parameter is pre-set to a value that is optimally adapted to the capacitance of the power unit.		

p1291[0...n]	Vdc controller integral time (U/f)/Vdc_ctrl Tn		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		

p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate		
PM230	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	10 [ms]
Description:	Sets the rate time constant for the Vdc controller (DC link voltage controller).		
p1294	Vdc_max controller automatic detection ON signal level (U/f) / Vdc_max SenseOnLev		
PM230	Access level: 3	Calculated: -	Data type: Integer16
PM240, PM330	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0

Description: Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller. When the sensing function is de-activated, the activation threshold r1282 for the Vdc_max controller is determined from the parameterized connection voltage p0210.
Value: $0: \quad$ Automatic detection inhibited
1: Automatic detection enabled

p1295[0...n]	Vdc_min controller time threshold (U/f) / Vdc_min t_thresh		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	0.000 [s]
Description:	Sets the time threshold for the Vdc_min controller (kinetic buffering). If this value is exceeded a fault is output; the required response can be parameterized. Prerequisite: $\mathrm{p} 1296=1$		
Notice:	If a time threshold has been parameterized, the Vdc_max controller should also be activated (p1280=3) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		

p1297[0...n]	Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh		
PM240	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering).		ameterized
Note:	Exiting the Vdc_min control before reaching motor standstill prevents the regenerative braking current from increasing significantly at low speeds, and after a pulse inhibit, means that the motor coasts down.		
r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240, PM330	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6320
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
PM230	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300, 6301, 8012
	Min	Max	Factory setting
	0	20	2
Description: Value:	Sets the open and closed-loop control mode of a drive.		
	0 : U/f control with line	ristic	
	1: U/f control with line	ristic and FCC	
	2: U/f control with parab	acteristic	
	4: U/f control with line	ristic and ECO	
	7: U/f control for a par	racteristic and ECO	
	20: Speed control (enco		
Dependency:	Only operation with U/f characteristic is possible if the rated motor speed is not entered (p0311).		
	The output voltage is used for efficiency optimization for all U/f control types, load-dependent (see p0500 = 3). Refer to: p0300, p0311, p0500		
Notice:	Active slip compensation is required in the U/f control types with Eco mode ($\mathrm{p} 1300=4,7$). The scaling of the slip compensation (p 1335) should be set so that the slip is completely compensated (generally 100%).		
	The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition.		
Note:	The closed-loop torque con speed control (p1501). At the displayed in r1407, bit 2 an	ly be changed over in op over, the setting of p1300	$00=20,21$) by selecting the closed-loop ange. In this case, the actual state is

p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
PM240	Access level: 2	Calculated: -	Data type: Integer16
PM250, PM260	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300, 6301, 8012
	Min	Max	Factory setting
	0	20	0
Description:	Sets the open and closed-loop control mode of a drive.		
Value:	0 : U/f control with line	ristic	
	1: U/f control with line	ristic and FCC	
	2: U/f control with par	acteristic	
	4: U/f control with line	ristic and ECO	

2.2 List of parameters

p1310[0...n]	Starting current (voltage boost) permanent / I_start (Ua) perm		
	Access level: 2	Calculated: p0340 $=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300, 6301
	Min	Max	Factory setting
	0.0 [\%]	250.0 [\%]	50.0 [\%]
Description:	Defines the voltage boost as a [\%] referred to the rated motor current (p0305).		
	The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:		
	Voltage boost [V] $=1.732 \times \mathrm{p} 0305$ (rated motor current [A]) \times r0395 (stator/primary section resistance [ohm]) $\times \mathrm{p} 1310$ (permanent voltage boost [\%]) / 100%		
	At low output frequencies, there is only a low output voltage in order to maintain the motor flux. However, the output voltage can be too low in order to achieve the following:		
	- magnetize the induction motor.		
	- hold the load.		
	- compensate for losses in the system.		

2.2 List of parameters

Notice: \quad The starting current (voltage boost) increases the motor temperature (particularly at zero speed).
Note: \quad The starting current as a result of the voltage boost is only effective for U/f control (p 1300).
The boost values are combined with one another if the permanent voltage boost (p 1310) is used in conjunction with other boost parameters (acceleration boost (p1311), voltage boost for starting (p1312)).
However, these parameters are assigned the following priorities: p1310 > p1311, p1312
For field orientation (p1302.4 = 1, not PM230, PM250, PM260), p1311 and p1312 of the voltage boost are also added in the direction of the load current (non-linear).
p1311[0...n] Starting current (voltage boost) when accelerating / I_start accel
Access level: $2 \quad$ Calculated: - Data type: FloatingPoint32

Can be changed: U, T Scaling: - Dyn. index: DDS, p0180

Units group: -

Min

0.0 [\%]

Unit selection: -

Max
250.0 [\%]

Data type: FloatingPoint32

Func. diagram: 6300, 6301
Factory setting
0.0 [\%]

Description: p1311 only results in a voltage boost when accelerating and generates a supplementary torque to accelerate the load.
The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached. The build-up and withdrawal of the voltage boost are smoothed.
The magnitude of the boost in Volt at a frequency of zero is defined as follows (not for field orientation):
Voltage boost [V] = 1.732 * 00305 (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) $\times \mathrm{p} 1311$ (voltage boost when accelerating [\%]) / 100 \%
Dependency: The current limit p0640 limits the boost.
For field orientation (p1302 bit $4=1$, not PM230, PM250, PM260), p1311 is preassigned by the automatic calculation.

Refer to: p1300, p1310, p1312, r1315
Notice: The voltage boost results in a higher motor temperature increase.
Note: The voltage boost when accelerating can improve the response to small, positive setpoint changes.
Assigning priorities for the voltage boosts: refer to p1310
For field orientation (p1302 bit $4=1$, not PM230, PM250, PM260), p1311 of the voltage boost are also added in the direction of the load current (non-linear).

p1312[0...n]	Starting current (voltage boost) when starting / I_start start		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300, 6301
	Min	Max	Factory setting
	0.0 [\%]	250.0 [\%]	0.0 [\%]
Description:	Setting for an additional voltage boost when powering-up, however, only for the first acceleration phase.		
	The voltage boost becomes effective for a positive setpoint increase and disappears as soon as the setpoint has been reached. The build-up and withdrawal of the voltage boost are smoothed.		
Dependency:	The current limit p0640 limits the boost.		
	Refer to: p1300, p1310, p1311, r1315		
Notice:	The voltage boost results in a higher motor temperature increase.		

2.2 List of parameters

Note:
The voltage boost when accelerating can improve the response to small, positive setpoint changes.
Assigning priorities for the voltage boosts: refer to p1310
For field orientation (p1302.4 = 1, not PM230, PM250, PM260), p1312 of the voltage boost are also added in the
direction of the load current (non-linear).

r1315	Voltage boost total / U_boost total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the total resulting voltage boost in volt.		
	$\mathrm{r} 1315=\mathrm{p} 1310+\mathrm{p} 1311+\mathrm{p} 1312$		
	For field orientation (p1302.4 = 1, not for PM230, PM250, PM260):		
	r1315 = p1310		
Dependency:	Refer to: p1310, p13		

p1331[0...n]	Voltage limiting / U_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6300
	Min	Max	Factory setting
	50.00 [Vrms]	2000.00 [Vrms]	1000.00 [Vrms]
Description:	Limiting the voltage setpoint.		
	This means that the output voltage can be reduced with respect to the calculated maximum voltage r0071 and the start of field weakening.		
Note:	The output voltage is only limited if, as a result of p1331, the maximum output voltage (r0071) is fallen below.		
p1333[0...n]	U/f control FCC starting frequency / U/f FCC f_start		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6301
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	Sets the starting frequency at which FCC (Flux Current Control) is activated.		
Dependency:	The correct operating mode must be set (p1300 = 1, 6).		
Warning:	An excessively low value can result in instability.		

Note:	For p1333 $=0 \mathrm{~Hz}$, the FCC starting frequency is automatically set to 6% of the rated motor frequency.		
p1334[0...n]	U/f control slip co	n starting frequen	mp start
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	Sets the starting frequency of the slip compensation.		
Note:	For p1334 = 0, the starting frequency of the slip compensation is automatically set to 6% of the rated motor frequency.		

p1335[0...n]	Slip compensation scaling / Slip comp scal		
PM330	Access level: 3	Calculated:	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300, 6310
	Min	Max	Factory setting
	0.0 [\%]	600.0 [\%]	100.0 [\%]
Description:	Sets the setpoint for slip compensation in [\%] referred to r0330 (motor rated slip). p1335 $=0.0$ \%: Slip compensation de-activated. p1335 = 100.0% : The slip is completely compensated.		
Dependency:	Prerequisite for a precise slip compensation for p1335 $=100 \%$ are the precise motor parameters ($\mathrm{p} 0350 \ldots$... 0360). If the parameters are not precisely known, a precise compensation can be achieved by varying p1335. For U/f control types with Eco optimization (4 and 7), the slip compensation must be activated in order to guarantee correct operation.		
Note:	The purpose of slip compensation is to maintain a constant motor speed regardless of the applied load. The fact that the motor speed decreases with increasing load is a typical characteristic of induction motors.		
	For synchronous motors, this effect does not occur and the parameter has no effect in this case.		
	For the open-loop control modes p1300 $=5$ and 6 (textile sector), the slip compensation is internally disabled in order to be able to precisely set the output frequency.		
	If $p 1335$ is changed during commissioning ($\mathbf{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1335 have been changed by a parameter that was set when the drive was commissioned (e.g. p0300).		

p1336[0...n] Slip compensation limit value / Slip comp lim val
Access level: 3 Calculated: - Data type: FloatingPoint32
Can be changed: U, T Scaling: - Dyn. index: DDS, p0180
Units group: - Unit selection: - Func. diagram: 6310
Min Max Factory setting
0.00 [\%] 600.00 [\%] 250.00 [\%]
Description: Sets the limit value for slip compensation in [\%] referred to r0330 (motor rated slip).

r1337	CO: Actual slip compensation / Slip comp act val		
	Calculated: -		
	Can be changed: -	Scaling: PERCENT	Data type: FloatingPoint32
	Units group: -	Unit selection: -	Func. diagram: 6310

2.2 List of parameters

Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232).
For p1346 = 0, the following applies:	
The integral time of the I_max voltage controller is de-activated.	

r1348	CO: U/f control Eco factor actual value / U/f Eco fac act v		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6300,6301
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the economic factor determined for optimizing motor consumption.		
Dependency:	Refer to: p1335		
Note:	The value is only determined for operating modes with Economic $(\mathrm{p} 1300=4,7)$.		

p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	Sets the maximum output frequency for resonance damping for U/f control. Resonance damping is inactive above this output frequency.		
Dependency:	Refer to: p1338, p1339		
Note:	For p1349 = 0, the changeover limit is automatically set to 95% of the rated motor frequency - however, to a max. of 45 Hz .		

p1400[0...n]	Speed control configuration / n_ctrl config					
PM230	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: U, T		Scaling: -		Dyn. index: DDS, p0180	
	Units group: -		Unit selection: -		Func. diagram: 6490	
	Min		Max		Factory setting	
	-		-		$\begin{aligned} & 0000000000000000100000000010 \\ & 0001 \text { bin } \end{aligned}$	
Description:	Sets the configuration for the closed-loop speed control.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	Automatic Kp/Tn		Yes	No	6040
	05	$\mathrm{Kp} / \mathrm{Tn}$ adaptation		Yes	No	6040
	15	Sensorless vecto	pre-control	Yes	No	6030
	19	Anti-windup for in		Yes	No	6030
	20	Acceleration mod		ON	OFF	6031

Note:
Re bit 19, 20:
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced.
Re bit 20:
The acceleration model for the speed setpoint is only active if p1496 is not zero.

p1400[0...n]	Speed control configuration /n_ctrl config		
PM240	Access level: 3	Calculated: -	Data type: Unsigned32
PM250, PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6490
	Min	Max	Factory setting
	-	-	0000000000000000100000000010
		0001 bin	

[^1]| Bit field: | Bit | Signal name | 1 signal | 0 signal | FP |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 00 | Automatic $K p / T n$ adaptation active | Yes | No | 6040 |
| | 05 | Kp/Tn adaptation active | Yes | No | |
| | 15 | Sensorless vector control speed pre-control | Yes | No | |
| | 18 | Moment of inertia estimator active | Yes | No | 6040 |
| | 19 | Anti-windup for integral component | Yes | ON | 6030 |
| 20 | Acceleration model | OFF | 6030 | | |
| | 22 | Obtain moment of inertia estimator value for | Yes | No | 6031 |
| | pulse inhibit | | | 6030 | |

Note:
Re bit 19, 20:
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced.
Re bit 20:
The acceleration model for the speed setpoint is only active if p1496 is not zero.

Note: \quad Re bit 19, 20 :
When this bit is set, speed overshoots when accelerating along the torque limit and for load surges are reduced. Re bit 20:
The acceleration model for the speed setpoint is only active if p1496 is not zero.

2.2 List of parameters

Re bit 02:
The flux build-up control operates during the magnetizing phase p0346 of the induction motor. If it is switched out, a constant current setpoint is injected and the flux is built up corresponding to the rotor time constant.
Re bit 03:
Activating the load-dependent calculation of the direct axis flux setpoint using the optimum flow characteristic (see p2970 and the following) for the controlled reluctance motor.
Re bit 06:
Magnetizing is performed with maximum current (0.9 * r0067). With active identification of the stator resistance (see p0621) quick magnetizing is internally de-activated and alarm A07416 is displayed. During a flying restart of a rotating motor (see p1200) no quick magnetizing takes place.
Re bit 10:
When the load-dependent optimum flux characteristic is active ($\mathrm{p} 1401.3=1$) for the controlled reluctance motor, at low speeds, the flux setpoint is increased above the value of the flux characteristic.

r1408.0.. 14	CO/BO: Status word current controller / ZSW I_ctrl					
	Acc	ss level: 4	Calculated: -		Data type: Unsigned16	
	Can	be changed: -	Scaling: -		Dyn. index: -	
	Unit	group: -	Unit selection: -		Func. diagram: 2530	
	Min		Max		Factory setting	
	-		-		-	
Description:	Display and BICO output for the status word of the current controller.					
Bit field:	Bit Signal name			1 signal	0 signal	FP
	00 Current controlle			Active	Not active	-
	01 Id control I comp			Active	Not active	6714
	03 Voltage limiting			Active	Not active	6714
		Speed adaptatio		Active	Not active	-
		Motor stalled		Yes	No	-
		Separately excit excited	motor is	Yes	No	-
		Current model FEM: magnetizing excitation current limited to 0		Yes	No	-
p1416[0...n]	Speed setpoint filter 1 time constant / n_set_filt 1 T					
	Access level: 4		Calculated: -		Data type: FloatingPoint32	
	Can be changed: U, T		Scaling: -		Dyn. index: DDS, p0180	
	Units group: -		Unit selection: -		Func. diagram: 6020, 6030	
	Min		Max		Factory setting	
	0.00 [ms] 5000.00 [ms]				0.00 [ms]	
Description:	Sets the time constant for the speed setpoint filter 1 (PT1).					
r1438	CO: Speed controller speed setpoint / n_ctrl n_set					
	Access level: 3		Calculated: -		Data type: FloatingPoint32	
	Can be changed: -		Scaling: p2000		Dyn. index: -	
	Units group: 3_1		Unit selection: p0505		Func. diagram: 3001, 6020, 6031	
	Min		Max		Factory setting	
	- [rpm		- [rpm]		- [rpm]	
Description:	Display and connector output of the speed setpoint after setpoint limiting for the P component of the speed controller For U/f operation, the value that is displayed is of no relevance.					
Note:	In the standard state (the reference model is de-activated), r1438 = r1439.					
r1445	CO: Actual speed smoothed / n_act smooth					
	Access level: 4		Calculated: -		Data type: FloatingPoint32	
	Can be changed: -		Scaling: p2000		Dyn. index: -	
	Units group: 3_1		Unit selection: p0505		Func. diagram: 6040	
	Min		Max		Factory setting	
	- [rpm		- [rpm]		- [rpm]	
Description:	Display and connector output for the actual smoothed speed actual value of the speed control.					
p1452[0...n]	Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL					
	Acc	ss level: 2	Calculated: -		Data type: FloatingPoint32	
	Can	be changed: U ,	Scaling: -		Dyn. index: DDS, p0180	
	Unit	group: -	Unit selection: -		Func. diagram: 6020, 6040	
	Min		Max		Factory setting	
	0.00	[ms]	32000.00		10.00 [ms]	
Description:	Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control.					
Note:	The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 $=4$).					

p1461[0...n]	Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6050
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the P gain of the speed controller for the upper adaptation speed range (> p 1465).		
	The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p1470).		
Dependency:	Refer to: p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1463[0...n]	Speed controller Tn adaptation speed upper scaling / n_ctr Tn \mathbf{n} up scal		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6050
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the integral time of the speed controller after the adaptation speed range (> p1465).		
	The entry is made referred to the integral time for the lower adaptation speed range of the speed controller (\% referred to p1472).		
Dependency:	Refer to: p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller integral time below p1465 is adapted with p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower		
	Access level: 3	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6050
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the lower adaptation speed of the speed controller. No adaptation is effective below this speed.		
Dependency:	Refer to: p1461, p1463, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1465[0...n]	Speed controller adaptation speed upper / n_ctrl n upper		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6050
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the upper adaptation speed of the speed controller. No adaptation is effective above this speed.		
	For the proportional gain, p1470 \times p1461 is effective.		
	For the integral time, p1472 \times p1463 is effective.		
Dependency:	Refer to: p1461, p1463, p1464		

Abstract

Note: If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.

r1468	CO: Speed controller P-gain effective / \mathbf{n} _ctr Kp eff		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6040
	Min	-	Factory setting
	-	-	
Description:	Displays the effective P gain of the speed controller.		
Dependency:	The connector output signal r1468 is increased by a factor of 100 in order to improve the resolution.		

r1469	Speed controller integral time effective /n_ctr Tn eff		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: $5040,5042,6040$
	Min	Max	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$
Description:	Displays the effective integral time of the speed controller.		

p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SL Kp		
	Access level: 2	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6040, 6050
	Min	Max	Factory setting
	0.000	0.300	
Description:	Sets the P gain for encoderless operation for the speed controller.		
Note:	The product p0341 x p0342 is taken into account when automatically calculating the speed controller (p0340 = 1, 3,		
	4).		

p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SL Tn		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6040, 6050
	Min	Max	Factory setting
	0.0 [ms]	100000.0 [ms]	20.0 [ms]
Description:	Set the integral time for encoderless operation for the speed controller.		
Note:	The integral component is stopped if the complete controller output or the sum of controller output and torque precontrol reach the torque limit.		

r1482	CO: Speed controller I torque output / n_ctrl I-M_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index:-
	Units group: 7_1	Unit selection: p0505	$\begin{aligned} & \text { Func. diagram: 5040, 5042, 5210, } \\ & 6030,6040 \end{aligned}$
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the I speed controller.		

r1493	CO: Moment of inertia total, scaled / M_mom inert tot_sc		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: $25 _1$	Unit selection: p0100	Func. diagram: 6031
	Min	Max	Factory setting
	$-\left[\mathrm{kgm}^{2}\right]$	$-\left[\mathrm{kgm}^{2}\right]$	
Description:	Display and connector output for the parameterized total moment of inertia.		
	The value is calculated with $\left(\left(\mathrm{p} 0341^{*} \text { p0342 }\right)^{*}\right.$ p1496 $)$.		

p1496[0...n]	Acceleration pre-control scaling / a_prectrl scal		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 6020, 6031
	Min	Max	Factory setting
	$0.0[\%]$	$10000.0[\%]$	$0.0[\%]$

Description: Sets the scaling for the acceleration pre-control of the speed/velocity controller.
Dependency: Refer to: p0341, p0342
Warning: The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking (p1145 = 0) or the acceleration precontrol (p1496 = 0).
The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).
Note:
The parameter is set to 100% by the rotating measurement (refer to p1960).
The acceleration pre-control may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.
We also recommend that the pre-control mode is not used if there is gearbox backlash.

p1496[0...n]	Acceleration pre-control scaling / a_prectrl scal		
PM330	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6020, 6031
	Min	Max	Factory setting
	0.0 [\%]	10000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the acceleration pre-control of the speed/velocity controller.		
Dependency:	Refer to: p0341, p0342		
Warning:	The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking (p1145 =0) or the acceleration precontrol (p1496 = 0).		
	The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).		
Note:	The parameter is set to 100% by the rotating measurement (refer to p1960).		
	The acceleration pre-control may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.		
	We also recommend that the pre-control mode is not used if there is gearbox backlash.		

r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6030, 6060, 6722
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque setpoint before entering the supplementary torque.		
	For closed-loop speed control, r1508 corresponds to the speed controller output; for closed-loop torque control, r1508 corresponds to the torque setpoint of the signal source assigned in p1503.		

p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6060
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	4.00 [ms]
Description:	Sets the smoothing time constant of the accelerating torque.		
Note:	The acceleration pre-control is inhibited if the smoothing is set to the maximum value.		
r1518[0...1]	CO: Accelerating torque / M_accel		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6060
	Min	Max	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Displays the accelerating torque for pre-control of the speed controller.		
Index:	$[0]=\text { Unsmoothed }$		
Dependency:	Refer to: p0341, p0342, p1496		
p1520[0...n]	CO: Torque limit upper / M_max upper		
	Access level: 2	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6630
	Min	Max	Factory setting
	-1000000.00[Nm]	$20000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the fixed, upper torque limit.		
Dependency:	Refer to: p1521, r1538, r1539		
Danger:	Negative values when setting the upper torque limit (p1520 < 0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		
p1521[0...n]	CO: Torque limit lower / M_max lower		
	Access level: 2	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6630
	Min	Max	Factory setting
	-20000000.00 [Nm]	$1000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the fixed, lower torque limit.		
Dependency:	Refer to: p1520		
Danger:	Positive values when setting the lower torque limit (p1521>0) can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data se		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		

p1530[0...n]	Power limit motoring / P_max mot		
	Access level: 2	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 14_5	Unit selection: p0505	Func. diagram: 6640
	Min	Max	Factory setting
	0.00 [kW]	100000.00 [kW]	0.00 [kW]
Description:	Sets the power limit when motoring.		
Dependency:	Refer to: p0500, p1531		
Note:	The power limit is limited to 300% of the rated motor power.		
p1531[0...n]	Power limit regenerative / P_max gen		
	Access level: 2	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 14_5	Unit selection: p0505	Func. diagram: 6640
	Min	Max	Factory setting
	-100000.00 [kW]	-0.01 [kW]	-0.01[kW]
Description:	Sets the regenerative power limit.		
Dependency:	Refer to: r0206, p0500, p1530		
Note:	The power limit is limited to 300% of the rated motor power.		
	For power units without energy recovery capability, the regenerative power limit is preset to 30% of the power r0206[0]. For a braking resistor connected to the DC link (p0219 > 0), the power limit when generating is automatically adapted. For power units with energy recovery, the parameter is limited to the negative value of r0206[2].		

r1533	Current limit torque-generating total / Iq_max total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: $6 _2$	Unit selection: p0505	Func. diagram: 6640
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the maximum torque/force generating current as a result if all current limits.		

r1536[0...1]	Current limit maximum torque-generating current / Isq_max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: $6 _2$	Unit selection: p0505	Func. diagram: 6640, 6710
	Min	Max	Factory setting
	$-[$ [Arms $]$	- [Arms $]$	- [Arms $]$
Description:	Displays the maximum limit for the torque-generating current component.		
	Index 0 indicates the signal limited by the Vdc controller.		
Index:	$[0]=$ Limited		
	$[1]=$ Unlimited		

r1537[0...1]	Current limit minimum torque-generating current / Isq_min		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: $6 _2$	Unit selection: p0505	Func. diagram: 6640,6710
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	$-[$ Arms $]$
Description:	Displays the minimum limit for the torque-generating current component.		
	Index 0 indicates the signal limited by the Vdc controller.		

Index: $\quad[0]=$ Limited
[1] = Unlimited

r1538	CO: Upper effective torque limit / M_max upper eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6640
			Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective upper torque limit.		
Note:	The effective upper torque limit is reduced with respect to the selected upper torque limit p1520, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	This may be the case for rotating measurements (see p1960).		
	The torque limit p1520 can be re-calculated using p0340 $=1$, 3 or 5 .		
r1539	CO: Lower effective torque limit / M_max lower eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6020, 6640
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the actual effective lower torque limit.		
Note:	The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	This may be the case for rotating measurements (see p1960).		
	The torque limit p1520 can be re-calculated using p0340 = 1, 3 or 5 .		
r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the limit for the torque-generating current component using the stall calculation, the current limit of the power unit as well as the parameterization in p0640.		
Index:	$\begin{aligned} & {[0]=\text { Upper limit }} \\ & {[1]=\text { Lower limit }} \end{aligned}$		
p1553[0...n]	Stall limit scaling / Stall limit scal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	80.0 [\%]	130.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the stall limit for the start of field weakening.		
Danger:	If the stall current limit is increased, then the q current setpoint can exceed the stall limit; as a consequence, a hysteresis effect can occur when loading and unloading.		

r1566[0...n]	Flux reduction factor torque / Flux red fact torq		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Controlled reluctance motor:		
	Display of the lower torque limit to evaluate the optimum flux characteristic. Above the optimum flux characteristic p2970ff, the value corresponds with the lower flux limit p1581, and is referred to the rated motor torque.		
p1567[0...n]	Magnetization scaling / Mag scale		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	1000 [\%]	100 [\%]
Description:	Controlled reluctance motor:		
	Scaling of the gradient limit of the flux when increasing up to the available residual voltage.		
Note:	The possible steepness (gradient) of the flux increase when torque is demanded is limited by the available residual voltage. This parameter allows this limit to be scaled.		

r1568[0...5]	CO: Open-loop flux control closed-loop controlled reluctance motor / Flux ctrl SRM		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays signals of the open-loop flux control of the closed-loop controlled reluctance motor.
Index:
[0] = Setpoint before filter
[1] = Output MTPC characteristic
[2] = Lower limit at low torque
[3] = Lower limit at low speed
[4] = Upper limit from field weakening controller total
[5] = Upper limit from field weakening controller precontrol

p1570[0...n]	CO: Flux setpoint / Flex setp		
PM230	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	$50.0[\%]$	100.0 [\%]	
	Sets the flux setpoint referred to rated motor flux.		
Description:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Notice:	For p1570 > 100\%, the flux setpoint increases as a function of the load from 100\% (no-load operation) to the setting		
Note:	in p1570 (above rated motor torque), if p1580 >0\% has been set.		

p1570[0...n]	CO: Flux setpoint / Flex setp		
PM330	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	$50.0[\%]$	103.0 [\%]	
	Sets the flux setpoint referred to rated motor flux.		
Description:	Refer to: p0500	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.	
Dependency:	For p1570 > 100\%, the flux setpoint increases as a function of the load from 100\% (no-load operation) to the setting		
Notice:	in p1570 (above rated motor torque), if p1580 $>0 \%$ has been set.		
Note:			

p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
PM230	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6723, 6724
	Min	Max	Factory setting
	0.0 [Vrms]	150.0 [Vrms]	2.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Dependency:	Refer to: p0500		
Note:	In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).		

p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
PM240	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6723, 6724
	Min	Max	Factory setting
	0.0 [Vrms]	150.0 [Vrms]	10.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Dependency:	Refer to: p0500		
Note:	In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).		

p1578[0...n]	Flux reduction flux decrease smoothing time / Flux red T_red		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$20[\mathrm{~ms}]$	$5000[\mathrm{~ms}]$	$200[\mathrm{~ms}]$
Description:	Controlled reluctance motor:		
	Sets the time constant for reducing the flux setpoint		
Dependency:	Refer to: p1579		

p1581[0...n]	Flux reduction factor / Flux red factor		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [\%]	100 [\%]	100 [\%]
Description:	Controlled reluctance motor:		
	Sets the lower flux limit to evaluate the optimum flux characteristic p2970ff.		
	The value is referred to the rated motor flux ($0355{ }^{*}$ r 0331).		
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6722, 6724
	Min	Max	Factory setting
	4 [ms]	5000 [ms]	15 [ms]
Description:	Sets the smoothing time for the flux setpoint.		

p1584[0...n]	Field weakening operation flux setpoint smoothing time / Field weak T_smth		
	Access level: 4	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the smoothing time for the flux setpoint in the field-weakening range		
Recommend.:	Smoothing should be especially used if there is no regenerative feedback into the line supply. This means that the DC link voltage can quickly increase in regenerative operation		
Note:			

p1586[0...n]	Field weakening characteristic scaling / Field weak scal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	80.0 [\%]	120.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the pre-control characteristic for the start of field weakening.		
	For values above 100% and for partial load situations, the field weakening starts at higher speeds.		
Note:	If the start of field weakening is shifted to lower speeds, then the voltage reserve is increased for partial load situations.		
	If the start of field weakening is shifted to higher speeds, the voltage reserve is appropriately reduced so that for fast load changes, it can be expected that this will have a negative impact on the dynamic performance.		

p1590[0...n] Flux controller P gain / Flux controller Kp
Access level: $4 \quad$ Calculated: $p 0340=1,3,4 \quad$ Data type: FloatingPoint32
Can be changed: U, T Scaling: - Dyn. index: DDS, p0180
Units group: - Unit selection: - Func. diagram: 6723
Min Max Factory setting
$0.0 \quad 999999.0 \quad 10.0$

Description: Sets the proportional gain for the flux controller.
Note: \quad The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned.
When calculating controller parameters ($\mathrm{p} 0340=4$), this value is re-calculated.

2.2 List of parameters

p1592[0...n]	Flux controller integral time / Flux controller Tn		
	Access level: 4	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	30 [ms]
Description:	Sets the integral time for the flux controller.		
Note:	The value is automatically pre-assigned dependent on the motor when the drive system is first commissioned.		
	When calculating controller parameters (p0340 $=4$), this value is re-calculated.		

r1593[0...1]	CO: Field weakening controller / flux controller output / Field/FI_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6724
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	- [Arms $]$
Description:	Display and connector output for the output of the field weakening controller (synchronous motor).		
Index:	$[0]=$ Pl output		
	$[1]=1$ output		

p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn		
PM230	Access level: 3	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 6723,6724
	Min	Max	Factory setting
	$10[\mathrm{~ms}]$	10000[ms]	$300[\mathrm{~ms}]$
Description:	Sets the integral-action time of the field-weakening controller.		

r1597	CO: Field weakening controller output / Field_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the output of the field weakening controller.		
	The value is referred to the rated motor flux.		

r1598	CO: Total flux setpoint / Flux setp total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	$\begin{aligned} & \text { Func. diagram: } 6714,6723,6724, \\ & 6725,6726,8018 \end{aligned}$
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux setpoint.		
	The value is referred	or flux.	

p1601[0...n]	Current injection ramp time / I_inject t_ramp		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1 [ms]	10000 [ms]	20 [ms]
Description:	Sets the ramp time to inject the current setpoint for changing into open-loop controlled operation. The current setpoint is generated from p1610 and p1611.		
Note:	The parameter is only applicable for closed-loop controlled reluctance motors.		
p1610[0...n]	Torque setpoint static (sensorless) / M_set static		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6700, 6721, 6722, 6726
	Min	Max	Factory setting
	-200.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the static torque setpoint for sensorless vector control.		
	This parameter is entered as a percentage referred to the rated motor torque (r0333).		
	For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.		
Notice:	p1610 should always be set to at least 10% higher than the maximum steady-state load that can occur.		
Note:	For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current).		
	For p1610 = 100%, a current setpoint is calculated that corresponds to the rated motor torque.		
	Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors.		
p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6700, 6721, 6722, 6726
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	30.0 [\%]
Description:	Enters the dynamic torque setpoint for the low-speed range for sensorless vector control. This parameter is entered as a percentage referred to the rated motor torque (r0333).		
Note:	When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled. For pure accelerating torques, it is always favorable to use the torque pre-control of the speed controller (p1496).		
r1614	EMF maximum / EMF max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6725
	Min	Max	Factory setting
	- [Vrms]		
Description:	Displays the actual maximum possible electromotive force (EMF) of the separately-excited synchronous motor.		
Dependency:	The value is the basis for the flux setpoint.		
	The maximum possible - Actual DC link voltage - Maximum modulation - Field-generating and t	on the following factors: ing current setpoint.	

p1616[0...n]	Current setpoint smoothing time / I_set T_smooth		
	Access level: 3	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6721, 6722
	Min	Max	Factory setting
	4 [ms]	10000 [ms]	40 [ms]
Description:	Sets the smoothing time for the current setpoint.		
	The current setpoint is generated from p1610 and p1611.		
Note:	This parameter is only effective in the range where current is injected for sensorless vector control.		
r1623[0...1]	Field-generating current setpoint (steady-state) / Id_set stationary		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6723
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the steady-state field generating current setpoint (ld_set).		
Note:	Re index 1:		
	Reserved.		
$\overline{\mathbf{r 1 6 2 4}}$	Field-generating current setpoint total / Id_setp total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6640, 6721, 6723, 6727
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the limited field-generating current setpoint (Id_set).		
	This value comprises the steady-state field-generating current setpoint r1623 and a dynamic component that is only set when changes are made to the flux setpoint.		
p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6710
	Min	Max	Factory setting
	0.1 [ms]	50.0 [ms]	
Description:	Sets the smoothing time constant for the setpoint of the torque-generating current components.		
Note:	The smoothing time does not become effective until the field-weakening range is reached.		
p1703[0...n]	Isq current controller pre-control scaling / Isq_ctr_prectrScal		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6714
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	60.0 [\%]
Description:	Sets the scaling of the dynamic current controller pre-control for the torque/force-generating current component Isq.		

p1710[0...n]	Current controller adaptation d axis starting point KP / Id_adapt pt KP		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	6000.00 [Arms]	0.00 [Arms]
Description:	Sets the starting point of the current-dependent current controller adaptation where the current controller gain p1720 is effective.		
Dependency:	Refer to: p1720		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	For p1712 $=100 \%$ or p1402.2 $=0$, the current controller adaptation is disabled and p1720 is effective over the entire range.		
p1711[0...n]	Current controller adaptation d axis starting point KP adapted / Id_adap pt KP adap		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	6000.00 [Arms]	0.00 [Arms]
Description:	Sets the starting point of the current-dependent current controller adaptation where the adapted current controller gain p1720 x p1712 is effective.		
Dependency:	Refer to: p1710, p1712, p1720		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	For p1712 $=100 \%$ or p1402.2 $=0$, the current controller adaptation is disabled and p1720 is effective over the entire range.		
p1712[0...n]	Current controller adaptation d axis p gain adaptation / Id_ctrl Kp adapt		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the factor for the current controller P gain in the adaptation range (d -current > p 1711). The value is referred to p 1720 .		
Dependency:	Refer to: p1710, p1711, p1720		
Notice:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	For p1712 $=100 \%$ or p1402.2 $=0$, the current controller adaptation is disabled and p1720 is effective over the entire range.		
p1715[0...n]	Current controller P gain / I_ctrl Kp		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6714
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the current controller.		

p1717[0...n]	Current controller integral-action time / I_ctrl Tn		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 5714, 6700, 6714, 7017
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral-action time of the current controller.		
Dependency:	Refer to: p1715		
p1720[0...n]	Current controller d axis p gain / Id_ctrl Kp		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the d-current controller for the lower adaptation current range. This value is automatically pre-set using p3900 or p0340 when commissioning has been completed.		
Note:	For p0393 $=100 \%$, the current controller adaptation is disabled and p1715 is effective over the entire range.		
p1722[0...n]	Current controller d axis integral time / __ctrl d-axis Tn		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral time of the d-current controller.		
p1730[0...n]	Isd controller integral component shutdown threshold / Isd ctrl Tn shutd		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group:-	Unit selection: -	Func. diagram: -
	Min		Factory setting
	30 [\%]	150 [\%]	30 [\%]
Description:	Sets the speed threshold for deactivating the integral component of the Isd controller.		
	The d current controller is only effective as P controller for speeds greater than the threshold value. Instead of the integral component, the quadrature arm decoupling is effective.		
Warning:	For settings above 80%, the d current controller is active up to the field weakening limit. When operated at the voltage limit, this can result in an unstable behavior. In order to avoid this, the dynamic voltage reserve p1574 should be increased.		
Note:	The parameter value is referred to the synchronous rated motor speed.		
p1731[0...n]	Isd controller combination current time component / Isd ctr I_combi T1		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	0.00 [ms]
Description:	Sets the time constant to calculate the d current DC component difference (combination current) to add to the d current controller actual value. It is not added for p1731 $=0$.		
Note:			

r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 5700, 5714, 6714, 5718
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Display and connector output for the direct axis voltage setpoint Ud.		
Index:	$[0]=$ Unsmoothed$[1]=$ Smoothed with		
r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 5700, 5714, 5718, 6714, 6719
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description: Index:	Display and connector output for the quadrature axis voltage setpoint Uq. [0] = Unsmoothed		
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000	10.000	0.025
Description:	Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that current is injected.		
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [\%]	1000.0 [\%]	5.0 [\%]
Description:	Sets the fault threshold in order to detect a motor that has stalled. If the error signal (r1746) exceeds the parameterized error threshold, then status signal r1408.12 is set to 1 .		
Dependency:	If a stalled drive is detected (r1408.12 = 1), fault F07902 is output after the delay time set in p2178. Refer to: p2178		
Note:	Monitoring is only effective in the low-speed range (below p1755 * (100\% - p1756)).		
r1746	Motor model error signal stall detection / MotMod sig stall		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [\%]		
Description:	Signal to initiate stall detection		
Note:	The signal is not calculated while magnetizing and only in the low speed range (below p1755 * (100\% - p1756)).		

Re bit $7=1$:
The following applies for encoderless vector control of induction motors:
If the changeover limits are parameterized too low (p1755, p1756), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.
The effective time condition for changing over into open-controlled operation is given by $\operatorname{Min}(\mathrm{p} 1758,0.5$ * r 0384).
Activation can make sense for applications that demand a high torque at low frequencies and therefore low speed gradients.
Adequate parameterization must be ensured (p1610, p1611).

Activation can make sense for applications that demand a high torque at low frequencies and therefore low speed gradients.
Adequate parameterization must be ensured (p1610, p1611).

p1750[0...n]	Motor model configuration / MotMod config				
PM330	Access level: 4		Calculated: p0340 $=1,3,5$	Data type: Unsigned8	
	Can be changed: U, T S		Scaling: -	Dyn. index: DDS, p0180	
	Units group: - U		Unit selection: -	Func. diagram: -	
			Max	Factory setting	
	-		-	01001100 bin	
Description:	Sets the configuration for the motor model.				
	Bit $0=1$: Forces open-loop speed-controlled starting (ASM).				
	Bit $1=1$: Forces the system to pass through frequency zero, open-loop-controlled (ASM).				
	Bit $2=1$: Drive remains in full closed-loop control mode, even at zero frequency (ASM).				
	Bit $3=1$: Motor model evaluates the saturation characteristic (ASM).				
	Bit $6=1$: If the motor is blocked, sensorless vector control remains speed-controlled (ASM).				
	Bit 7 = 1: Use rugged switchover limits to switchover the model (open-loop/closed-loop controlled) for regenerative operation (ASM).				
Bit field:		Signal name	1 signal	0 signal	FP
		Controlled start	Yes	No	-
	01	Controlled through 0 Hz	Yes	No	-
	02	Closed-loop ctrl oper. down to zero freq. for passive loads	Yes	No	-
		Motor model Lh_pre $=\mathrm{f}$ (PsiEst)	Yes	No	-
		Closed-loop/open-loop controlled (PEM) for blocked motor	Yes	No	-
	07	Use rugged changeover limits	Yes	No	-
Dependency:	Refer to: p0500				
Caution: \qquad !	Do not use bit $6=1$ if the motor can be slowly reversed by the load at the torque limit. Long delay times due to blocking (p2177 > p1758) can cause the motor to stall. In this case you should de-activate the function or use closedloop control throughout the speed range (note the information re bit $2=1$).				
Note:	Bits 0 ... 2 only have an influence for encoderless vector control, bit 2 is pre-assigned depending on p0500. Re bit $2=1$.				
	The sensorless vector control is effective down to zero frequency. A change is not made into the open-loop speed controlled mode.				
	This operating mode is possible for passive loads. These include applications where the load itself does not generate any active torque and therefore only acts reactively to the drive torque of the induction motor.				
	If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p 1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.				
	When the bit is set, the selection of bits 0 and 1 is ignored.				
	Re bit $2=0$:				
	Bit 3 is also automatically deactivated.				
	Re bit $6=1$:				
	The following applies for encoderless vector control of induction motors:				
	For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into open-loop controlled operation.				
	Re bit $7=1$:				
	The following applies for encoderless vector control of induction motors:				
	If the changeover limits are parameterized too low (p1755, p1756), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.				
	The effective time condition for changing over into open-controlled operation is given by Min(p1758, 0.5 * r0384).				
	Activation can make sense for applications that demand a high torque at low frequencies and therefore low speed gradients.				

[^2]

p1756	Motor model changeover speed hysteresis encoderless operation / MotMod n_chgov hys		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6730, 6731
	Min	Max	Factory setting
	0.0 [\%]	95.0 [\%]	50.0 [\%]
Description:	Sets the hysteresis for the changeover speed of the motor model for encoderless operation.		
Dependency:	Refer to: p1755		
Note:	The parameter value refers to p1755.		
	Extremely small hystereses can have a negative impact on the stability in the changeover speed range, and very high hystereses in the standstill range.		
p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	100 [ms]	10000 [ms]	500 [ms]
Description:	Sets the minimum time for falling below the changeover speed when changing from closed-loop controlled operation to open-loop controlled operation.		
Dependency:	The wait time has no significance if the setpoint speed before the ramp-function generator lies in the open-loop speed controlled operating range. In this case, the change is made without any delay.		
Note:	If p1758 is changed, commissioning must be selected in order to validate the value for the blocking monitoring.		
p1759[0...n]	Motor model changeover delay time open/closed-loop control / MotMod top_cl		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	2000 [ms]	0 [ms]
Description:	Sets the minimum time for a transition from open-loop controlled to closed-loop controlled operation after the lower changeover speed p1755 * (1 - p1756 / 100%) has been exceeded.		
Dependency:	Refer to: p1755, p1756		
Note:	With p1759 $=2000 \mathrm{~ms}$, the delay time becomes ineffective and the model changeover is determined by the output frequency only (changeover for p1755).		
p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6730
	Min	Max	Factory setting
	0.000	100000.000	1000.000
Description:	Sets the proportional gain of the controller for speed adaptation without encoder.		

p1767[0...n]	Motor model without encoder speed adaptation Tn/MotMod woE n_adaTn		
	Access level: 4	Calculated: $p 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6730
	Min	Max	Factory setting
	$1[\mathrm{~ms}]$	200 [ms]	4 [ms]
Description:	Sets the integral time of the controller for speed adaptation without encoder		

p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf			
PM230	Access level: 4 Calculate	Calculated: p0340 = 1,3,4	Data type: Unsigned16	
PM240	Can be changed: U, T Scaling: -	Scaling: -	Dyn. index: DDS, p0180	
PM250, PM260	Units group: - Unit selection	Unit selection: -	Func. diagram: -	
	Min Max	Max	Factory setting	
	- -	-	0000000000010100 bin	
Description:	Sets the configuration for the adaptation circuit of the motor model. Induction motor (ASM): Rs, Lh, and offset compensation.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	01 Select motor model ASM Rs adaptation	Yes	No	-
		Yes	No	-
	$\begin{array}{ll}02 & \text { Select motor model ASM Lh adaptation } \\ 04 & \text { Select motor model offset adaptation }\end{array}$	Yes	No	-
	07 Select T (valve) with Rs adaptation	Yes	No	-
	10 Filter time combination current like current ctrl integral time	Yes	No	-
	14 Delay of the precontrol speed to the motor model		No	-
	15 RESM: Linear Q flux model	active	not active	
Dependency:	In U/f characteristic operating mode only bit 7 is relevant.			
	For active motor model feedback (see p1784), the Lh adaptation is internally deactivated automatically.			
Note:	ASM: Induction motor			
	When selecting the compensation of the valve interlocking via Rs (bit 7), the compensation in the gating unit is deactivated and is instead taken into account in the motor model.			
	In order that the correction values of the Rs and Lh adaptation (selected using bit $0 \ldots$ bit 1) are correctly accepted when changing over the drive data set, a dedicated motor number must be entered into p0826 for each different motor.			
p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf			
PM330	Access level: $3 \quad$ Calculate	Calculated: p0340 = 1,3,4	Data type: Unsigned16	
	Can be changed: U, T Scaling:		Dyn. index: DDS, p0180	
	Units group: - Unit selection: -		Func. diagram: -	
	Min Max		Factory setting	
	- -		0000100000010100 bin	
Description:	Sets the configuration for the adaptation circuit of the motor model. Induction motor (ASM): Rs, Lh, and offset compensation.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	01 Select motor model ASM Rs adaptation	Yes	No	-
	02 Select motor model ASM Lh adaptation	Yes	No	-
	04 Select motor model offset adaptation	Yes	No	-
	07 Select T (valve) with Rs adaptation	Yes	No	-
	10 Filter time combination current like current ctrl integral time	Yes	No	-
	11 Fast flying restart with voltage model for induction motor	Yes	No	-
Dependency:	In U/f characteristic operating mode, only bit 7 and bit 11 are relevant.			
	For active motor model feedback (see p1784), the	Lh adaptation is	y deactivated	
Note:	ASM: Induction motor			
	When selecting the compensation of the valve interlocking via Rs (bit 7), the compensation in the gating unit is deactivated and is instead taken into account in the motor model.			
	In order that the correction values of the Rs and Lh adaptation (selected using bit $0 \ldots$ bit 1) are correctly accepted when changing over the drive data set, a dedicated motor number must be entered into p0826 for each different motor.			

p1784[0...n]	Motor model feedback scaling / MotMod fdbk scal		
	Access level: 4	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	$1000.0[\%]$	Factory setting
	$0.0[\%]$	$0.0[\%]$	
Description:	Sets the scaling for model fault feedback.		
Note:	Feeding back the measured model fault to the model states increases the control stability and makes the motor		
	model rugged against parameter errors.		
	When feedback is selected (p1784 >0), Lh adaptation is not effective.		

p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000	10.000	0.100
Description:	Sets the proportional gain for the Lh adaptation of the motor model for an induction motor (ASM).		
p1786[0 n]			

p1786[0...n] Motor model Lh adaptation integral time / MotMod Lh Tn

Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
$10[\mathrm{~ms}]$	$10000[\mathrm{~ms}]$	$100[\mathrm{~ms}]$

Description: Sets the integral time for the Lh adaptation of the motor model for an induction motor (ASM).

r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the corrective value for the Lh adaptation of the motor model for an induction motor (ASM).		
Dependency:	Refer to: p0826, p1780		
Note:	The adaptation result is reset if the magnetizing inductance of the induction motor is changed (p0360, r0382). This also happens when changing over the data set if a different motor is not being used (p0826).		
	The display of the inactive data sets is only updated when changing over the data set.		

p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
PM230	Access level: 2	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	0.500 [kHz]	16.000 [kHz]	4.000 [kHz$]$
Description:	Sets the pulse frequency for the converter.		
	This parameter is pre-set to the rated converter value when the drive is first commissioned.		
Dependency:	Refer to: p0230		
Note:	The maximum and minimum possible pulse frequency is also determined by the power unit being used (minimum pulse frequency: 2 kHz or 4 kHz).		
	When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).		

If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be set below the minimum value required for the filter.
For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).
If p1800 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).

p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
PM330	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	0.500 [kHz]	4.000 [kHz$]$	4.000 [kHz]
Description:	Sets the drive converter switching frequency.		
	This parameter is pre-set to twice the rated converter value when the drive is first commissioned.		
Dependency:	Refer to: p0230		
Note:	The maximum and minimum possible pulse frequency is also determined by the power unit being used (minimum pulse frequency: 2 kHz or 4 kHz).		
	When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).		
	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be set below the minimum value required for the filter.		
	For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).		
	If p 1800 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).		

r1801[0...1]	CO: Pulse frequency / Pulse frequency		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [kHz]	- [kHz]	- [kHz]
Description:	Display and connector output for the actual converter switching frequency.$[0]=\text { Actual }$		
	[0] = Actual [1] = Modulator minimum value		
Note:	The selected pulse frequency (p1800) may be reduced if the drive converter has an overload condition (p0290).		
p1802[0...n]	Modulator mode / Modulator mode		
PM230	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	10	10
Description:	Sets the modulator mode.		
Value:			
	$\begin{array}{ll}\text { 0: } & \text { Automatic changeover SVM/FLB } \\ \text { 2: } & \text { Space vector modulation (SVM) }\end{array}$		
	3: SVM without overcontrol		
	4: SVM/FLB without overcontrol		
	10: SVM/FLB with	th reduction	
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type ($\mathrm{p} 1802=3$). This does not apply to power units PM260.		
	p1802 $=10$ can only be set for power units PM230 and PM240 and for r0204.15 $=0$.		
	Refer to: p0230, p0500		

Note: | When modulation modes are enabled that could lead to overmodulation $(\mathrm{p} 1802=0,2,10)$, the modulation depth |
| :--- |
| must be limited using p1803 (default, $\mathrm{p} 1803=98 \%)$. The higher the overmodulation, the greater the current ripple |
| and torque ripple. With p1802 $=10$, the modulation depth limit is automatically reduced to 100% in the critical output |
| frequency range (over approx. 57 Hz). |
| When changing p1802[x], the values for all of the other existing indices are also changed. |

p1802[0...n]	Modulator mode / Modulator mode		
PM240	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	10	0
Description:	Sets the modulator mode.		
Value:	0: Automatic changeover SVM/FLB		
	2: Space vector modulation (SVM)		
	3: SVM without overcontrol		
	4: SVM/FLB without overcontrol		
	10: SVM/FLB with modulation depth reduction		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type (p1802 = 3). This does not apply to power units PM260. p1802 $=10$ can only be set for power units PM230 and PM240 and for r0204.15 $=0$.		
	Refer to: p0230, p0500		
Note:	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2,10$), the modulation depth must be limited using p1803 (default, p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.		
	When changing $\mathrm{p} 1802[\mathrm{x}]$, the values for all of the other existing indices are also changed.		

p1802[0...n]	Modulator mode / Modulator mode		
PM250	Access level: 3	Calculated: p0340 = 1,3,5	Data type: Integer16
PM260	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4	4
Description:	Sets the modulator mode.		
Value:	0: Automatic changeover SVM/FLB		
	2: Space vector modulation (SVM)		
	3: SVM without overcontrol		
	4: SVM/FLB without overcontrol		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type (p1802 = 3). This does not apply to power units PM260.		
	Refer to: p0230, p0500		
Note:	When modulation modes are enabled that could lead to overmodulation ($\mathrm{p} 1802=0,2,10$), the modulation depth must be limited using p1803 (default, p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.		
	When changing p1802[x], the values for all of the other existing indices are also changed.		

p1802[0...n] Modulator mode / Modulator mode

Can be changed: T
Units group: -

Min

0

Data type: Integer16
Dyn. index: DDS, p0180
Func. diagram: -
Factory setting
9

Description: Sets the modulator mode.

Value:

0: Automatic changeover SVM/FLB
2: \quad Space vector modulation (SVM)
9: Edge modulation
19: Optimized pulse pattern

2.2 List of parameters

Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type (p1802 = 3). This does not apply to power units PM260.
	p1802 = 10 can only be set for power units PM230 and PM240 and for r0204.15 $=0$.
	Refer to: p0500
Notice:	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2$), the modulation depth must be limited using p1803 (default p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.
	When changing $\mathrm{p} 1802[\mathrm{x}]$, the values for all of the other existing indices are also changed.
Note:	The setting p1802 = 19 is only released for chassis power units and SIMOTICS FD motors.

p1803[0...n]	Maximum modulation depth / Modulat depth max		
PM230	Access level: 4	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	20.0 [\%]	120.0 [\%]	115.0 [\%]
Description:	Defines the maximum modulation depth.		
Dependency:	Refer to: p0500		
Note:	$p 1803=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		

p1803[0...n]	Maximum modulation depth / Modulat depth max		
PM240	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Mnit selection: -	Func. diagram: 6723
	Min	150.0 [\%]	Factory setting
	$20.0[\%]$	106.0 [\%]	
Description:	Defines the maximum modulation depth.		
Dependency:	Refer to: p0500		
Note:	p1803 $=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		

p1803[0...n]	Maximum modulation depth / Modulat depth max		
PM250	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	20.0 [\%]	150.0 [\%]	106.0 [\%]
Description:	Defines the maximum modulation depth.		
Dependency:	Default setting PM260: 103 \%.		
	Refer to: p0500		
Note:	p1803 $=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		

p1803[0...n]	Maximum modulation depth / Modulat depth max		
PM330	Access level: 4	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6723
	Min	$150.0[\%]$	Factory setting
	$20.0[\%]$	106.0 [\%]	
Description:	Defines the maximum modulation depth.		
Dependency:	Refer to: p0500 note: p1803 $=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		

p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
PM230	Access level: 4	Calculated: p0340 = 1,3	Data type: FloatingPoint32
PM250, PM260	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	0.0 [ms]
Description:	Sets the filter time constant of the DC link voltage used to calculate the modulation depth.		
p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
PM240	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
PM330	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	0.0 [ms]
Description:	Sets the filter time constant of the DC link voltage used to calculate the modulation depth.		
r1809	CO: Modulator mode actual / Modulator mode act		
PM230	Access level: 4	Calculated: -	Data type: Integer16
PM240	Can be changed: -	Scaling: -	Dyn. index: -
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	9	-
Description:	Displays the effective modulator mode.		
Value:	1: \quad Flat top modulation (FLB) 2: \quad Space vector modulation (SVM)		

r1809	CO: Modulator mode actual / Modulator mode act	
PM330	Access level: 4 Calculated: -	Data type: Integer16
	Can be changed: - Scaling: -	Dyn. index: -
	Units group: - Unit selection: -	Func. diagram: -
	Min Max	Factory setting
	19	-
Description:	Displays the effective modulator mode.	
Value:	1: Flat top modulation (FLB)	
	2: Space vector modulation (SVM)	
	3: Edge modulation from $28 \mathrm{~Hz} ; 23: 3$	
	4: Edge modulation from $28 \mathrm{~Hz} ; 19: 1$	
	5: Edge modulation from $60 \mathrm{~Hz} ; 17: 3$	
	6: Edge modulation from $60 \mathrm{~Hz} ; 17: 1$	
	7: Edge modulation from $100 \mathrm{~Hz} ; 9: 2$	
	8: Edge modulation from $100 \mathrm{~Hz} ; 9: 1$	
	9: Optimized pulse pattern	

p1810	Modulator configuration / Modulator config		
PM230	Access level: 4	Calculated: -	Data type: Unsigned16
PM250, PM260	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	0000 bin	
Description:	Sets the configuration for the modulator.		

2.2 List of parameters

p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(2), \mathrm{T}$	Unit selection: -	Dyn. index: DDS, p0180
	Units group: -	Max	Func. diagram: -
	Min	1	0
Description:	0	Sets the phase sequence reversal for the motor without setpoint change.	
	If the motor does not rotate in the required direction, then the output phase sequence can be reversed using this		
	parameter. This means that the direction of the motor is reversed without the setpoint being changed.		

Value:	$0:$	OFF
	$1:$	ON

Note: \quad This setting can only be changed when the pulses are inhibited.

p1822	Power unit line phases monitoring tolerance time / PU ph monit t_tol		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	500 [ms]	540000 [ms]	1000 [ms]
Description:	Sets the tolerance time for line phase monitoring for blocksize power units.		
	If a line phase fault is present for longer than this tolerance time, then a corresponding fault is output.		
Notice:	When operating with a failed line phase, depending on the active power, values higher than the default value can either immediately damage the power unit or damage it over the long term.		
Note:	For the setting p1822 = maximum value, line phase monitoring is deactivated.		
p1825	Converter valve threshold voltage / Threshold voltage		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [Vrms]	100.0 [Vrms]	0.6 [Vrms]
Description:	Sets the threshold voltage drop of the valves (power semiconductor devices) to be compensated.		
Note:	The value is automatically calculated in the motor data identification routine.		
p1828	Compensation valve lockout time phase U/ Comp t_lock ph U		
PM230	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Dyn. index: -
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	3.99 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase U.		
Note:	The value is automatically calculated in the motor data identification routine.		
p1828	Compensation valve lockout time phase U / Comp t_lock ph U		
PM330	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	7.80 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase U. The value is automatically calculated in the motor data identification routine.		
Note:			
p1829	Compensation valve lockout time phase V / Comp t_lock ph V		
PM230	Access level: 4	Calculated: p0340 $=1$	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Dyn. index: -
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	3.99 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase V.		

2.2 List of parameters

p1829	Compensation valve lockout time phase V/Comp t_lock ph V		
PM330	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.00[\mu \mathrm{~s}]$	$7.80[\mu \mathrm{~s}]$	$0.00[\mu \mathrm{~s}]$
Description:	Sets the valve lockout time to compensate for phase V.		

p1830	Compensation valve lockout time phase W / Comp t_lock ph W		
PM230	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Dyn. index: -
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.00[\mu \mathrm{~s}]$	$3.99[\mu \mathrm{~s}]$	$0.00[\mu \mathrm{~s}]$
Description:	Sets the valve lockout time to compensate for phase W.		

p1830	Compensation valve lockout time phase W / Comp t_lock ph W		
PM330	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	7.80 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase W.		
p1832	Dead time compensation current level / t_dead_comp I_lev		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [Arms]	10000.0 [Arms]	0.0 [Arms]
Description:	Above the current level, the dead time - resulting from the converter switching delays - is compensated by a previously calculated constant value. If the relevant phase current setpoint falls below the absolute value defined by p1832, the corrective value for this phase is continuously reduced.		
Dependency:	The factory setting of p1	atically set to 0.02 * rated	ter current (r0207).

r1838.0... 15	CO/BO: Gating unit status word 1 / Gating unit ZSW1				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays status word 1 of the power unit.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Fault time-critical	ON	OFF	-
		Gating unit mode bit 0	ON	OFF	-
	02	Pulse enable	ON	OFF	-
		Upper shutdown path	Inactive	Active	-
	04	Lower shutdown path	Inactive	Active	-
	05	Gating unit mode bit 1	ON	OFF	-
	06	Gating unit mode bit 2	ON	OFF	-
	07	Brake state	ON	OFF	-
	08	Brake diagnostics	ON	OFF	-
	09	Armature short-circuit	Active	Not active	-

p1900	Motor data identification and rotating measurement / MotID and rot meas		
PM330	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	2
Description:	Sets the motor data identification and speed controller optimization.		
	The motor identification should first be performed with the motor stationary (p1900 = 1, 2; also refer to p1910). Based on this, additional motor and control parameters can be determined using the motor data identification with the motor rotating ($\mathrm{p} 1900=1,3$; also refer to p 1960).		
	Function inhibited.		
	p1900 = 1:		
	Sets p1910 = 1 and p1960 $=0,1$ depending on p1300		
	When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.		
	With the following power-on command, a rotating motor data identification routine is carried out - and in addition, a speed controller optimization by making measurements at different motor speeds.		
	Sets p1910 $=1$ and p1960 $=0$		
	When the drive enable signals are present, a motor data identification routine is carried out at standstill with the next power-on command. Current flows through the motor which means that it can align itself by up to a quarter of a revolution.		
	p1900 = 3:		
	Sets p1960 = 0, 1 depending on p1300		
	This setting should only be selected if the motor data identification was already carried out at standstill.		
	When the drive enable signals are present, with the next power-on command, a rotating motor data identification routine is carried out - and in addition, speed controller optimization by taking measurements at different motor speeds.		
Value:	0: Inhibited		
	1: Identifying motor data and optimizing spee		
	2: Identifying motor data (at standstill)		
	3: Optimizing speed control (in the rotating mode)		
Dependency:	Refer to: p1300, p1910, p1960		
Notice:	p1900 = 3:		
	This setting should only be selected if the motor data identification was already carried out at standstill.		
	To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).		
	During the rotating measurement it is not possible to save the parameter (p0971).		
	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	The motor and control parameters of the vector control are only optimally set when both measurements are carried out (initially at standstill, and then with the motor rotating). The measurement with rotating motor is not performed for p1300 < 20 (U/f controls).		
	An appropriate alarm is output when the parameter is set.		
	The power-on command must remain set during a measurement and after the measurement has been completed, the drive automatically resets it.		
	The duration of the measurements can lie between 0.3 s and several minutes. This time is, for example, influenced by the motor size and the mechanical conditions.		
	p1900 is automatically set to 0 after the motor data identification routine has been completed.		

2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	F signal	-
	00	Short-circuit test successfully performed	Yes	No	No
	01	Phase short-circuit detected	Yes	No	
	02	Ground fault test successfully performed	Yes	Yes	No
	03	Ground fault detected	No	-	
	04	Identification pulse width greater than the	Yes		
	minimum pulse width				

Note: If the ground fault test was selected, but not successfully performed, then sufficient current will not be able to be established during the test pulses.
Re bit 04:
A test pulse longer than one sampling time has occurred

p1909[0...n]	Motor data identification control word / MotID STW		
PM230	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned32
PM240	Can be changed: T	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0000000000000000000000000000

Description: Sets the configuration for the motor data identification.

Bit	Signal name	1 signal	0
00	Stator inductance estimate no measurement	Yes	N
02	Rotor time constant estimate no measurement	Yes	N
03	Leakage inductance estimate no measurement	Yes	No
05	Determine Tr and Lsig evaluation in the time range	Yes	No
06	Activate vibration damping	Yes	No
07	De-activate vibration detection	Yes	N
11	De-activate pulse measurement Lq Ld	Yes	N
12	De-activate rotor resistance Rr measurement	Yes	N
14	De-activate valve interlocking time measurement	Yes	No
15	Determine only stator resistance, valve voltage fault, dead time	Yes	No
16	Short motor identification (lower quality)	Yes	No
17	Measurement without control parameter calculation	Yes	No
18	After motID direct transition into operation	Yes	N
19	After MotID automatically save results	Yes	N
20	Estimate cable resistance	Yes	No

0 signal	FP
No	-

Note: The following applies to permanent-magnet synchronous motors:
Without de-selection in bit 11, in the closed-loop control mode, the direct inductance LD and the quadrature inductance Lq are measured at a low current.

When de-selecting with bit 11 or in the U/f mode, the stator inductance is measured at half the rated motor current If the stator is inductance is not measured but is to be estimated, then bit 0 should be set and bit 11 should be deselected.
Bit 19 = 1:
All parameters are automatically saved after a successful motor data identification.
If a speed controller optimization run is then selected, the parameters are only saved after this measurement has been completed.

2.2 List of parameters

p1910 $=20$:
Only for internal SIEMENS use.

2.2 List of parameters

r1914[0...2]	Identified total leakage inductance / L_total_leak ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the identified total leakage inductance.		
Index:	$[0]=$ Phase U		
	[1] = Phase V		
	[2] = Phase W		
r1915[0...2]	Identified nominal stator inductance / L_stator ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the nominal stator inductance identified.		
Index:	$[0]=\text { Phase U }$		
	$\begin{aligned} & {[1]=\text { Phase V }} \\ & {[2]=\text { Phase W }} \end{aligned}$		

r1925[0...2]	Identified threshold voltage / U_threshold ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[V r m s]$	$-[V r m s]$	
Description:	Displays the identified IGBT threshold voltage.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1926[0...2]	Identified effective valve lockout time /t_lock_valve id		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mu \mathrm{s}]$	$-[\mu \mathrm{s}]$	$-[\mu \mathrm{s}]$

Description: Displays the identified effective valve lockout time.

Index: \quad| $[0]$ | $=$ Phase U |
| :--- | :--- |
| | $[1]=$ Phase V |
| | $[2]=$ Phase W |

r1927[0...2]	Identified rotor resistance / R_rotor ident		
	Access level: 4	Calculated: -	
	Can be changed: -	Scaling: -	Data type: FloatingPoint32
	Units group: -	Unit selection: -	Dyn. index: -
	Min	Max	Func. diagram: -
	$-[$ [ohm	- Fohm $]$	- [ohm $]$
	Description:	Displays identified rotor resistance (on separately excited synchronous motors: damping resistance).	
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

p1959[0...n]	Rotating measurement configuration / Rot meas config			
PM330		ss level: 3 Calcu	p0340 = 1	Data type: Unsigned16
		be changed: T Scal		Dyn. index: DDS, p0180
		group: - Unit	on: -	Func. diagram: -
	Min	Max		Factory setting
	-	-		0001000000011110 bin
Description:	Sets the configuration of the rotating measurement.			
Bit field:	Bit	Signal name	1 signal	0 signal
		Saturation characteristic identification	Yes	
		Moment of inertia identification	Yes	No
	03	Re-calculates the speed controller parameters	Yes	No

2.2 List of parameters

	$04 \quad$ Speed controller optimization (vibration test) Yes $12 \quad$ Measurement shortened $13 \quad$ After measurement direct transition into operation
Note:	Yes

p1961	Saturation characteristic speed to determine / Sat_char n determ		
PM230	Access level: 3	Calculated: -	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Dyn. index: -
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	26 [\%]	75 [\%]	40 [\%]
Description:	Sets the speed to determine the saturation characteristic. The percentage value is referred to p0310 (rated motor frequency).		
Dependency:	Refer to: p0310, p1959		
Note:	The saturation characteristics should be determined at an operating point with the lowest possible load.		

2.2 List of parameters

p1961	Saturation characteristic speed to determine / Sat_char n determ		
PM330	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	26 [\%]	75 [\%]	30 [\%]
Description:	Sets the speed to determine the saturation characteristic.		
	The percentage value is referred to p0310 (rated motor frequency).		
Dependency:	Refer to: p0310, p1959		
Note:	The saturation characteristics should be determined at an operating point with the lowest possible load.		
p1965	Speed_ctrl_opt speed / n_opt speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	75 [\%]	40 [\%]
Description:	Sets the speed for the identification of the moment of inertia and the vibration test.		
	Induction motor:		
	The percentage value is referred to 00310 (rated motor frequency).		
	Synchronous motor:		
	The percentage value is referred to the minimum from p0310 (rated motor frequency) and p1082 (maximum speed).		
	Refer to: p0310, p1959		
Note:	In order to calculate the inertia, sudden speed changes are carried out - the specified value corresponds		
	The q leakage inductance (refer to p1959.5) is determined at zero speed and at 50% of p 1965 - however, with a maximum output frequency of 15 Hz and at a minimum of 10% of the rated motor speed.		
p1967	Speed_ctrl_opt dynamic factor / n_opt dyn_factor		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1 [\%]	400 [\%]	100 [\%]
Description:	Sets the dynamic response factor for speed controller optimization. After optimization, the dynamic response achieved is displayed in r1968.		
Dependency:	Refer to: p1959, r1968		
Note:	For a rotating measurement, this parameter can be used to optimize the speed controller. p1967 $=100 \%$--> speed controller optimization according to a symmetric optimum. p1967 > 100%--> optimization with a higher dynamic response (Kp higher, Tn lower).		
	If the actual dynamic response (see r1968) is significantly reduced with respect to the required dynamic response (p 1967), then this can be as a result of mechanical load oscillations. If, in spite of this load behavior, a higher dynamic response is required, then the oscillation test $(\mathrm{p} 1959.4=0)$ should be deactivated and the measurement repeated.		

r1968	Speed_ctrl_opt dynamic factor actual / n_opt dyn_fact act		
	Access level: 3	Calculated: -	Data type: Flo
	Can be changed: -	Scaling: -	Dyn. index:
	Units group: -	Unit selection: -	Func. diagra
	Min	Max	Factory setti
	- [\%]	- [\%]	- [\%]
Description:	Displays the dynamic factor which is actually achieved for the vibration test		
Dependency:	Refer to: p1959, p1967		
Note:	This dynamic factor only refers to the control mode of the speed controller set in p1960.		

2.2 List of parameters

r1969	Speed_ctrl_opt moment of inertia determined / n_opt M_inert det		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: 25_1	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	- [kgm^{2}]	- $\left[\mathrm{kgm}^{2}\right]$	- [kgm^{2}]
Description:	Displays the determined moment of inertia of the drive.		
	After it has been determined, the value is transferred to p0341, p0342.		
Dependency:	IEC drives (p0100 $=0$): unit $\mathrm{kg} \mathrm{m} \mathrm{m}^{\wedge}$		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2		
	Refer to: p0341, p0342, p1959		
r1970[0...1]	Speed_ctrl_opt vibration test vibration frequency determined / n_opt f_vib det		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the vibration frequencies determined by the vibration test.		
Index:	[0] = Frequency low [1] = Frequency high		
Dependency:	Refer to: p1959		
p1974	Speed_ctrl_opt saturation characteristic rotor flux maximum / n_opt rot_fl max		
	Access level: 4	Calculated: $00340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	104 [\%]	120 [\%]	120 [\%]
Description:	Sets the maximum flux setpoint to measure the saturation characteristic.		
p1980[0...n]	PoIID technique / PoIID technique		
PM230	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: Integer16
PM240	Can be changed: U, T	Scaling: -	Dyn. index: MDS, p0130
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		10	4
Description:	Sets the pole position identification technique.		
	p1980 $=1,8$: The current magnitude is set using p0329.		
	$\mathrm{p} 1980=4,6$: The current magnitude of the first measurement section is set using p0325, the second using p0329.		
	The current magnitudes are limited to the rated power unit values.		
Value:	1: Voltage pulsing 1st harmonics		
	4: Voltage pulsing 2-stage		
	6: Voltage pulsing		
	8: Voltage pulsing	, inverse	
	10: DC current injection		
Dependency:			Refer to: p1780
Note:	Voltage pulse technique	4,8) cannot be applied to o	ith sine-wave output filters (p0

p2000	Reference speed reference frequency / n_ref f_ref		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: Reference frequency (in Hz) = reference speed (in ((rpm)/60) x pole pair number)		
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 .		
	Refer to: p2001, p2002, p2003, r2004, r3996		
Notice:	When the reference speed / reference frequency is changed, short-term communication interruptions may occur.		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example 1:		
	The signal of an analog input (e.g. r0755[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p 2000).		
	Example 2:		
	The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).		
p2001	Reference voltage / Reference voltage		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [Vrms]	100000 [Vrms]	1000 [Vrms]
Description:	Sets the reference quantity for voltages.		
	All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values (= rms value) like the DC-link voltage.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
	Note:		
	This reference quantity also applies to direct voltage values. It is not interpreted as rms value, but as DC voltage value.		
Dependency:	p2001 is only updated during automatic calculation (p0340 $=1, \mathrm{p} 3900>0$) if motor commissioning has been carried out first for drive data set zero and as a result overwriting of the parameter has not been blocked by setting p0573 = 1.		
	Refer to: r3996		
p2002	Reference current / I_ref		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.10 [Arms]	100000.00 [Arms]	100.00 [Arms]
Description:	Sets the reference quantity for currents.		
	All currents specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		

2.2 List of parameters

Dependency:	This parameter is only updated during the automatic calculation ($p 0340=1, p 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 .
	Refer to: r3996
Notice:	If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor must be taken into account.
	Example:
	p2002 = 100 A
	Reference quantity 100 A corresponds to 100 \%
	p0305[0] = 100 A
	Rated motor current 100 A for MDS0 in DDS0 --> 100 \% corresponds to 100 \% of the rated motor current
	p0305[1] = 50 A
	Rated motor current 50 A for MDS1 in DDS1 --> 100 \% corresponds to 200 \% of the rated motor current
	When the reference current is changed, short-term communication interruptions may occur.
Note:	Preassigned value is p0640.
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
	For infeed units, the rated line current, which is obtained from the rated power and parameterized rated line supply voltage ($\mathrm{p} 2002=\mathrm{r} 0206 / \mathrm{p} 0210 / 1.73$) is pre-assigned as the reference quantity.
	Example:
	The actual value of a phase current (r0069[0]) is connected to a test socket (e.g. p0771[0]). The actual current value is cyclically converted into a percentage of the reference current (p2002) and output according to the parameterized scaling.
p2003	Reference torque / M_ref
	Access level: 3 Calculated: p0340=1 Data type: FloatingPoint32
	Can be changed: T Scaling: - Dyn. index: -
	Units group: 7_2 Unit selection: p0505 Func. diagram: -
	Min Max Factory setting
	$0.01[\mathrm{Nm}] \quad 20000000.00[\mathrm{Nm}] \quad 1.00[\mathrm{Nm}]$
Description:	Sets the reference quantity for torque.
	All torques specified as relative value are referred to this reference quantity.
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1$, $\mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 = 1 .
	Refer to: r3996
Notice:	When the reference torque is changed, short-term communication interruptions may occur.
Note:	Preassigned value is 2 * 00333 .
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.
	Example:
	The actual value of the total torque (r0079) is connected to a test socket (e.g. p0771[0]). The actual torque is cyclically converted into a percentage of the reference torque (p2003) and output according to the parameterized scaling.
r2004	Reference power / P_ref
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: - Dyn. index: -
	Units group: 14_10 Unit selection: p0505 Func. diagram: -
	Min Max Factory setting
	$-[\mathrm{kW}] \quad-[\mathrm{kW}] \quad-[\mathrm{kW}]$
Description:	Displays the reference quantity for power.
	All power ratings specified as relative value are referred to this reference quantity.
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).

Dependency:	This value is calculated as follows:
	Infeed: Calculated from voltage times current.
	Closed-loop control: Calculated from torque times speed.
Refer to: p2000, p2001, p2002, p2003	
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor. The reference power is calculated as follows: $\quad-$ reference voltage * reference current * root(3) (infeed)

p2006	Reference temp / Ref temp		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	50.00 [${ }^{\circ} \mathrm{C}$]	$300.00\left[{ }^{\circ} \mathrm{C}\right]$	$100.00{ }^{\circ} \mathrm{C}$]
Description:	Sets the reference quantity for temperature.		
	All temperatures specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		

p2010	Comm IF baud rate / Comm baud		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	6	12	12
Description:	Sets the baud rate for the commissioning interface (USS, RS232).		
Value:	6: 9600 baud		
	7: 19200 baud		
	8: 38400 baud		
	9: 57600 baud		
	10: 76800 baud		
	11: 93750 baud		
	12: 115200 baud		
Note:	COMM-IF: Commissioning interface		
	The parameter is not influenced by setting the factory setting.		
p2011	Comm IF address / Comm add		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min		Factory setting
	0	31	2
Description:	Sets the address for the commissioning interface (USS, RS232).		
Note:	The parameter is not influenced by setting the factory setting.		
p2016[0...3]	CI: Comm IF USS PZD send word / Comm USS send word		
	Access level: 3	Calculated: -	Data type: U32 / Integer16
	Can be changed: U, T	Scaling: 4000H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) to be sent via the commissioning interface USS. The actual values are displayed on an intelligent operator panel (IOP).		

2.2 List of parameters

Index: \quad| $[0]=$ PZD 1 | |
| :--- | :--- |
| | $[1]=$ PZD 2 |
| | $[2]=$ PZD 3 |
| | $[3]=$ PZD 4 |

r2019[0...7]	Comm IF error statistics / Comm err	
	Access level: 4 Calculated: -	Data type: Unsigned32
	Can be changed: - Scaling: -	Dyn. index: -
	Units group: - Unit selection: -	Func. diagram: -
	Min Max	Factory setting
	- -	-
Description:	Displays the receive errors at the commissioning interface (USS, RS232).	
Index:	[0] Number of error-free telegrams	
	[1] = Number of rejected telegrams	
	[2] = Number of framing errors	
	[3] = Number of overrun errors	
	[4] = Number of parity errors	
	[5] = Number of starting character errors	
	$[6]=$ Number of checksum errors$[7]=$ Number of length errors	

p2020
CU230P-2_BT
CU230P-2_HVAC

Field bus interface baud rate / Field bus baud

Access level: 2
Can be changed: T
Units group: -
Min
4

Calculated: -
Scaling: -
Unit selection: -
Max
13

Data type: Integer16
Dyn. index: -
Func. diagram: 9310
Factory setting
8

Description: Sets the baud rate for the field bus interface (RS485).
Value:

For p0014 = 1, the following applies:
After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
For p0014 = 0, the following applies:
Before a changed setting becomes permanently effective, a non-volatile RAM to ROM data save is required. To do this, set p0971 $=1$ or p0014 $=1$.
Note:
Fieldbus IF: Fieldbus interface
Changes only become effective after POWER ON.
The parameter is not influenced by setting the factory setting.
The parameter is set to the factory setting when the protocol is reselected.
When p2030 = 1 (USS), the following applies:
Min./max./factory setting: 4/13/8
When p2030 $=2$ (MODBUS), the following applies:
Min./max./factory setting: 5/13/7
If p2030 = 5 (BACnet), the following applies:
Possible values/factory setting: $(6,7,8,10) / 6$
If $\mathrm{p} 2030=8(\mathrm{P} 1)$, the following applies:
Min./max./factory setting: 5/7/5

Description: Sets the number of 16-bit words in the PKW part of the USS telegram for the field bus interface.

2.2 List of parameters

p2026[0...74]	Fieldbus interface BACnet COV increment / BACnet COV incr		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU230P-2_HVAC	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	4194303	1
Description:	Sets BACnet COV (change of value) increment values.		
Index:	[0] = Analog input 0		
	[1] = Analog input 1		
	[2] = Analog input 2		
	[3] = Analog input 3		
	[4] = Analog input 4		
	[5] = Analog input 5		
	[6] = Analog input 6		
	[7] = Analog input 7		
	[8] = Analog Output 0		
Dependency:	Refer to: p2030		
p2027	Fieldbus interface BACnet language selection / BACnet language		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: Integer16
CU230P-2_HVAC	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	1	0
Description:	Sets the language for the BACnet object properties.		
Value:	$\begin{array}{ll}0: & \text { German } \\ \text { 1: } & \text { English }\end{array}$		
Note:	Changes only become effective after POWER ON.		

r2029[0...7]	Field bus int error statistics / Field bus error		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: Unsigned32
CU230P-2_HVAC	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9310
	Min	Factory setting	
	-	-	
Description:	Displays the receive errors on the field bus interface (RS485).		
Index:	$[0]=$ Number of error-free telegrams		
	$[1]=$ Number of rejected telegrams		
	$[2]=$ Number of framing errors		
	$[3]=$ Number of overrun errors		
	$[4]=$ Number of parity errors		
	$[5]=$ Number of starting character errors		
	$[6]=$ Number of checksum errors		
	$[7]=$ Number of length errors		

p2030	Field bus int protocol selection / Field bus protocol		
CU230P-2_BT	Access level: 1	Calculated: -	Data type: Integer16
CU230P-2_HVAC	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	8	0
Description:	Sets the communication protocol for the field bus interface.		

2.2 List of parameters

Value:	0: No protocol		
	1: USS		
	2: MODBUS		
	5: BACnet		
	8: P1		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p2030	Field bus int protocol selection / Field bus protocol		
CU230P-2_CAN	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	4	4
Description: Sets the communica		Sets the communication protocol for the field bus interface.	
Value:	0 : \quad No protocol		
	4: CAN		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p2030	Field bus int protocol selection / Field bus		
CU230P-2_DP	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	3	3
Description:	Sets the communication protocol for the field bus interface.		
Value:	$\begin{array}{ll}\text { 0: } & \text { No protocol } \\ \text { 3: } & \text { PROFIBUS }\end{array}$		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p2030	Field bus int		
CU230P-2_PN	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9310
	Min	Max	Factory setting
	0	10	7
Description:	Sets the communication protocol for the field bus interface.		
Value:	0: No protocol		
	7: PROFINET		
	10: Ethernet/IP		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		

2.2 List of parameters

Note:	When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails.		
p2044	PROFldrive fault delay / PD fault delay		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU230P-2_PN	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	0 [s]	100 [s]	0 [s]
Description:	Sets the delay time to initiate fault F01910 after a setpoint failure.		
	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction).		
Dependency:	Refer to: r2043		
p2047	PROFIBUS additional monitoring time / PB suppl t_monit		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the additional monitoring time to monitor the process data received via PROFIBUS. Enables short bus faults to be compensated. If no process data is received within this time, then an appropriate message is output.		
Note:	For controller STOP, the additional monitoring time is not effective.		

r2050[0..11]	CO: PROFIBUS PZD receive word / PZD recv word		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: 4000H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2440, 2468, 9360
	Min	Max	Factory setting
	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
Notice:	Where there is a mu FloatingPoint data ty	tion of a connector rconnection for a s	nector inputs must either have Integ take place either on r2050 or r2060.

p2051[0...13]	CI: PROFIdrive PZD send word / PZD send word		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Integer16
CU230P-2_CAN	Can be changed: U, T	Scaling: 4000H	Dyn. index: -
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2450, 2470, 9370
	Min	-	Factory setting
	-	0	
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	$[0]=$ PZD 1		
	$[1]=$ PZD 2		

2.2 List of parameters

[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p2051[0...13]	CI: PROFldrive PZD send word / PZD send word		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Integer16
CU230P-2_PN	Can be changed: U, T	Scaling: 4000H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2450, 2470, 9370
	Min	Max	Factory setting
	-	-	[0] 2089[0]
			[1] 63[0]
			[2...13] 0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	$\text { [0] = PZD } 1$		
	$[1]=\text { PZD } 2$		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
Notice:	The parameter may be pros	result of p0922 or	be changed.

r2053[0...13] PROFldrive diagnostics send PZD word/Diag send word

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: -	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: 2450, 2470, 9370
Min	Max	Factory setting
-	-	-

Description: Displays the PZD (actual values) with word format sent to the fieldbus controller.
Index:
$[0]=$ PZD 1
$[1]=$ PZD 2
$[2]=$ PZD 3
$[3]=$ PZD 4
$[4]=$ PZD 5
$[5]=$ PZD 6
$[6]=$ PZD 7
$[7]=$ PZD 8
$[8]=$ PZD 9
$[9]=$ PZD 10
$[10]=$ PZD 11
$[11]=$ PZD 12
$[12]=$ PZD 13
$[13]=$ PZD 14

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-

r2054	PROFIBUS status / PB status		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min	4	Factory setting
	0		
Description:	Status display for the PROFIBUS interface.		
Value:	$0: \quad$ OFF		
	$1: \quad$ No connection (search for baud rate)		
	$2:$	Connection OK (baud rate found)	
	$3:$	Cyclic connection with master (data exchange)	
	$4:$	Cyclic data OK	

r2055[0...2]	PROFIBUS diagnostics standard / PB diag standard		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting

Description: Diagnostics display for the PROFIBUS interface.

Index: \quad| $[0]$ | $=$ Master bus address |
| ---: | :--- |
| | $[1]=$ Master input total length bytes |
| | $[2]=$ Master output total length bytes |

r2057	PROFIBUS address switch diagnostics / PB addr_sw diag		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min	-	Factory setting
	-	-	
Description:	Displays the setting of the PROFIBUS address switch "DP ADDRESS" on the Control Unit.		
Dependency:	Refer to: p0918		
Notice:	The display is updated after switching on, and not cyclically.		

2.2 List of parameters

r2060[0...10]	CO: PROFIdrive PZD receive double word / PZD recv DW		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: 4000H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2440, 2468
	Min	Max	Factory setting
	-	-	-
	Connector output to interconnect PZD (setpoints) with double word format received from the fieldbus controller. [0] = PZD $1+2$		
Index:	$\begin{aligned} & {[0]=\text { PZD } 1+2} \\ & {[1]=\text { PZD } 2+3} \end{aligned}$		
	[2] $=$ PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	$[5]=$ PZD $6+7$		
	$[6]=$ PZD $7+8$		
	[7] $=$ PZD $8+9$		
	[8] $=$ PZD $9+10$		
	[9] P PZD $10+11$		
	[10] = PZD $11+12$		
Notice:	Refer to: r2050		
	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.		
	A BICO interconnection for a single PZD can only take place either on r2050 or r2060.		
p2061[0...12]	CI: PROFIBUS PZD send double word / PZD send DW		
	Access level: 3	Calculated: -	Data type: U32 / Integer32
	Can be changed: U, T	Scaling: 4000 H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2470
	Min	Max	Factory setting
		-	0
Description:	Selects the PZD (actual values) with double word format to be sent to the fieldbus controller.		
Index:	$[0]=\text { PZD } 1+2$		
	[2] $=$ PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] $=$ PZD $5+6$		
	[5] P PZD $6+7$		
	$[6]=\operatorname{PZD} 7+8$$[7]=$ PZD $8+9$		
	[8] $=$ PZD $9+10$		
	[9] = PZD $10+11$$[10]=$ PZD $11+12$		
	[11] $=$ PZD 12 + 13		
	[12] = PZD $13+14$		
Dependency:	Refer to: p2051		
Notice:	A BICO interconnection for a single PZD can only take place either on p2051 or p2061.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
r2063[0...12]	PROFIdrive diagnostics PZD send double word / Diag send DW		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2470
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.		
Index:	[0] = PZD $1+2$		
	$[1]=$ PZD $2+3$$[2]=$ PZD $3+4$		
	[2] $=$ PZD $3+4$		

	$[3]$ $[4]$ $[5]$ $[6]$ $[7]$ $[8]$ $[9]$ $[10]$ $[11]$ $[12]$	PZD $4+5$ PZD $5+6$ PZD $6+7$ PZD $7+8$ PZD $8+9$ PZD $9+10$ PZD $10+11$ $=$ PZD $11+12$ $=$ PZD $12+13$ $=$ PZD $13+14$		
Bit field:	Bit	Signal name	1 signal	0 signal
	00	Bit 0	ON	OFF
	01	Bit 1	ON	OFF
	02	Bit 2	ON	OFF
	03	Bit 3	ON	OFF
	04	Bit 4	ON	OFF
	05	Bit 5	ON	OFF
	06	Bit 6	ON	OFF
	07	Bit 7	ON	OFF
	08	Bit 8	ON	OFF
	09	Bit 9	ON	OFF
	10	Bit 10	ON	OFF
	11	Bit 11	ON	OFF
	12	Bit 12	ON	OFF
	13	Bit 13	ON	OFF
	14	Bit 14	ON	OFF
	15	Bit 15	ON	OFF
	16	Bit 16	ON	OFF
	17	Bit 17	ON	OFF
	18	Bit 18	ON	OFF
	19	Bit 19	ON	OFF
	20	Bit 20	ON	OFF
	21	Bit 21	ON	OFF
	22	Bit 22	ON	OFF
	23	Bit 23	ON	OFF
	24	Bit 24	ON	OFF
	25	Bit 25	ON	OFF
	26	Bit 26	ON	OFF
	27	Bit 27	ON	OFF
	28	Bit 28	ON	OFF
	29	Bit 29	ON	OFF
	30	Bit 30	ON	OFF
	31	Bit 31	ON	OFF
Notice:	A m	ximum of 4 ind	function can be used.	
r2067[0...1]	PZD maximum interconnected / PZDmaxIntercon			
		ess level: 3	Calculated: -	Data type: Unsigned16
		be changed: -	Scaling: -	Dyn. index: -
		group: -	Unit selection: -	Func. diagram: -
	Min		Max	Factory setting
	-		-	-
Description:	Display for the maximum interconnected PZD in the receive/send direction			
	Index 1: send (p2051, p2061)			

r2074[0..11]	PROFldrive diagnostics bus address PZD receive / Diag addr recv
CU230P-2_DP	Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: - Min Max Factory setting - - -
Description: Index:	Displays the PROFIBUS address of the sender from which the process data (PZD) is received. $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & {[10]=\text { PZD } 11} \\ & {[11]=\text { PZD } 12} \end{aligned}$
Note:	Value range: $0-125$: Bus address of the sender 65535: Not assigned
r2075[0..11]	PROFIdrive diagnostics telegram offset PZD receive / Diag offs recv
CU230P-2_DP	Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: 2410 Min Max Factory setting - - -
Description: Index:	Displays the PZD byte offset in the PROFIdrive receive telegram (controller output). $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \\ & {[4]=\text { PZD } 5} \\ & {[5]=\text { PZD } 6} \\ & {[6]=\text { PZD } 7} \\ & {[7]=\text { PZD } 8} \\ & {[8]=\text { PZD } 9} \\ & {[9]=\text { PZD } 10} \\ & \text { [10] = PZD } 11 \\ & {[11]=\text { PZD } 12} \end{aligned}$
Note:	Value range: 0 - 242: Byte offset 65535: Not assigned
r2076[0..13]	PROFIdrive diagnostics telegram offset PZD send / Diag offs send
CU230P-2_DP	Access level: 3 Calculated: - Data type: Unsigned16 Can be changed: - Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: 2410 Min Max Factory setting - - -
Description: Index:	Displays the PZD byte offset in the PROFIdrive send telegram (controller input). $\begin{aligned} & {[0]=\text { PZD } 1} \\ & {[1]=\text { PZD } 2} \\ & {[2]=\text { PZD } 3} \\ & {[3]=\text { PZD } 4} \end{aligned}$

2.2 List of parameters

$[3]=$	Bit 3
$[4]=$ Bit 4	
$[5]=$ Bit 5	
$[6]=$ Bit 6	
$[7]=$ Bit 7	
$[8]=$ Bit 8	
$[9]=$ Bit 9	
$[10]=$ Bit 10	
$[11]=$ Bit 11	
$[12]=$ Bit 12	
$[13]=$ Bit 13	
$[14]=$	Bit 14
$[15]=$ Bit 15	
Refer to: p2088, r2089	
Dependency: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.	

p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	[0] 899.0
			[1] 899.1
			[2] 899.2
			[3] 2139.3
			[4] 899.4
			[5] 899.5
			[6] 899.6
			[7] 2139.7
			[8] 2197.7
			[9] 899.9
			[10] 2199.1
			[11] 1407.7
			[12] 0
			[13] 2135.14
			[14] 2197.3
			[15] 2135.15
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form status word 1.		
Index:	$\text { [0] = Bit } 0$		
	$\text { [1] = Bit } 1$		
	[2] $=$ Bit 2		
	[3] = Bit 3		
	$[5]=\text { Bit } 5$		
	[6] = Bit 6		
	[7] $=$ Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	$\text { [12] }=\text { Bit } 12$		
	[13] $=$ Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be pros	result of p0922 or	be changed.

p2081[0...15]	BI: Binector-connector converter status word 2 / Bin/con ZSW2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller. The individual bits are combined to form status word 2.		
Index:	[0] = Bit 0		
	$[1]=$ Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] $=$ Bit 5		
	[6] = Bit 6		
	[7] = Bit 7		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2082[0..15]	BI: Binector-connector converter status word 3 / Bin/con ZSW3		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 3.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	$[5]=$ Bit 5		
	[6] = Bit 6		
	[7] $=$ Bit 7		
	[8] $=$ Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

2.2 List of parameters

p2083[0...15]	BI: Binector-connector converter status word 4 / Bin/con ZSW4		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	0

Description:	Selects bits to be sent to
	The individual bits are co
Index:	[0] = Bit 0
	[1] $=$ Bit 1
	[2] $=$ Bit 2
	[3] $=$ Bit 3
	[4] = Bit 4
	[5] $=$ Bit 5
	[6] $=$ Bit 6
	[7] $=$ Bit 7
	[8] $=$ Bit 8
	[9] = Bit 9
	[10] = Bit 10
	[11] $=$ Bit 11
	[12] $=$ Bit 12
	[13] $=$ Bit 13
	[14] $=$ Bit 14
	[15] = Bit 15
Dependency:	Refer to: p2088, r2089

p2084[0...15] BI: Binector-connector converter status word 5/Bin/con ZSW5

Access level: 3	Calculated: -	Data type: U32 / Binary
Can be changed: U, T	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: 2472
Min	Max	Factory setting
-	-	0

Description: Selects bits to be sent to the PROFIdrive controller.
The individual bits are combined to form free status word 5 .

Index:
[0] = Bit 0
[1] = Bit 1
[2] $=$ Bit 2
[3] $=$ Bit 3
[4] $=$ Bit 4
[5] = Bit 5
[6] $=$ Bit 6
[7] = Bit 7
[8] $=$ Bit 8
[9] $=$ Bit 9
[10] = Bit 10
[11] = Bit 11
[12] = Bit 12
[13] = Bit 13
[14] $=$ Bit 14
[15] = Bit 15
Dependency: Refer to: p2088, r2089

p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv				
CU230P-2_BT	Access level: 3		Calculated: -	Data type: Unsigned16	
CU230P-2_CAN	Can be changed: U, T		Scaling: -	Dyn. index: -	
CU230P-2_HVAC	Units group: -		Unit selection: -	Func. diagram: 2472	
	Min		Max	Factory setting	
	-		-	000000000000	
Description:	Setting to invert the individual binector inputs of the binector connector converter.				
Index:	[0] [1] [2] [3] [4]	Status word 1 Status word 2 Free status word 3 Free status word 4 Free status word 5			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Bit 0	Inverted	Not inverted	-
		Bit 1	Inverted	Not inverted	-
		Bit 2	Inverted	Not inverted	-
		Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: p2080, p2081, p2082, p2083, r2089				

p2088[0...4]	Invert binector-connector converter status word / Bin/con ZSW inv		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: Unsigned16
CU230P-2_PN	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	$[0] 1010100000000000$ bin
		$[1 \ldots 4] 0000000000000000 \mathrm{bin}$	

Description: Setting to invert the individual binector inputs of the binector connector converter.
Index:
[0] = Status word 1
[1] = Status word 2
[2] = Free status word 3
[3] = Free status word 4
[4] = Free status word 5
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Bit 0	Inverted	Not inverted	-
01	Bit 1	Inverted	Not inverted	-
02	Bit 2	Inverted	Not inverted	-
03	Bit 3	Inverted	Not inverted	-
04	Bit 4	Inverted	Not inverted	-
05	Bit 5	Inverted	Not inverted	-
06	Bit 6	Inverted	Not inverted	-
07	Bit 7	Inverted	Not inverted	-
08	Bit 8	Inverted	Not inverted	-
09	Bit 9	Inverted	Not inverted	-
10	Bit 10	Inverted	Not inverted	-
11	Bit 11	Inverted	Not inverted	-
12	Bit 12	Inverted	Not inverted	-

2.2 List of parameters

r2090.0...15	BO: PROFIdrive PZD1 receive bit-serial / PZD1 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468, 9204, 9206 9360	
	Min		Max	Factory set	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD1 (normally control word 1) received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-

		Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2091.0... 15	BO: PROFldrive PZD2 receive bit-serial / PZD2 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468, 9204, 9206	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD2 received from the PROFldrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-

r2092.0... 15	BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468, 9204, 9206	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-

2.2 List of parameters

r2093.0..15	BO: PROFIdrive PZD4 receive bit-serial / PZD4 recv bitw				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468, 9204, 9206	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2094.0... 15	BO: Connector-binector converter binector output / Con/bin outp				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468, 9360	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[0].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: p2099				

r2095.0.. 15	BO: Connector-binector converter binector output / Con/bin outp				
				Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468, 9360	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[1].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
		Bit 9	ON	OFF	-
		Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
		Bit 12	ON	OFF	-
		Bit 13	ON	OFF	-
		Bit 14	ON	OFF	-
		Bit 15	ON	OFF	-
Dependency:	Refer to: p2099				
p2098[0..1]	Inverter connector-binector converter binector output / Con/bin outp inv				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: U, T		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468, 9360	
			Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Setting to invert the individual binector outputs of the connector-binector converter. Using p2098[0], the signals of connector input p2099[0] are influenced. Using p2098[1], the signals of connector input p2099[1] are influenced.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
		Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
		Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: r2094, r2095, p2099				

p2099[0...1]	CI: Connector-binector converter signal source / Con/bin S_src		
	Access level: 3	Calculated: -	Data type: U32 / Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2468, 9360
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the connector-binector converter.		
	A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (interconnection).		
Dependency:	Refer to: r2094, r2095		
Note:	From the signal source set via the connector input, the corresponding lower 16 bits are converted.		
	p2099[0..1] together with r2094.0... 15 and r2095.0... 15 forms two connector-binector converters:		
	Connector input p2099[0] to binector output in r2094.0... 15		
	Connector input p2099[1] to binector output in r2095.0... 15		
p2100[0..19]	Change fault response fault number / Chng resp F_no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8075
	Min	Max	Factory setting
	0	65535	0
Description:	Selects the faults for which the fault response should be changed		
Dependency:	The fault is selected and the required response is set under the same index.		
	Refer to: p2101		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		
p2101[0..19]	Change fault response response / Chng resp resp		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8075
	Min	Max	Factory setting
	0	6	0
Description:	Sets the fault response for the selected fault.		
Value:	0: NONE		
	1: OFF1		
	2: OFF2		
	3: OFF3		
	5: STOP2		
	6: Internal armature short-circuit / DC braking		
Dependency:	The fault is selected and the required response is set under the same index.		
	Refer to: p2100		
Notice:	For the following cases, it is not possible to re-parameterize the fault response to a fault:		
	- Fault number does not exist (exception value $=0$).		
	- Message type is not "fault" (F).		
	- Fault response is not permissible for the set fault number.		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		
	The fault response can only be changed for faults with the appropriate identification.		
	Example:		
	F12345 and fault response = NONE (OFF1, OFF2)		
	--> The fault response NONE can be changed to OFF1 or OFF2.		
	Re value = 1 (OFF1):		
	Braking along the ramp-function generator down ramp followed by a pulse inhibit.		

Re value $=2$ (OFF2):
Internal/external pulse inhibit.
Re value $=3$ (OFF3):
Braking along the OFF3 down ramp followed by a pulse inhibit.
Re value = 5 (STOP2):
n_set = 0
Re value $=6$ (armature short-circuit, internal/DC braking):
This value can only be set for all drive data sets when p1231 $=4$.
a) DC braking is not possible for synchronous motors.
b) DC braking is possible for induction motors.

p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2441, 2442, 2443, 2447, 2475, 2546, 9220, 9677, 9678
	Min	Max	Factory setting
	-	-	[0] 722.2
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2441, 2442, 2443, 2447, 2475, 2546, 9220, 9677, 9678
	Min	Max	Factory setting
	-	-	[0] 2090.7
			[1] 722.2
			[2] 2090.7
			[3] 2090.7
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge		
CU230P-2_BT	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_CAN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
CU230P-2_HVAC	Units group: -	Unit selection: -	Func. diagram: 2546, 8060
	Min	Max	Factory setting
	-	-	0
Description:	Sets the second signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		

p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge		
CU230P-2_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU230P-2_PN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546, 8060
	Min	Max	Factory setting
	-	-	[0] 722.2
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the second signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2105[0...n]	BI: 3. Acknowledge faults / 3. Acknowledge		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546, 8060
	Min	Max	Factory setting
	-	-	0
Description:	Sets the third signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2106[0...n]	BI: External fault 1 / External fault 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external fault 1.		
Note:	An external fault is triggered with a $1 / 0$ signal.		

p2107[0...n]	BI: External fault 2 / External fault 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external fault 2.		
Note:	An external fault is triggered with a $1 / 0$ signal.		
p2108[0...n]	BI: External fault 3 / External fault 3		
PM230	Access level: 3	Calculated: -	Data type: U32 / Binary
PM240	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiat - BI: p2108 negated - BI: p3111	wing AND logic op	
	- BI: p3112 negated		
Dependency:	Refer to: p3110, p3111, p3112		
Note:	An external fault is triggered with a $1 / 0$ signal.		

p2108[0...n]	BI: External fault 3 / External fault 3		
PM330	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	4022.1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	Refer to: p3110, p3111, p3112		
Note:	An external fault is triggered with a $1 / 0$ signal.		
r2109[0...63]	Fault time removed in milliseconds / t_fit resolved ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8060
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault was removed.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2130, r2133, r2136, p8400		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the fault buffer and the assignment of the indices is shown in r0945.		

r2110[0...63]	Alarm number / Alarm number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8065
	Min	-	Factory setting
Description:	-	-	
	This parameter is identical to r2122.		

p2111	Alarm counter / Alarm counter		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8065
	Min	Max	Factory setting
	0	65535	0
Description:	Number of alarms that have occurred after the last reset.		
Dependency:	When p2111 is set to 0 , - all of the alarms of the - the alarm buffer [0...7] Refer to: r2110, r2122,	is initiated: that have gone [0.. r2125	nto the alarm history [8...63].
Note:	The parameter is reset	R ON.	

p2112[0...n]	BI: External alarm 1 / External alarm 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external alarm 1.		
Note:	An external alarm is triggered with a 1/0 signal.		
r2114[0..1]	System runtime total / Sys runtime tot		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the total system runtime for the drive unit.		
	The time comprises r2114[0] (milliseconds) and r2114[1] (days).		
	After $\mathrm{r} 2114[0]$ has reached a value of 86.400 .000 ms (24 hours) this value is reset and $\mathrm{r} 2114[1]$ is incremented.		
Index:	$\begin{aligned} & {[0]=\text { Milliseconds }} \\ & {[1]=\text { Days }} \end{aligned}$		
Dependency:	Refer to: r0948, r2109, r2123, r2125, r2130, r2136, r2145, r2146		
Note:	When the electronic power supply is switched out, the counter values are saved.		
	After the drive unit is powered up, the counter continues to run with the last value that was saved.		

p2116[0..n]	BI: External alarm 2 / External alarm 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external alarm 2.		
Note:	An external alarm is triggered with a $1 / 0$ signal.		
p2117[0...n]	BI: External alarm 3 / External alarm 3		
PM230	Access level: 3	Calculated: -	Data type: U32 / Binary
PM240	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
PM250, PM260	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external alarm 3.		
Note:	An external alarm is triggered with a $1 / 0$ signal.		
p2117[0...n]	BI: External alarm 3 / External alarm 3		
PM330	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	4022.0
Description:	Sets the signal source for external alarm 3.		
Note:	An external alarm is triggered with a $1 / 0$ signal.		

r2124[0...63]	Alarm value / Alarm value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Max	Func. diagram: 8050,8065
	Min	-	Factory setting

r2125[0...63]	Alarm time removed in milliseconds /t_alarm res ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050,8065
	Min	$-[\mathrm{ms}]$	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2134, r2145, r2146, p8400		
Notice:	The time comprises $r 2146$ (days) and r2125 (milliseconds).		

Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.

p2126[0..19]	Change acknowledge mode fault number / Chng ackn F_no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8075
	Min	Max	Factory setting
	0	65535	0
Description:	Selects the faults for which the acknowledge mode is to be changed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2127		
Note:	Re-parameterization is resolved.	a fault is present.	ecomes effective after the fau

p2127[0...19]	Change acknowledge mode mode / Chng ackn mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050, 8075
	Min	Max	Factory setting
	1	2	1
Description:	Sets the acknowledge mode for selected fault.		
Value:	1: Acknowledgment only using POWER ON 2: Ack IMMEDIATELY after the fault cause has been removed		
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2126		
Notice:	It is not possible to re-parameterize the acknowledge mode for a fault in the following cases: - Fault number does not exist (exception value = 0). - Message type is not "fault" (F). - Acknowledge mode is not permissible for the set fault number.		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		
	The acknowledge mode can only be changed for faults with the appropriate identification.		
	Example:		
	F12345 and acknowledge mode $=$ IMMEDIATELY (POWER ON)		
	--> The acknowledge mode can be changed from IMMEDIATELY to POWER ON.		

p2128[0...15]	Faults/alarms trigger selection / F/A trigger sel		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8050,8070
	Min	65535	Factory setting
	0	0	
Description:	Sets the faults/alarms for which a trigger signal should be generated in r2129.0...15.		
Dependency:	lf the fault/alarm set in p2128[0...15] occurs, then the particular binector output r2129.0...15 is set.		
	Refer to: 2129		

r2129.0...15	CO/BO: Faults/alarms trigger signal / F/A trigger signal		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8070
	Min	-	Factory setting
	-	-	
Description:	Display and BICO output for the trigger signals of the faults/alarms set in p2128[0...15].		

2.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Trigger signal p2128[0]	ON	OFF	
	01	Trigger signal p2128[1]	ON	OFF	
	02	Trigger signal p2128[2]	ON	OFF	-
	03	Trigger signal p2128[3]	ON	OFF	-
	04	Trigger signal p2128[4]	ON	OFF	
	05	Trigger signal p2128[5]	ON	OFF	-
	06	Trigger signal p2128[6]	ON	OFF	
	07	Trigger signal p2128[7]	ON	OFF	-
	08	Trigger signal p2128[8]	ON	OFF	-
	09	Trigger signal p2128[9]	ON	OFF	-
	10	Trigger signal p2128[10]	ON	OFF	-
	11	Trigger signal p2128[11]	ON	OFF	-
	12	Trigger signal p2128[12]	ON	OFF	
	13	Trigger signal p2128[13]	ON	OFF	-
	14	Trigger signal p2128[14]	ON	OFF	-
	15	Trigger signal p2128[15]	ON	OFF	-
Dependency:	If the	fault/alarm set in p2128[0 to: p2128	e particul	r2129.0.	
Note:	CO:	r2129 = 0 --> None of the	has occur		
		r2129 > 0 --> At least one	sages ha		

r2130[0...63]	Fault time received in days / t_fault recv days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2133, r2136, p8401		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
	The value displayed in p2130 refers to 01.01.1970.		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2131	CO: Actual fault code / Act fault code		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays the code of the oldest active fault.		
Dependency:	Refer to: r3131, r3132		
Note:	0 : No fault present.		

r2132	CO: Actual alarm code $/$ Actual alarm code		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
	-	-	
Description:	Displays the code of the last alarm that occurred.		
Note:	0: No alarm present.		

r2133[0..63]	Fault value for float values / Fault val float			
	Access level: 3 C	Calculated: -	Data type: F	
	Can be changed: - S	Scaling: -	Dyn. index:	
	Units group: - U	Unit selection: -	Func. diagra	
	Min M	Max	Factory sett	
	- -	-	-	
Description:	Displays additional information about the fault that occurred for float values.			
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2136			
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
r2134[0...63]	Alarm value for float values / Alarm value float			
	Access level: 3 C	Calculated: -	Data type: F	
	Can be changed: - S	Scaling: -	Dyn. index:	
	Units group: - U	Unit selection: -	Func. diagra	
	Min M	Max	Factory sett	
	- -	-	-	
Description:	Displays additional information about the active alarm for float values.			
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2145, r2146, r3121, r3123			
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
r2135.12..15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2			
	Access level: 2	Calculated: -	Data type:	
	Can be changed: - S	Scaling: -	Dyn. index	
	Units group: - U	Unit selection: -	Func. diagra	
	Min M	Max	Factory sett	
	- -	-	-	
Description:	Display and BICO output for the second status word of faults and alarms.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	12 Fault motor overtemperature	Yes	No	8016
	13 Fault power unit thermal overload	d Yes	No	8014
	14 Alarm motor overtemperature	Yes	No	8016
	15 Alarm power unit thermal overload	Yes	No	8014
r2136[0..63]	Fault time removed in days / t_flt resolv days			
	Access level: 3 C	Calculated: -	Data type:	
	Can be changed: - S	Scaling: -	Dyn. index:	
	Units group: - U	Unit selection: -	Func. diagra	
	Min M	Max	Factory sett	
		-	-	
Description:	Displays the system runtime in days when the fault was removed.			
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, p8401			
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).			
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
r2138.7.. 15	CO/BO: Control word faults/alarms / STW fault/alarm			
	Access level: $2 \quad$ C	Calculated: -	Data type: U	
	Can be changed: - S	Scaling: -	Dyn. index:	
	Units group: - U	Unit selection: -	Func. diagra	
	Min M	Max	Factory sett	
	-	-	-	
Description:	Display and BICO output for the control word of faults and alarms.			

Bit field:	Bit	Signal name	1 signal	F signal	FP
	07	Acknowledge fault	Yes	No	8060
	10	External alarm 1 (A07850) effective	Yes	No	8065
	11	External alarm 2 (A07851) effective	Yes	No	
	12	External alarm 3 (A07852) effective	Yes	Yes	No
	13	External fault 1 (F07860) effective	Yes	No	8065
	14	External fault 2 (F07861) effective	Yes	No	8060
Dependency:	15	External fault 3 (F07862) effective	No	8060	
	Refer to: p2103, p2104, p2105, p2106, p2107, p2108, p2112, p2116, p2117, p3110, p3111, p3112				

r2139.0..15	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: - S	Scaling: -	Dyn. index: -	
	Units group: - Un	Unit selection: -	Func. diagram: 2548	
	Min	Max	Factory setting	
	- -	-	-	
Description:	Display and BICO output for status word 1 of faults and alarms.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Being acknowledged	Yes	No	-
	01 Acknowledgment required	Yes	No	-
	03 Fault present	Yes	No	8060
	06 Internal message 1 present	Yes	No	-
	07 Alarm present	Yes	No	8065
	08 Internal message 2 present	Yes	No	-
	11 Alarm class bit 0	High	Low	-
	12 Alarm class bit 1	High	Low	-
	13 Maintenance required	Yes	No	-
	14 Maintenance urgently required	Yes	No	-
	15 Fault gone/can be acknowledged	Yes	No	-
Note:	Re bit 03, 07:			
	These bits are set if at least one fault/alarm occurs. Data is entered into the fault/alarm buffer with delay. This is the reason that the fault/alarm buffer should only be read if, after "fault present" or "alarm present" has occurred, a change in the buffer was also detected (r0944, r9744, r2121).			
	Re bit 06, 08:			
	These status bits are used for internal diagnostic purposes only.			
	Re bit 11, 12:			
	These status bits are used for the classification of internal alarm classes and are intended for diagnostic purposes only on certain automation systems with integrated SINAMICS functionality.			

p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2			
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010	
	Min	Max	Factory setting	
	0.00 [rpm]	300.00 [rpm]	90.00 [rpm]	
Description:	Sets the hysteresis speed (bandwidth) for the following signals: "\|n_act	< = speed threshold value 2" (BO: r2197.1)		
	"\|n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2155, r2197			

p2141[0...n]	Speed threshold 1/n_thresh val 1		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010
	Min	Max	Factory setting
	$0.00[\mathrm{rpm}]$	210000.00 [rpm]	5.00 [rpm]
Description:	Sets the speed threshold value for the signal "f or n comparison value reached or exceeded" (BO: r 2199.1$).$		

Dependency:	Refer to: p 2142 , r2199		
p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010
	Min	Max	Factory setting
	0.00 [rpm]	300.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "f or n / v comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	Refer to: p2141, r2199		
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the negated enable ($0=$ enable) of the motor stall monitoring.		
Dependency:	Refer to: p2163, p2164, p2166, r2197, r2198		
Note:	When interconnecting the enable signal with r2197.7 then the stall signal is suppressed if there is no speed setpoint actual value deviation.		

r2145[0...63]	Alarm time received in days /t_alarm recv days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
	-	-	-

Description: Displays the system runtime in days when the alarm occurred.
Dependency: Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2146, p8401
Notice: The time comprises r2145 (days) and r2123 (milliseconds).

Note: \quad The buffer parameters are cyclically updated in the background (refer to status signal in r2139).

r2146[0...63]	Alarm time removed in days / t_alarm res days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Max selection: -	Func. diagram: 8065
	Min	-	Factory setting
	-	-	
Description:	Displays the system runtime in days when the alarm was cleared.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145, p8401		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

p2151[0...n]	CI: Speed setpoint for messages/signals / n_set for msg			
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32	
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: 8011	
	Min	Max	Factory setting	
	-	-	1170[0]	
Description:	Sets the signal source for the speed setpoint for the following messages:			
	"Speed setpoint - actual value deviation within tolerance t_off" (BO: r2197.7)			
	"Ramp-up/ramp-down completed" (BO: r2199.5)			
	"\|n_set	< p2161" (BO: r2198.4)		
	"n_set > 0" (BO: r2198.5)			
Dependency:	Refer to: r2197, r2198, r2199			
p2153[0...n]	Speed actual value filter time constant / n_act_filt T			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: -	Unit selection: -	Func. diagram: 8010	
	Min	Max	Factory setting	
	0 [ms]	1000000 [ms]	0 [ms]	
Description:	Sets the time constant of the PT1 element to smooth the speed / velocity actual value.			
	The smoothed actual speed/velocity is compared with the threshold values and is only used for messages and signals.			
Dependency:	Refer to: r2169			
p2155[0...n]	Speed threshold 2 / n_thresh val 2			
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]	
Description:	Sets the speed threshold value for the following messages: "\|n_act	< = speed threshold value 2" (BO: r2197.1)		
	"\|n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2140, r2197			
p2156[0...n]	On delay comparison value reached / t_on cmpr val rchd			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: -	Unit selection: -	Func. diagram: 8010	
	Min	Max	Factory setting	
	0.0 [ms]	10000.0 [ms]	0.0 [ms]	
Description:	Sets the switch-in delay time for the signal "comparison value reached" (BO: r2199.1).			
Dependency:	Refer to: p2141, p2142, r2199			
p2161[0...n]	Speed threshold 3 / n_thresh val 3			
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010, 8011	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]	
Description:	Sets the speed threshold value for the signal "\|n_act	< speed threshold value 3" (BO: r2199.0).		
Dependency:	Refer to: p2150, r2199			

p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010
	Min	Max	Factory setting
	0.00 [rpm]	60000.00 [rpm]	0.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max" (BO: r2197.6).		
Dependency:	Refer to: r1084, r1087, r2197		
Notice:	For p0322 = 0, the following applies: p2162 < 0.1 * p0311		
	For p0322 > 0, the following applies: p2162 <= 1.02 * p0322-p1082		
	If one of the conditions is violated, p2162 is appropriately and automatically reduced when exiting the commissioning mode.		
Note:	For a negative speed limit (r1087) the hysteresis is effective below the limit value and for a positive speed limit (r1084) above the limit value.		
	If significant overshoot occurs in the maximum speed range (e.g. due to load shedding), you are advised to increase the dynamic response of the speed controller (if possible). If this is insufficient, the hysteresis p2162 can only be increased by more than 10% of the rated speed when the maximum speed (p 0322) of the motor is sufficiently greater than the speed limit p1082.		
p2163[0...n]	Speed threshold 4 / n_thresh val 4		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8011
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	90.00 [rpm]
Description:	Sets the speed threshold value for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2164, p2166, r2197		
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8011
	Min	Max	Factory setting
	0.00 [rpm]	200.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2166, r2197		
p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_so		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8011
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		

2.2 List of parameters

p2173[0...n]	DC link voltage comparison delay time / t_del Vdc		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	10 [ms]
Description:	Sets the delay time for the comparison of the DC link voltage r0070 with the threshold value p2172. Refer to: p2172		
Dependency:			
p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8012
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:	Sets the speed threshold for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2177, r2198		
Note:	The following applies for encoderless vector control for induction motors:		
	At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor cannot be detected.		

p2177[0...n]	Motor blocked delay time / Mot lock t_del		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	0.000 [s]	65.000 [s]	3.000 [s]
Description:	Sets the delay time for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2175, r2198		
Note:	The following applies for sensorless vector control:		
	At low speeds a locked motor can only be detected if no change is made to open-loop speed controlled operation. If this is the case, the value in p2177 must be reduced accordingly ($\mathrm{p} 2177<\mathrm{p} 1758$) before time p2177 has elapsed in order to detect the locked state reliably.		
	As countermeasure, it is generally also possible to set p1750.6. This is only not permitted if the drive is slowly reversed by the load at the torque limit (speed below p1755 for longer than p1758).		

p2178[0...n]	Motor stalled delay time / Mot stall t_del		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	0.000 [s]	10.000 [s]	0.010 [s]
Description:	Sets the delay time for the message "Motor stalled" (BO: r2198.7).		
Dependency:	Refer to: r2198		
Note:	In the open-loop speed controlled operating range (see p1755, p1756), vector control stall monitoring depends on threshold p1745.		
	At higher speeds, the difference between flux setpoint r0083 and flux actual value r0084 is monitored.		

p2179[0...n]	Output load identification current limit / Outp_Id iden I_lim		
	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2002	Dyn. index: DDS, p0180
	Units group: 6_2	Unit selection: p0505	Func. diagram: 8020
	Min	Max	Factory setting
	0.00 [Arms]	1000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit for A missing output load is This message is output	dentification. ing the "Output load not availa me (p2180).	ssage (r2197.11 = 1).
Dependency:	Refer to: p2180		
Notice:	For synchronous motors the output current can be almost zero under no load conditions.		
Note:	Missing output load is sig - the motor is not connect - a phase failure has occ	following cases:	
p2180[0...n]	Output load detection delay time / Out_load det t_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8020
	Min		Factory setting
	0 [ms]	10000 [ms]	2000 [ms]
Description:	Sets the delay time for the message "output load not available" (r2197.11 = 1).		
Dependency:	Refer to: p2179		
p2181[0...n]	Load monitoring response / Load monit resp		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8013
	Min	Max	Factory setting
	0	6	0
Description:	Sets the response when evaluating the load monitoring.		
Value:	0 : Load monitoring disabled		
	1: A07920 for torque/speed too low		
	2: A07921 for torque/speed too high		
	3: A07922 for torque/speed out of tolerance		
	4: F07923 for torque/speed too low		
	5: \quad F07924 for torque/speed too high		
	6: F07925 for torque/speed out of tolerance		
Dependency: Note:	Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, p2193, r2198, p3230, p3231 The response to the faults F07923 ... F07925 can be set.		
	This parameter setting has no effect on the production of fault F07936.		
p2182[0...n]	Load monitoring speed threshold value 1 / n_thresh 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	150.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upp p2182 (n_threshold 1) --- p2183 (n_threshold 2) --- p2184 (n_threshold 3) -->	envelope curve) is defined a threshold 1, upper), p2186 (M threshold 2, upper), p2188 (M threshold 3, upper), p2190 (based on 3 speed thresholds: ld 1, lower) ld 2, lower) ld 3, lower)

Dependency:	The following applies: p2182 < p2183 < p2184
	Refer to: p2183, p2184, p2185, p2186
Note:	In order that the load monitoring can reliably respond, the speed threshold p2182 should always be set lower than the minimum motor speed to be monitored.

p2183[0...n]	Load monitoring speed threshold value 2 / n_thresh 2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds:		
	p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2184, p2187, p2188		

p2184[0...n]	Load monitoring speed threshold value 3 / n_thresh 3		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds:		
	p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2183, p2189, p2190		
Note:	In order that the load monitoring can reliably respond, the speed threshold p2184 should always be set higher than the maximum motor speed to be monitored.		

p2185[0...n]	Load monitoring torque threshold 1 upper / M_thresh 1 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: $7 _1$	Unit selection: p0505	Func. diagram: 8013
Min	Max	Factory setting	
	$0.00[\mathrm{Nm}]$	$20000000.00[\mathrm{Nm}]$	$10000000.00[\mathrm{Nm}]$

Description: Sets the speed/torque envelope curve for load monitoring.
Dependency: The following applies: p2185 > p2186
Refer to: p2182, p2186
Note: \quad The upper envelope curve is defined by p2185, p2187 and p2189.

p2186[0...n]	Load monitoring torque threshold 1 lower / M_thresh 1 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: $7 _1$	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	$0.00[\mathrm{Nm}]$	$20000000.00[\mathrm{Nm}]$	$0.00[\mathrm{Nm}]$

Dependency: Note:	The following applies: p2186 < p2185 Refer to: p2182, p2185		
	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2187[0...n]	Load monitoring torque threshold 2 upper / M_thresh 2 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	10000000.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2187 > p2188		
	Refer to: p2183, p2188		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2188[0...n]	Load monitoring torque threshold 2 lower / M_thresh 2 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2188 < p2187		
	Refer to: p2183, p2187		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2189[0...n]	Load monitoring torque threshold 3 upper / M_thresh 3 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	$10000000.00[\mathrm{Nm}]$
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2189 > p2190		
	Refer to: $\mathrm{p} 2184, \mathrm{p} 2190$		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2190[0...n]	Load monitoring torque threshold 3 lower / M_thresh 3 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2190 < p2189		
	Refer to: p2184, p2189		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		

2.2 List of parameters

p2192[0...n]	Load monitoring delay time / Load monit t_del						
	Access level: 3		Calculated: -		Data type: FloatingPoint32		
	Can be changed: U, T		Scaling: -		Dyn. index: DDS, p0180		
	Units group: -		Unit selection: -		Func. diagram: 8013		
	Min		Max		Factory setting		
	0.00 [s]		65.00 [s]		10.00 [s]		
Description:	Sets the delay time to evaluate the load monitoring.						
p2193[0...n]	Load monitoring configuration / Load monit config						
		ess level: 3	Calculated: -		Data type: Integer16		
		be changed: U, T	Scaling: -		Dyn. index: DDS, p0180		
		s group: -	Unit selection: -		Func. diagram: 8013		
	Min		Max		Factory setting		
	0		3		1		
Description:	Sets the load monitoring configuration.						
Value:	0: Monitoring switched out						
	1: Monitoring torque and load drop2: Monitoring speed and load drop						
	3: Monitoring load drop						
Dependency:	Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, r2198, p3230, p3231, p3232						
r2197.0... 13	CO/BO: Status word monitoring 1 / ZSW monitor 1						
	Access level: 3		Calculated: -		Data type: Unsigned16		
	Can be changed: -		Scaling: -		Dyn. index: -		
	Units group: -		Unit selection: -		Func. diagram: 2534		
	Min		Max		Factory setting		
	-		-		-		
Description:	Display and BICO output for the first status word of the monitoring functions.						
Bit field:	Bit	Signal name		1 signal	0 signal	FP	
	00	\|n_act	<= n_min		Yes	No	8020
		\|n_act	<= speed	e 2 p2155	Yes	No	8010
		\|n_act	> speed th	2 p 2155	Yes	No	8010
	03	n_act > >0		Yes	No	8011	
	04	\mid n_act $\gg=$ n_set		Yes	No	8020	
	05	\mid n_act\| <= n_stan		Yes	No	8020	
		\|n_act	> n_max		Yes	No	8010
		Speed setp - act t_off	tolerance	Yes	No	8011	
		I_act >= I_thresho		Yes	No	8020	
	09	Vdc_act <= Vdc_t	p2172	Yes	No	8020	
	10	Vdc_act > Vdc_th	p2172	Yes	No	8020	
	11	Output load is not		Yes	No	8020	
		$\mid \text { n_act\| > n_max }$		Yes	No		
Notice:	Re bit 06:						
	When the overspeed is reached, this bit is set and F07901 output immediately following this. The bit is canceled again as soon as the next pulse inhibit is present.						
Note:	Re bit 00:						
	The threshold value is set in p1080 and the hysteresis in p2150.						
	Re bit 01, 02:						
	The threshold value is set in p2155 and the hysteresis in p2140.						
	Re bit 03:						
	1 signal direction of rotation positive.						
	0 signal: direction of rotation negative.						
	The hysteresis is set in p2150.						

Re bit 04:
The threshold value is set in r1119 and the hysteresis in p2150.
Re bit 05:
The threshold value is set in p1266 and the delay time in p1228.
Re bit 06:
The hysteresis is set in p2162.
Re bit 07:
The threshold value is set in p2163 and the hysteresis is set in p2164.
Re bit 08:
The threshold value is set in p2170 and the delay time in p2171.
Re bit 09, 10:
The threshold value is set in p2172 and the delay time in p2173.
Re bit 11:
The threshold value is set in p2179 and the delay time in p2180.
Re bit 13:
Only for internal Siemens use.

p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable Access level: 2 Calculated: -		
	Can be changed: T	Scaling: -	Data type: U32 / Binary
	Units group: -	Max selection: -	Dyn. index: CDS, p0170

p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	20.00 [\%]
Description:	Sets the value for fixed value 2 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set		

p2203[0...n]	CO: Technology controller fixed value 3 / Tec_ctr fix val 3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	30.00 [\%]
Description:	Sets the value for fixed value 3 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2204[0...n]	CO: Technology controller fixed value 4 / Tec_ctr fix val 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	40.00 [\%]
Description:	Sets the value for fixed value 4 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data		

p2205[0...n]	CO: Technology controller fixed value 5 / Tec_ctr fix val 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	50.00 [\%]
Description:	Sets the value for fixed value 5 of the technology controller.		
Dependency:			
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2206[0...n]	CO: Technology controller fixed value 6 / Tec_ctr fix val 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	60.00 [\%]
Description:	Sets the value for fixed value 6 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	70.00 [\%]
Description:	Sets the value for fixed value 7 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	80.00 [\%]
Description:	Sets the value for fixed value 8 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2209[0...n]	CO: Technology controller fixed value 9 / Tec_ctr fix val 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	90.00 [\%]
Description:	Sets the value for fixed value 9 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2210[0...n]	CO: Technology controller fixed value $\mathbf{1 0} /$ Tec_ctr fix val 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: $9 _1$	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	$100.00[\%]$
Description:	Sets the value for fixed value 10 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2211[0...n]	CO: Technology controller fixed value 11 / Tec_ctr fix val 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	110.00 [\%]
Description:	Sets the value for fixed value 11 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data s		

p2212[0...n]	CO: Technology controller fixed value $12 /$ Tec_ctr fix val 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: $9 _1$	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	$120.00[\%]$
Description:	Sets the value for fixed value 12 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2213[0...n]	CO: Technology controller fixed value 13/Tec_ctr fix val 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: $9 _1$	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	$130.00[\%]$
Description:	Sets the value for fixed value 13 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2214[0...n]	CO: Technology controller fixed value 14 / Tec_ctr fix val 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: $9 _1$	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	$-200.00[\%]$	$200.00[\%]$	$140.00[\%]$
Description:	Sets the value for fixed value 14 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2215[0...n]	CO: Technology controller fixed value 15 / Tec_ctr fix val 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	150.00 [\%]
Description:	Sets the value for fixed value 15 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2216[0...n]	Technology controller fixed value selection method / Tec_ctr FixVal sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	1	2	1
Description:	Sets the method to select the fixed setpoints.		
Value:	1: Direct selection		
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	Refer to: p2221, p2222, p2223		
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller.		
Dependency:	Refer to: p2220, p2222, p2223		
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7950, 7951
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select a fixed value of the technology controller. Refer to: p2220, p2221, p2223		
Dependency:			

2.2 List of parameters

2.2 List of parameters

p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7954
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to continually reduce the setpoint for the motorized potentiometer of the technology controller The setpoint change (CO: r2250) depends on the set ramp-down time (p 2248) and the duration of the signal that is present (BI: p2236).		
Dependency:	Refer to: p2235		
p2237[0...n]	Technology controller motorized potentiometer maximum value / Tec_ctrl mop max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum value for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2238		
p2238[0...n]	Technology controller motorized potentiometer minimum value / Tec_ctrl mop min		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the minimum value for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2237		
p2240[0...n]	Technology controller motorized potentiometer starting value / Tec_ctrl mop start		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the starting value for the motorized potentiometer of the technology controller. For p2230.0 $=0$, this setpoint is entered after ON.		
Dependency:	Refer to: p2230		
r2245	CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator of the technology controller.		
Dependency:	Refer to: r 2250		

p2247[0...n]	Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 7954
	Min	Max	Factory setting
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2248		
Note:	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-up is correspondingly extended.		
p2248[0...n]	Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 7954
	Min	Max	Factory setting
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer of the technolog controller.		
Dependency:	Refer to: p2247		
Note:	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-down is correspondingly extended.		
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	- [\%]	- [\%]	
Description:	Displays the effective setpoint after the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: r2245		
p2251	Technology controller mode / Tec_ctrl mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	0	0
Description:	Sets the mode for using the technology controller output.		
Value:	0 : Technology controller as main speed setpoint		
Dependency:	p2251 $=0$ is only effective if the enable signal of the technology controller is interconnected (p2200 > 0).		

2.2 List of parameters

p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint 1 of the technology controller.		
Dependency:	Refer to: p2254, p2255		
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint 2 of the technology controller.		
Dependency:	Refer to: p2253, p2256		
p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 1 of the technology controller.		
Dependency:	Refer to: p2253		
p2256	Technology controller setpoint 2 scaling / Tec_ctrl set2 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 2 of the technology controller.		
Dependency:	Refer to: p2254		
p2257	Technology controller ramp-up time / Tec_ctrl t_ramp-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-up time of the technology controller.		
Dependency:	Refer to: p2258		
Note:	The ramp-up time is referred to 100%.		

p2258	Technology controller ramp-down time / Tec_ctrl t_ramp-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-down time of the technology controller.		
Dependency:	Refer to: p2257		
Note:	The ramp-down time is referred to 100%.		
r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Sets the setpoint after the ramp-function generator of the technology controller.		
p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed setpoint after the setpoint filter (PT1) of the technology controller.		
p2263	Technology controller type / Tec_ctrl type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	1	0
Description:	Sets the type of technology controller.		
Value:	0 : D component in the actual value signal 1: D component in the fault signal		
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the actual value of the technology controller.		

p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the actual value filter (PT1) of the technology controller.		
r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the smoothed actual value after the filter (PT1) of the technology controller.		
p2267	Technology controller upper limit actual value / Tec_ctrl u_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the technology controller. Refer to: p2264, p2265, p2271		
Dependency:			
Notice:	If the actual value exceeds this upper limit, this results in fault F07426.		
p2268	Technology controller lower limit actual value / Tec_ctrl I_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the technology controller.		
Dependency:	Refer to: p2264, p2265, p2271		
Notice:	If the actual value falls below this lower limit, this results in fault F07426.		
p2269	Technology controller gain actual value / Tech_ctrl gain act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	500.00 [\%]	100.00 [\%]
Description:	Sets the scaling factor for the actual value of the technology controller.		
Dependency:	Refer to: p2264, p2265, p2267, p2268, p2271		
Note:	For 100%, the actual value is not changed.		

p2274	Technology controller differentiation time constant / Tec_ctrl D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the technology controller.		
Note:	p2274 = 0: Differentiation is disabled.		
p2280	Technology controller proportional gain / Tec_ctrl Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the technology controller.		
Note:	p2280 $=0$: The proportional gain is disabled.		
p2285	Technology controller integral time / Tec_ctrl Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the technology controller.		
Notice:	The following applies for p2251 $=0$:		
	If the output of the technology controller lies within the range of a suppression (skip) bandwidth (p1091 ... p1094, p 1101) or below the minimum speed (p 1080), the integral component of the controller is held so that the controller temporarily works as a P controller. This is necessary in order to prevent the controller from behaving in an unstable manner, as the ramp-function generator switches to the parameterized up and down ramps ($\mathrm{p} 1120, \mathrm{p} 1121$) at the same time in order to avoid setpoint steps. This state can be exited or avoided by changing the controller setpoint or by using the start speed (= minimum speed).		
Note:	When the controller output reaches the limit, the I component of the controller is held.$\mathrm{p} 2285=0 \text { : }$		
p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
			56.13
Description:	Sets the signal source to	grator for the technology	
p2289[0...n]	CI: Technology controller pre-control signal / Tec_ctr prectr_sig		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
			0
Description:	Sets the signal source for the pre-control signal of the technology controller.		

p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the technology controller.		
Dependency:	Refer to: p2292		
Caution:	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the technology controller.		
Dependency:	Refer to: p2291		
Caution:	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2293	Technology controller ramp-up/ramp-down time / Tec_ctr t_RU/RD		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramping time for the output signal of the technology controller.		
Dependency:			
Note:	The time refers to the set maximum and minimum limits (p2291, p 2292).		
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]		
Description: Dependency:	Display and connector output for the output signal of the technology controller. Refer to: p2295		
p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-100.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the output signal of the technology controller.		

p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	2295[0]
Description:	Sets the signal source for the scaling value of the technology controller.		
Dependency:			
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	1084[0]
Description:	Sets the signal source for the maximum limiting of the technology controller.		
Dependency:	Refer to: p2291		
Note:	In order that the output of the technology controller does not exceed the maximum speed limit, its upper limit p2297 should be connected to the actual maximum speed r1084.		

p2298[0...n]	CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	2292[0]
Description:	Sets the signal source for the minimum limiting of the technology controller.		
Dependency:	Refer to: p2292		
Note:	If the technology controller is rotated in a negative direction in mode p2251 $=0$, its lower limit p2298 should be connected to the actual minimum speed r1087.		

p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source for the offset of the output limiting of the technology controller.		

p2302	Technology controller output signal starting value / Tec_ctr start val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the start value for the output of the technology controller. If the drive is switched on and the technology controller is already enabled (see p2200, r0056.3), then its output signal r2294 first goes to the start value p2302, before the controller starts to operate.		
Dependency:	The starting value is only effective in the mode "technology controller as main speed setpoint" (p2251 = 0). If the technology controller is first enabled when the drive is switched on, a start speed remains ineffective, and the controller output starts with the actual setpoint speed of the ramp-function generator.		
Note:	If the technology controller operates on the speed/setpoint channel ($\mathrm{p} 2251=0$), then the starting value is interpreted as the starting speed and when operation is enabled, is connected to the output of the technology controller (r2294).		

If fault F07426 "technology controller actual value limited" occurs while ramping up to the starting value and if the associated reaction has been set to "NONE" (see p2100, p2101), the starting value is kept as the speed setpoint instead of a switch to closed-loop control operation.

p2306	Technology controller fault signal inversion / Tec_ctrl fault inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	1	0
Description:	Setting to invert the fault signal of the technology controller. The setting depends on the type of control loop.		
Value:	0 : No inversion 1: Inversion		
Caution: \qquad 1	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!		
Note:	The correct setting can be determined as follows:		
	- inhibit the technology controller (p2200 = 0).		
	- increase the motor speed and in so doing, measure the actual value signal (of the technology controller).		
	- if the actual value increases with increasing motor speed, then the inversion should be switched out.		
	If value $=0$:		
	The drive reduces the output speed when the actual value rises (e.g. for heating fans, intake pump, compressor). If value $=1$:		
	The drive increases the output speed when the actual value increases (e.g. for cooling fans, discharge pumps).		

2.2 List of parameters

Notice: Dependent upon the application, the changing over of the setpoint when fault F07426 occurs can lead to the fault condition disappearing and the re-activation of the technology controller. This can repeat itself and cause limit oscillations. In this case, a different fault response or a different fixed setpoint 15 for the fault response p2345 = 2 should be selected
Note: \quad The parameterized fault response can only be achieved if the default fault response of the technology controller fault F07426 is set to "NONE" (see p2100, p2101). If a fault response other than "NONE" is entered in p2101 for F07426, p2345 must be set to zero.
If the fault occurs during ramping up to the starting setpoint p2302, this starting setpoint is retained as the final value (there is no changeover to the fault response setpoint).

r2349.0... 12	CO/BO: Technology controller status word / Tec_ctrl status				
	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 7958	
	Min		Max	Factory setting	
	-	-		-	
Description:	Displays the status word of the technology controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Technology controller de-activated	Yes	No	-
	01	Technology controller limited	Yes	No	-
	02	Technology controller motorized potentiometer limited max	Yes	No	-
	03	Technology controller motorized potentiometer limited min	Yes	No	-
	04	Technology controller speed setpoint total in setpoint channel	Yes	No	-
	05	Technology controller RFG bypassed in the setpoint channel	Yes	No	-
	06	Technology controller starting value at the current limit	No	Yes	-
	08	Technology controller actual value at the minimum	Yes	No	-
	09	Technology controller actual value at the maximum	Yes	No	-
	10	Technology controller output at the minimum	Yes	No	-
	11	Technology controller output at the maximum	Yes	No	-
	12	Fault response active	Yes	No	-

p2370[0...n]	Closed-loop cascade control enable /Csc_ctrl enab		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0

Description: Sets the signal source to switch in/switch out the closed-loop cascade control function.
1 signal: The function is switched in.
Value: $\quad 0: \quad$ Closed-loop cascade control inhibited
1: Closed-loop cascade control enabled
Note: \quad The technology controller must be activated (p 2200) and configured $(\mathrm{p} 2251=0)$ in order to use the function. Negative speed setpoints should be excluded.

p	Closed-loop cascade control configuration / Csc_ctrl config		
	Access level: 3	Calculated: -	Data type: Integer
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	8	0
Description:	Parameter for configuring the connection and disconnection of external motors to and from the line voltage.		
	Connecting external motors to the line voltage enables up to three additional drives to be controlled by the technology controller in addition to the main drive. The complete system, therefore, comprises one closed-loopcontrolled main drive and up to three other drives, which can be controlled via contactors or motor starters. The contactors or motor starters are switched by the converter's digital outputs (see also r2379).		
	Switching-in motor:		
	If the main drive is operated at maximum speed and the deviation at the technology controller input increases further, the control will in addition connect external motors M1 through M3 to the line voltage. At the same time, the main drive is ramped down to the closed-loop cascade control switch-in/switch-out speed (p 2378) via the down ramp, so that the total output power can be kept as constant as possible. During this time the technology controller is switched off.		
	Switching-off the motor:		
	If the main drive is operated at minimum speed and the deviation at the technology controller input decreases further, the control will disconnect external motors M1 through M3 from the line voltage. At the same time, the main drive is ramped up to the closed-loop cascade control switch-in/switch-out speed (p2378) via the up ramp, so that the total output power can be kept as constant as possible.		
Value:	0: Closed-loop cascade control inhibited		
	1: $\quad \mathrm{M} 1=1 \mathrm{X}$		
	2: $\quad M 1=1 X, M 2=1 X$		
	3: $\quad M 1=1 X, M 2=2 X$		
	4: $\quad M 1=1 X, M 2=1 X, M 3=1 X$		
	5: $\quad M 1=1 X, M 2=1 X, M 3=2 X$		
	6: $\quad M 1=1 X, M 2=2 X, M 3=2 X$		
	7: $\quad M 1=1 X, M 2=1 X, M 3=3 X$		
	8: $\quad M 1=1 X, M 2=2 X, M 3=3 X$		
Dependency:	Refer to: p2372		
Note:	Selecting 2X means that a motor is switched in with twice the power (as opposed to 1 X , which equates to the motor		
p2372	Closed-loop cascade control mode motor selection / Csc_ctrl mode		
	Access level: 3	Calculated: -	Data type: Intege
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		3	0
Description:	Parameter for selecting the control mode for switching-in and switching-out external motors.		
	Selection 2 and 3 support selection options for automatically interchanging the motors, which are connected to the line supply.		
Value:	0 : Fixed sequence		
	1: Closed-loop cascade control after absolute opera		
	2: Automatic replacement after continuous operatin		
	3: Automatic replacement after absolute operating		
Note:	Re p2372 = 0:		
	Motor selection for switching-in/switching-out follows a fixed sequence and is dependent on the closed-loop cascade control configuration (p2371).		
	Rep2372 = 1:		
	Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.		

2.2 List of parameters

Re p2372 = 2
Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.
In addition, those motors which have been in operation continuously for longer than the time set in p2381 are interchanged automatically.
If p2371 = 4 (selection of three identical motors), the switch is only performed between two motors, if the required input power of one single external motor is sufficient for the actual operating point.
Re p2372 = 3:
Motor selection for switching-in/switching-out is derived from the operating hours counter p2380. When switching-in, the motor with the least operating hours is connected. When switching-out, the motor with the most operating hours is disconnected.
In addition, those motors which have been in operation for a total time longer than that set in p2382 are interchanged automatically.
Re p2372 = 2, 3 :
This automatic interchange (autochange) is only possible if the designated motor is not in operation. If all motors are in operation, the interchange will not be possible and alarm A07427 appears.
Autochange mode is only possible if p2371 = 2,4 (motors of the same size).

p2373	Closed-loop cascade control switch-in threshold / Csc_ctrl sw-in thr		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: $9 _1$	Unit selection: p0595	Func. diagram: -
	Min	Max	Factory setting
	$0.0[\%]$	$200.0[\%]$	$20.0[\%]$
Description:	Threshold value for the delayed switching-in or non-delayed switching-out of external motors connected to the line.		
	Motor switching-in is activated if the maximum speed is reached and the wait time in p2374 has expired.		
Dependency:	Refer to: p2374		

p2374	Closed-loop cascade control switch-in delay / Csc_ctrl t_in_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [s]	650 [s]	30 [s]
Description:	Additional delay time for connecting external motors to the line voltage after the system deviation of the technology controller has exceeded the threshold value p2373 and the motor has reached the maximum speed.		
Dependency:	Refer to: p2373		
Note:	If the deviation at the technology controller input exceeds the overcontrol threshold p 2376 , the delay time is bypassed.		

2.2 List of parameters

p2380[0...2]	Closed-loop cascade control operating hours /Csc_ctrl op_hrs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.0[\mathrm{~h}]$	$340.28235 \mathrm{E} 36[\mathrm{~h}]$	$0.0[\mathrm{~h}]$
Description:	Displays the operating hours for the external motors.		
	The display can only be reset to zero.		
Index:	$[0]=$ Motor 1		
	$[1]=$ Motor 2		
	$[2]=$ Motor 3		

p2381 Closed-loop cascade control max time for continuous operation / Csc_ctrl t_max
Access level: 3 Calculated: - Data type: FloatingPoint32

Can be changed: U, T Scaling: - Dyn. index:-
Units group: - Unit selection: - Func. diagram:
Min Max Factory setting
0.1 [h] 100000.0 h] 24.0 [h]

Description: Time limit for the continuous operation of external motors.
Continuous operation is measured starting from when a motor is connected to the line voltage. It ends when a motor is disconnected from the line.

p2382	Closed-loop cascade control operating time limit / Csc_ctrl t_max op		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.1[\mathrm{~h}]$	$100000.0[\mathrm{~h}]$	$24.0[\mathrm{~h}]$
Description:	Limit for the total operating time of external motors.		
	The total operating time of an external motor increases every time it is switched in.		

p2383

Closed-loop cascade control switch-out sequence / Csc_ctr sw-out seq		
Access level: 3	Calculated: -	Data type: Integer16
Can be changed: T	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0	1	0

Description: Selection of the response used to stop the motors when the OFF command is sent.
Re p2383 = 1:
OFF1 disconnects the external motors from the line in the order 3-2-1. The time set in p2387 is applied as a delay time between the disconnection of each motor. The main motor is only switched off if all the external motors have already been switched off.
In the case of OFF2 and OFF3, the external motors and the main motor are switched off immediately with the OFF command (same behavior as with p2383 = 0).
Value:
0 : \quad Normal stop
1: Sequential stop
Caution:
If p2383 = 1 and the OFF1 command is pending, the main motor will not be stopped until all external motors have been disconnected and time p2387 has elapsed. The disconnection of the external motors can also serve as a means to re-accelerate the main motor.

p2384	Closed-loop cascade control motor switch-on delay / Csc_ctr t_del_on		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999.000 [s]	0.000 [s]
Description:	Delay time once the switch-in conditions have been met until the external motor is switched on.		
	The activation of the corresponding status bit (r2379) for controlling the contactors or the motor starter is delayed by this time, while the main motor speed already decreases down to the switch-in speed (p2378).		
p2385	Closed-loop cascade control holding time switch-in speed / Csc_ctr t_hld n_in		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999.000 [s]	0.000 [s]
Description:	Time during which the switch-in speed (see p2378) of the main motor is maintained after an external motor has been switched-in and the main motor has been decelerated to the switch-in speed.		

p2386	Closed-loop cascade control motor switch-of delay / Csc_ctrl t_del_off		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
Description:	$0.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$	
	Delay time once the switch-out conditions have been met until the external motor is switched off. The resetting of the corresponding status bit (r2379) for controlling the contactors or the motor starter is delayed by this time, while the main motor ramps up to the switch-out speed (p2378).		

p2387	Closed-loop cascade control holding time switch-out speed / CscCtr t_hld \mathbf{n} _out		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	$999.000[\mathrm{~s}]$	Factory setting
	$0.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$	
Description:	Time during which the switch-out speed (see p2378) of the main motor is maintained after an external motor has		
	been switched-out and the main motor has been accelerated to the switch-out speed.		

p2390[0...n]	Energy-saving mode start speed / En_sav n_start		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.000 [rpm]	21000.000 [rpm]	0.000 [rpm]
Description:	Sets the start speed for the energy-saving mode function.		
	The total speed of this activation threshold is the sum of the minimum speed p1080 and p2390.		
	If the speed setpoint undershoots this start speed, the delay time in p2391 is started. If the restart threshold is no longer reached before the delay time expires, the energy-saving mode boost speed p2395 is impressed for the time period p2394 and then the motor is brought to a standstill via the down ramp of the setpoint channel. The drive is powered down (energy-saving mode active). The drive is automatically powered up again as soon as the speed setpoint exceeds the restart threshold.		
Note:	The energy-saving mode start speed is set to 4% of the nominal speed when commissioning is completed.		

p2391[0...n]	Energy-saving mode delay time / En_sav t_delay		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [s]	3599 [s]	120 [s]
Description:	Sets the delay time for the energy-saving mode function.		
	To ensure that the drive can be shut down (pulse inhibit), a restart condition must not occur during this time.		
Dependency:	Refer to: p2390, p2392, p2393		
p2392	Energy-saving mode restart value with technology controller / En_savRest tec_ctr		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: -
	Min	Max	Factory setting
	0.000 [\%]	200.000 [\%]	0.000 [\%]
Description:	Sets the motor restart time for the energy-saving mode function.		
	If the energy-saving mode function is active, the technology controller continues to operate and supplies a speed setpoint to the setpoint channel. Since the drive is de-activated, there is no system deviation at the input of the technology controller. As soon as this exceeds the restart value p2392, the drive is automatically powered up and the speed is controlled to 1.05 * (p1080 + p2390) via the up ramp of the setpoint channel.		
Note:	The restart value is set to 5% when commissioning is completed.		
p2393[0...n]	Energy-saving mode restart speed relative without tec_ctrl / En_savResNoTec_ctr		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.000 [rpm]	21000.000 [rpm]	0.000 [rpm]
Description:	Sets the start speed to restart the motor for the energy-saving mode function.		
	When the energy-saving mode is active, a speed setpoint is still supplied to the setpoint channel. If the setpoint increases again and in so doing exceeds the restart speed, the drive is automatically powered up and the speed setpoint is controlled to p $1080+\mathrm{p} 2390+\mathrm{p} 2393$ via the up ramp of the setpoint channel.		
	The restart speed is the sum of the minimum speed p1080, the energy-saving mode start speed p2390 and the relative restart speed p2393.		
Dependency:	Refer to: p1080		
Note:	The parameter is set to 6% of the nominal speed when commissioning is exited.		
p2394[0...n]	Energy-saving mode boost time period / En_sav t_boost		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [s]	3599 [s]	0 [s]
Description:	Sets the boost time period for the energy-saving mode function.		
	Before the drive is finally powered down (energy-saving mode), the setpoint speed is changed to the boost speed p2395 for the time set in p2394. Depending on the application, this allows the energy-saving mode intervals to be extended (in time).		
Caution: 1	The controller is not operational while the boost speed is being impressed. As a result, for example, for pump applications, it must be ensured that the tank does not overflow as a result of the additional boost. For compressors, it must be ensured that the boost speed does not result in an overpressure condition.		
Note:	If a boost speed is not approached, then the boost time period is set to 0 s .		

p2395[0...n]	Energy-saving mode boost speed / En_sav n_boost		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.000 [rpm]	21000.000 [rpm]	0.000 [rpm]
Description:	Sets the boost speed for the energy-saving mode function.		
	The motor is accelerated to the energy-saving mode boost speed p2395 for the energy-saving mode boost time period p2394 before it is brought to a standstill via the down ramp of the setpoint channel (p1121) and subsequently powered down (pulse inhibit).		
Dependency:	Refer to: p2394		
Caution: \qquad 1	The controller is not operational while the boost speed is being impressed. As a result, for example, for pump applications, it must be ensured that the tank does not overflow as a result of the additional boost. For compressors, it must be ensured that the boost speed does not result in an overpressure condition.		
p2396[0...n]	Energy-saving mode max shutdown time / En_sav t_off max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [s]	863999 [s]	0 [s]
Description:	Sets the maximum shutdown time for the energy-saving mode function.		
	If the drive is in the energy-saving mode (pulse inhibit) then it is powered up again at the latest after the maximum power-down time has expired. If the restart conditions are fulfilled earlier, then the drive is correspondingly powered up earlier.		
Danger:	The drive automatically powers itself up at the latest after the maximum power-down time has expired.		
Caution: A	Once the maximum shutdown time has expired, the drive switches itself on automatically and accelerates to the start speed. The technology controller only becomes effective again when this speed is reached (for p2398 = 1).		
!	Depending on the application, e.g. for pumps, it should be ensured that as a result of cyclic starts the tank does not overflow or for compressors, an overpressure condition does not occur.		
Note:	Automatic restart once the maximum OFF time has elapsed is de-activated by setting p2396 $=0 \mathrm{~s}$.		
r2397[0...1]	CO: Energy-saving mode output speed actual / En_sav n_outp act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual output speed for the energy-saving mode function.		
Note:	Zero is displayed if the boost or starting speed is not active.		
p2398	Energy-saving mode / En_save mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the operating mode for the energy-saving mode function.		
Value:	0: Energy-saving mode inhibited 1: Energy-saving mode activated		
Dependency:	Refer to: p2200, p2251		

2.2 List of parameters

Caution:	When this function is active, the motor can start again automatically.					
Note:	The technology controller is enabled via binector input p2200 and its mode is set in p2 p2200 = 0, p2251 $=0$: Energy-saving mode operates without technology controller (open-loop) $\mathrm{p} 2200=1, \mathrm{p} 2251=0$ Energy-saving mode operates with technology controller (closed-loop)					
r2399.0... 8	CO/BO: Energy-saving mode status would / En_save ZSW					
	Acc	ess level: 3	Calculated		Data type:	
	Can	be changed: -	Scaling: -		Dyn. index:	
	Unit	group: -	Unit selec	on: -	Func. diagr	
	Min		Max		Factory set	
	-		-		-	
Description:	Displays the status word for the energy-saving mode function.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Energy-saving mo	2398 <> 0)	Yes	No	-
		Energy-saving mo		Yes	No	-
		Energy-saving mo	active	Yes	No	-
		Energy-saving mo	e	Yes	No	-
		Energy-saving mo	ched off	Yes	No	-
		Energy-saving mo restart active	ff cyclic	Yes	No	-
		Energy-saving mo	arts	Yes	No	-
		Energy-saving mo for ramp-fct. gen.	tal setpoint	Yes	No	-
		Energy-saving mo gen. in setpoint ch	ramp-fct.	Yes	No	-
Dependency:	Refer to: p2398					
p2900[0...n]	CO: Fixed value 1 [\%] / Fixed value 1 [\%]					
	Acc	ess level: 3	Calculated		Data type:	
	Can	be changed: U, T	Scaling: P	RCENT	Dyn. index:	
	Unit	group: -	Unit selec	on: -	Func. diagr	
	Min		Max		Factory set	
	-100	00.00 [\%]	10000.00		0.00 [\%]	
Description:	Setting and connector output for a fixed percentage value.					
Dependency:	Refer to: p2901, r2902, p2930					
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.					
Note:	The value can be used to interconnect a scaling function (e.g. scaling of the main setpoint)					
p2901[0...n]	CO: Fixed value 2 [\%] / Fixed value 2 [\%]					
	Acc	ess level: 3	Calculated		Data type:	
	Can	be changed: U, T	Scaling: P	RCENT	Dyn. index:	
	Unit	group: -	Unit selec	on: -	Func. diagr	
	Min		Max		Factory set	
	-100	00.00 [\%]	10000.00		0.00 [\%]	
Description:	Setting and connector output for a fixed percentage value.					
Dependency:	Refer to: p2900, p2930					
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.					
Note:	The value can be used to interconnect a scaling function (e.g. scaling of the supplementary setpoint)					

r2902[0...14]	CO: Fixed values [\%] / Fixed values [\%]		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1021
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for frequently used percentage values.		
Index:	[0] = Fixed value +0 \%		
	[1] = Fixed value +5 \%		
	[2] = Fixed value +10 \%		
	[3] = Fixed value +20 \%		
	[4] = Fixed value +50 \%		
	[5] = Fixed value +100 \%		
	[6] = Fixed value +150 \%		
	[7] = Fixed value +200 \%		
	[8] = Fixed value -5 \%		
	[9] = Fixed value -10 \%		
	[10] = Fixed value -20 \%		
	[11] = Fixed value -50 \%		
	[12] = Fixed value -100 \%		
	[13] = Fixed value -150 \%		
	[14] = Fixed value -200 \%		
Dependency:	Refer to: p2900, p2901, p2930		
Note:	The signal sources can, for example, be used to interconnect scalings.		
p2930[0...n]	CO: Fixed value M [Nm] / Fixed value M [Nm]		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1021
	Min	Max	Factory setting
	-100000.00 [Nm]	100000.00 [Nm]	0.00 [Nm]
Description:	Setting and connector output for a fixed torque value.		
Dependency:	Refer to: p2900, p2901, r2902		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set		
Note:	The value can, for example, be used to interconnect a supplementary torque.		
r2969[0...6]	Direct axis flux model display / Mot Psid trace		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	-
Description:	Display of the direct axis flux model of the closed-loop controlled reluctance motor for diagnostic purposes:		
	Display of the entered direct axis current id: idx0: current in Arms		
	Display of the saturation curves of the direct axis flux psid(id, iq): idx1: flux in Vsrms with respect to the direct axis current for iq $=0$		
	idx2: flux in Vsrms with respect to the direct axis current for iq $=0.5$ * p2950		
	idx3: flux in Vsrms with respect to the direct axis current for iq = p2950		
	Displays the relative error of the current inversion(id(psid, iq) - id) / p2950:		
	idx4: error with respect to direct axis current for iq $=0$		
	idx5: error with respect to direct axis current for iq $=0.5$ * p2950		
	idx6: error with respect to direct axis current for iq $=$ p2950		

2.2 List of parameters

Bit field:

Note:

Bit	Signal name	1 signal	0 signal	FP
00	Fault converter information electronics/software error	Yes	No	-
01	Network fault	Yes	No	-
02	DC link overvoltage	Yes	No	-
03	Fault drive converter power electronics	Yes	No	-
04	Drive converter overtemperature	Yes	No	-
05	Ground fault	Yes	No	-
06	Motor overload	Yes	No	-
07	Bus error	Yes	No	-
08	External safety-relevant shutdown	Yes	No	-
10	Error communication internal	Yes	No	-
11	Fault infeed	Yes	No	-
15	Other faults	Yes	No	-

Re bit 00:
Hardware or software malfunction was identified. Carry out a POWER ON of the component involved. If it occurs again, contact the hotline.
Re bit 01:
A line supply fault has occurred (phase failure, voltage level, ...). Check the line supply / fuses. Check the supply voltage. Check the wiring.
Re bit 02:
The DC link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.
Re bit 03:
An inadmissible operating state of the power electronics was identified (overcurrent, overtemperature, IGBT failure,
...). Check that the permissible load cycles are maintained. Check the ambient temperatures (fan).
Re bit 04:
The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet cooling.
Re bit 05:
A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cable (connection). Check the motor.
Re bit 06:
The motor was operated outside the permissible limits (temperature, current, torque, ...). Check the load cycles and limits that have been set. Check the ambient temperature / motor cooling.
Re bit 07:
The communication to the higher-level control system (internal coupling, PROFIBUS, PROFINET, ...) is faulted or interrupted. Check the state of the higher-level control system. Check the communication connection/wiring. Check the bus configuration / clock cycles.
Re bit 08:
A safety operation monitoring function (Safety) has detected an error.
Re bit 09:
When evaluating the encoder signals (track signals, zero marks, absolute values, ...) an illegal signal state was detected. Check the encoder / state of the encoder signals. Observe the maximum frequencies.
Re bit 10:
The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMC-compliant design. Observe the maximum permissible quantity structure / clock cycles. Re bit 11:
The infeed is faulted or has failed. Check the infeed and the surroundings (line supply, filter, reactors, fuses, ...). Check the closed-loop infeed control.
Re bit 15:
Group fault. Determine the precise cause of the fault using the commissioning tool.

p3117	Change safety message type / Ch. SI mess type		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Factory setting	
	0	0	
Description:	Sets the re-parameterization of all safety messages for faults and alarms.		
	The relevant message type during changeover is selected by the firmware.		
	0: Safety messages are not re-parameterized		
	1: Safety messages are re-parameterized		
Note:	A change only becomes effective after a POWER ON.		

r3120[0...63]	Component fault / Comp fault		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	0	3	-
Description:	Displays the component of the fault which has occurred.		
Value:	0: No assignment		
	1: Control Unit		
	2: Power Module		
	3: Motor		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136, r3122		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		

r3121[0...63] Component alarm / Comp alarm
Access level: 3 Calculated: - Data type: Integer16
Can be changed: - Scaling: - Dyn. index.

Units group: -	Unit selection: -	Func. diagram: 8065
Min	Max	Factory setting

Description: Displays the component of the alarm which has occurred.
Value: $0: \quad$ No assignment
1: Control Unit
2: Power Module
3: Motor
Dependency: Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145, r2146, r3123
Note: \quad The buffer parameters are cyclically updated in the background (refer to status signal in r2139).
The structure of the alarm buffer and the assignment of the indices is shown in r2122.

r3122[0...63]	Diagnostic attribute fault / Diag_attr fault					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: 8060	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the diagnostic attribute of the fault which has occurred.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Hardware repl	ended	Yes	No	-
		Message has		Yes	No	-
		PROFIdrive fa		High	Low	-
		PROFIdrive fa		High	Low	

Re bits 20 ... 16:
Bits 20, 19, 18, 17, $16=0,0,0,0,0-->$ PROFIdrive message class 0 : not assigned
Bits $20,19,18,17,16=0,0,0,0,1$--> PROFIdrive message class 1 : hardware fault/software error
Bits $20,19,18,17,16=0,0,0,1,0-->$ PROFIdrive message class 2 : line fault
Bits $20,19,18,17,16=0,0,0,1,1$--> PROFIdrive message class 3 : supply voltage fault
Bits $20,19,18,17,16=0,0,1,0,0-->$ PROFIdrive message class 4: DC link fault
Bits $20,19,18,17,16=0,0,1,0,1-->$ PROFIdrive message class 5 : power electronics faulted
Bits $20,19,18,17,16=0,0,1,1,0-->$ PROFIdrive message class 6 : overtemperature electronic components
Bits $20,19,18,17,16=0,0,1,1,1$--> PROFIdrive message class 7 : ground fault/phase fault detected
Bits $20,19,18,17,16=0,1,0,0,0-->$ PROFIdrive message class 8 : motor overload
Bits $20,19,18,17,16=0,1,0,0,1$--> PROFIdrive message class 9 : communication error to the higher-level control Bits 20, 19, 18, 17, $16=0,1,0,1,0$--> PROFIdrive message class 10 : safe monitoring channel has identified an error
Bits $20,19,18,17,16=0,1,0,1,1$--> PROFIdrive message class 11 : incorrect position actual value/speed actual value or not available
Bits $20,19,18,17,16=0,1,1,0,0-->$ PROFIdrive message class 12: internal (DRIVE-CLiQ) communication error Bits $20,19,18,17,16=0,1,1,0,1-->$ PROFIdrive message class 13: infeed unit faulted
Bits 20, 19, 18, 17, $16=0,1,1,1,0-->$ PROFIdrive message class 14: braking controller/Braking Module faulted
Bits $20,19,18,17,16=0,1,1,1,1$--> PROFIdrive message class 15: line filter faulted
Bits $20,19,18,17,16=1,0,0,0,0-->$ PROFIdrive message class 16: external measured value/signal state outside the permissible range
Bits $20,19,18,17,16=1,0,0,0,1$--> PROFIdrive message class 17: application/technology function faulted
Bits 20, 19, 18, 17, $16=1,0,0,1,0-->$ PROFIdrive message class 18: error in the parameterization/configuration/commissioning sequence
Bits 20, 19, 18, 17, $16=1,0,0,1,1$--> PROFIdrive message class 19: general drive fault

r3131

CO: Actual fault value / Act fault val

Access level: 3
Can be changed: -
Units group: -
Min -

Description: Displays the fault value of the oldest active fault.
Dependency: Refer to: r2131, r3132

r3132	CO: Actual component number / Comp_no act		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	-	-	
Description:	Displays the component number of the oldest fault that is still active.		
Dependency:	Refer to: r2131, r3131		

p3230[0...n]	Cl: Load monitoring speed actual value / Load monit n_act		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 8012,8013
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source for the speed actual value of the load monitoring.		
Dependency:	Refer to: r2169, p2181, p2192, p2193, p3231		
Note:	The parameter is only effective for p2193 $=2$.		

p3231[0...n]	Load monitoring speed deviation / Load monit n_dev		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	$0.00[$ rpm]	$210000.00[$ rpm	$150.00[\mathrm{rpm}]$
Description:	Sets the permissible speed deviation during load monitoring (for p2193 =2).		
Dependency:	Refer to: r 2169, p2181, p2193, p3230		

p3232[0...n]	BI: Load monitoring failure detection / Load_moni fail_det		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 8013
	Min	-	Factory setting
	-	1	
Description:	Sets the signal source for detecting a failure.		
Dependency:	Refer to: p2192, p2193		
Note:	Monitoring is triggered with a 0 signal, as soon as the time in p2192 has expired.		

p3233[0...n]	Torque actual value filter time constant / M_act_filt T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8013
	Min	Max	Factory setting
Description:	$0[\mathrm{~ms}]$	$1000000[\mathrm{~ms}]$	$100[\mathrm{~ms}]$
	Sets the time constant for the PT1 element to smooth the torque actual value.		
	The smoothed torque actual value is compared with the threshold values and is only used for messages and signals.		

p3320[0...n]	Fluid flow machine power point 1/Fluid_mach P1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	100.00	Factory setting
	0.00	25.00	
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the		
	characteristic is required.		
	This parameter specifies the power (P) of point 1 as a [\%].		

2.2 List of parameters

Note: \quad The reference value for power and speed is the rated power/rated speed. The energy saved is displayed in r0041.

p3324[0...n]	Fluid flow machine power point 3 / Fluid_mach P3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	77.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3325[0...n]	Fluid flow machine speed point 3 / Fluid_mach n3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		

p3326[0...n]	Fluid flow machine power point 4 / Fluid_mach P4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	92.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		

p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	75.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		

p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 5 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3329[0...n]	Fluid flow machine speed point 5 / Fluid_mach n5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 5 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3330[0...n]	BI: 2/3 wire control command 1 / 2/3 wire cmd 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2272, 2273
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for command 1 for the two-wire control/three-wire control.		
Dependency:	Refer to: p0015, p3331, p3332, r3333, p3334		
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.		
p3331[0...n]	BI: 2/3 wire control command 2 / 2/3 wire cmd 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2272, 2273
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for command 2 for the two-wire control/three-wire control.		
Dependency:	Refer to: p0015, p3330, p3332, r3333, p3334		
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.		

p3332[0...n]	BI: 2/3 wire control command 3 / 2/3 wire cmd 3			
	Access level: 3	Calculated: -	Data type:	
	Can be changed: U, T	Scaling: -	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagra	
	Min	Max	Factory sett	
	-	-	0	
Description:	Sets the signal source for command 3 for the two-wire control/three-wire control.			
Dependency:	Refer to: p0015, p3330, p3331, r3333, p3334			
Note:	The mode of operation of this binector input is dependent on the wire control set in p 0015.			
r3333.0... 3	CO/BO: 2/3 wire control control word / 2/3 wire STW			
	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: 2272, 2273	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the control word for the two wire control/three wire control.			
	The control signals are dependent on the wire control set in p0015 and the signal states at the digital inputs.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON	Yes	No	-
	01 Reversing	Yes	No	-
	02 ON inverted	Yes	No	-
	03 Reversing inverted	Yes	No	-
Dependency:	Refer to: p0015, p3330, p3331, p3332, p3334			
p3334	2/3 wire control selection / 2/3 wire select			
	Access level: 4	Calculated: -	Data type: Integer16	
	Can be changed: U, T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: 2272, 2273	
	Min	Max	Factory setting	
	0	4	0	
Description:	Sets the two wire control/three wire control.			
Value:	0 : No wire control			
	1: Two wire control clockw	unterclockwise 1		
	2: Two wire control clockw	unterclockwise 2		
	3: Three wire control enable	ckwise/counterclockwise		
	4: Three wire control enabl	/reversing		
Dependency:	Refer to: p0015, p3330, p3331, p3332, r3333			
Note:	This value depends on the wire control set in p0015.			
p3855[0...n]	DC quantity controller configuration / DC_ctrl config			
PM230	Access level: 3	Calculated: p0340 = 1,3,5	Data type: Unsigned32	
PM240	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory setting	
	-	-	0111 bin	
Description:	Configuration of the DC quantity controller in the overmodulation range.			
	No DC quantity control for power units that can also be connected through 1 phase to the line supply (r0204.15 = 1).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DC quantity controller on	Yes	No	-
	01 Bandwidth increased	Yes	No	-
	02 7. Harmonics reduced	Yes	No	-
	03 Filter active	Yes	No	-

2.2 List of parameters

Dependency:	The modulator mode p1802 must enable operation in the overmodulation range. In addition, the overmodulation limit
p1803 must be greater than 103%.	
	Set the modulator mode p1802 = 10, if the DC quantity control is deactivated and overmodulation is to be prevented.
Notice:	Motor identification must be carried out before activating the DC quantity control in the overmodulation range.

p3856[0...n]	Compound braking current / Compound I_brake		
PM240	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [\%]	250.00 [\%]	0.00 [\%]
Description:	Compound braking current is used to define the amount of DC current that is produced on stopping the motor during U/f operation to further increase the DC brake function.		
	Compound braking is a superimposition of the DC brake function with regenerative braking (net braking along the ramp) after OFF1 or OFF3. This permits braking with controlled motor frequency and minimum power input into the motor.		
	Effective braking without using additional hardware components is obtained by optimizing the ramp down time and compound braking.		
Dependency:	The compound braking current is only activated if the DC link voltage exceeds the threshold value in r1282.		
	Compound braking does not operate in the following cases:		
	- motor is still not magnetized (e.g. for flying restart).		
	- vector control parameterized (p1300 >= 20).		
	- synchronous motor used ($0300=2 x x$).		
Notice:	Generally, increasing the braking current improves the braking effect when stopping the motor. However, if the value is set too high, then the drive can be tripped (shut down) as a result of overcurrent or ground fault.		
	Recommendation: p3856 < 100 \% x (r0209-r0331) / p0305 / 2		
	Compound braking generates a current in the motor with a ripple manifesting the rotational frequency. The higher the braking current is set, the higher the resulting ripple, especially when the Vdc_max control is simultaneously active (refer to p1280).		
Note:	The parameter value is entered relative to the rated motor current (p 0305).		
	Compound braking is deactivated with p3856 $=0 \%$.		

p3857[0...n] DC quantity controller P gain / DC_ctrl Kp
PM230 Access level: $3 \quad$ Calculated: $\mathrm{p} 0340=1,3,4 \quad$ Data type: FloatingPoint32
PM240 Can be changed: U, T Scaling: - Dyn. index: DDS, p0180
Units group: - Unit selection: - Func. diagram: 6797
Min Max Factory setting
$0.000 \quad 100000.000 \quad 0.000$

Description: Sets the proportional gain of the DC quantity controller for the overmodulation range.

p3858[0...n]	DC quantity controller integral time / DC_ctrl Tn		
PM230	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
PM240	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6797
	Min	Max	Factory setting
	$0.00[\mathrm{~ms}]$	$1000.00[\mathrm{~ms}]$	$2.00[\mathrm{~ms}]$
Description:	Sets the integral time for the DC quantity controller.		

p3881	ESM setpoint source / ESM setp_src		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7033
	Min	Max	Factory setting
	0	7	0
Description:	Sets the setpoint source for essential service mode (ESM).		

2.2 List of parameters

p3882 ESM setpoint source alternative / ESM setp_src alt

Access level: 3	Calculated: -	Data type: Integer16
Can be changed: T	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: 7033
Min	Max	Factory setting
0	2	0

Description: Sets the alternative setpoint source for essential service mode (ESM).
This setpoint is used when the setpoint source set in p3881 is lost.
Value: $\quad 0: \quad$ Last known setpoint (r1078 smoothed)
1: \quad Fixed speed setpoint 15 (p 1015)
2: \quad Maximum speed (p1082)
Dependency: Refer to: p3881
Note: ESM: Essential Service Mode
The alternative setpoint source is only active for $\mathrm{p} 3881=2,3,4$.

p3883	BI: ESM direction of rotation signal source / ESM rot dir s s		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7033
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the direction of rotation during essential service mode (ESM). p3883 = 1 signal:		
	Direction of rotation of the setpoint, parameterized for essential service mode, is reversed. p3883 $=0$ signal:		
	Direction of rotation of the setpoint parameterized for essential service mode is kept.		
Warning:	The direction reversal is not taken into account if p3881 = 4 is set (technology controller) and the technology controller is also active as the setpoint source.		
Note:	ESM: Essential Service Mode		

p3884	CI: ESM setpoint technology controller / ESM setp tech_ctrl		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7033
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint for p3881 = 4 (technology controller) in the essential service mode (ESM).		
Dependency:	Refer to: p3881		
Note:	ESM: Essential Service Mode		
	Rep $3884=0$:		
	The technology controller uses the setpoint from p2253.		

r3887[0...1]	ESM number of activations/faults / ESM act/fault qty		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7033
	Min	-	Factory setting
	-	-	
Description:	Displays the number of activations and faults that have occurred for the essential service mode (ESM).		
Index:	$[0]=$ Activation of the essential service mode		
Dependency:	$[1]=$ Faults during the essential service mode		
Rote:	Refer to: p3888		
	ESM: Essential Service Mode		

p3888	ESM reset number of activations/faults / ESM act/F qty r		
	Access level: 4	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7033
	Min	Max	Factory setting
	0	1	0
Description:	Setting to reset the number of activations and faults that have occurred for the essential service mode (ESM) 1: counter reset active (r3887[0, 1]) 0 : inactive		
Dependency:	Refer to: r3887		
Note:	ESM: Essential Service Mode		
	The parameter is automatically reset to zero after the counter has been reset.		

r3889.0... 10	CO/BO: ESM status word / ESM ZSW					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: 7033	
	Min		Max		Factory setting	
	-		-		-	
Description:	Display and BICO output for the status word of the essential service mode (ESM).					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Essential servic	ctivated	Yes	No	-
		Direction of rot		Yes	No	-
		Setpoint signa		Yes	No	-
		Technology co lost	ue (p2264)	Yes	No	-
	04	Bypass active		Yes	No	-
	05	Setpoint techn parameterized		Yes	No	-

2.2 List of parameters

r3925[0...n]	Identification final display / Ident final_disp		
	Access level: 3	Calculated: p0340=1	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting

Description:	Disp	ys the commissioning steps that have been	carried out		
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Motor/control parameters calculated (p0340 $=1$, p3900 >0)	Yes	No	-
	02	Motor data identification carried out at standstill (p1910 = 1)	Yes	No	-
	03	Rotating measurement carried out (p1960 $=$ 1, 2)	Yes	No	-
	08	Motor identification data have been automatically backed up	Yes	No	-
	15	Motor equivalent circuit diagram parameters changed	Yes	No	-

Note: \quad The individual bits are only set if the appropriate action has been initiated and successfully completed. When motor rating plate parameters are changed, the final display is reset.

2.2 List of parameters

r3930[0...4]	Power unit EEPROM characteristics / PU characteristics		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
Description:	-	-	
	Displays the characteristics (A5E number and versions) of the power unit.		
	[0]: A5E number xxxx (A5Exxxxyyyy)		
	[1]: A5E number yyyy (A5Exxxxyyyy)		
	[2]: File version (logistic)		

[3]: File version (fixed data)
[4]: File version (calib data)

2.2 List of parameters

2.2 List of parameters

2.2 List of parameters

Note:	Pe: PROFlenergy profiles
	PROFIdrive state S4: operation

p5612[0...1]	Pe energy-saving properties mode-dependent / Pe properties mod			
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned32	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	[0] 0110 bin	
			[1] 0000 bin	
Description:	Sets the mode-dependent properties for energy-saving.			
Index:	$\begin{aligned} & {[0]=\text { Reserved }} \\ & {[1]=\text { Mode } 2} \end{aligned}$			
Bit field:	Bit Signal name 00 Reserved	1 signal Yes	0 signal No	FP
Note:	Pe: PROFlenergy pro			

r5613.0...	CO/BO: Pe energy-saving active/inactive / Pe save act/inact		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Display and binector output for the state display PROFlenergy energy saving active or inactive.		
Bit field:	Bit Signal name	1 signal	0 signal
	$00 ~ P e ~ a c t i v e ~$	Yes	No
	01 Pe inactive	Yes	No

Note:	Bit 0 and bit 1 are inverse of one another.
	Pe: PROFlenergy profiles

p5614	BI: Pe set switch-on inhibit signal source / Pe sw on_inh s_src		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to set in the PROFldrive state S1 "switching-on inhibit".		
Dependency:	Refer to: r5613		
Note:	Pe: PROFlenergy profiles		
r7758[0...19]	KHP Control Unit serial number / KHP CU ser_no		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	-
Description:	Displays the actual serial number of the Control Unit.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		
	For the commissioning software, the ASCII characters are displayed uncoded.		
Dependency:	Refer to: p7765, p7766, p7767, p7768		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
Note:	KHP: Know-How Protection		

p7759[0..19]	KHP Control Unit reference serial number / KHP CU ref ser_no					
	Acc	ess level: 3	Calculated		Data type:	
	Can	be changed: T	Scaling: -		Dyn. index	
	Uni	group: -	Unit select	on: -	Func. diagr	
	Min		Max		Factory set	
	-		-		-	
Description:	Sets the reference serial number for the Control Unit.					
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.					
Dependency:	Refer to: p7765, p7766, p7767, p7768					
Note:	KHP: Know-How Protection					
	- The OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".					
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.					
r7760	Write protection/know-how protection status / Wr_prot/KHP stat					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dyn. index:	
	Units group: -		Unit select	ion: -	Func. diagr	
	Min		Max		Factory set	
	-		-		-	
Description:	Displays the status for the write protection and know-how protection.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Write protection		Yes	No	-
		Know-how prote		Yes	No	-
		Know-how prote	y withdrawn	Yes	No	-
		Know-how prote	deactivated	Yes	No	-
		Extended copy	ve	Yes	No	-
		Basic copy prot		Yes	No	-
		Trace and mea diagnostic purp		Yes	No	-
Dependency:	Refer to: p7761, p7765, p7766, p7767, p7768					
Note:	KHP: Know-How Protection					
	Re bit 00:					
	Write protection can be activated/deactivated via p7761 on the Control Unit.					
	Re bit 01:					
	The know-how protection can be activated by entering a password (p7766 ... p7768).					
	Re bit 02:					
	If it has already been activated, know-how protection can be temporarily deactivated by entering the valid password in p7766. In this case, bit $1=0$ and bit $2=1$ offset.					
	Re bit 03:					
	Know-how protection cannot be deactivated, as p7766 is not entered in the OEM exception list (only the factory setting is possible). This bit is only set if know-how protection is active (bit $1=1$) and p7766 has not been entered in the OEM exception list.					
	Re bit 04:					
	When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be additionally protected against being used with other memory cards/Control Units. This bit is only set if know-how protection is active and p7765 bit 00 is set.					
	Re bit 05:					
	When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be additionally protected against being used with other memory cards. This bit is only set if know-how protection is active and in p7765 bit 01 is set and not bit 00 .					
	Re bit 06:					
	When know-how protection is activated, the drive data can be traced using the device trace function. This bit is only set if know-how protection is active and in p7765.2 is set.					

p7761	Write protection / Write protection		
	Access level: 3	Calculated: -	
	Can be changed: U , T	Scaling: -	Data type: Integer16

2.2 List of parameters

Note: \quad KHP: Know-How Protection \quad When reading, p7766[0...29] = 42 dec (ASCII character $=$ "*") is displayed. \quad Parameters with the "KHP_WRITE_NO_LOCK" attribute are not involved in the know-how protection.

p7767[0...29]	KHP password new / KHP passw new		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Mnit selection: -	Func. diagram: -
	Min	-	Factory setting
Description:	-	-	
Dependency:	Rets the new password for know-how protection.		
Note:	KHP: Know-How Protection		
	When reading, p7767[0..29] = 42 dec (ASCII character $=$ "*") is displayed.		

p7768[0...29]	KHP password confirmation / KHP passw confirm		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
Description:	-	Confirms the new password for know-how protection.	
Dependency:	Refer to: p7766, p7767		
Note:	KHP: Know-How Protection		
	When reading, p7768[0...29] = 42 dec (ASCI character $=" * ")$ is displayed.		

p7769[0...20]	KHP memory card reference serial number / KHP mem ref ser_no		
	Access level: 3	Calculated: -	Data type: Unsign
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Sets the reference serial number for the memory card.		
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.		
Dependency:	Refer to: p7765, p7766, p7767, p7768		
Note:	KHP: Know-How Protection		
	- The OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".		
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.		

p7775

NVRAM data backup/import/delete / NVRAM backup
Access level: 3 Calculated: - Data type: Integer16

Can be changed: C, U, T Scaling: - Dyn. index: -

Units group: -
Min Max
17
Setting to backup/import/delete NVRAM data.
NVRAM data are non-volatile data in the device (e.g. fault buffer).

r7901[0...81]	Sampling times / t_sample		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]
Description:	Displays the sampling times currently present on the drive unit. r7901[0 63]: sampling times of hardware time slices.		
	r7901[64...82]: sampling times of software time slices.		
	$\mathrm{r} 7901[\mathrm{x}]=0$ means that in the associated time slice, no methods have been registered.		
Note:	The basis for the software time slices is T_NRK = p7901[13].		
r7903	Hardware sampling times still assignable / HW t_samp free		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	
Description:	Displays the number of hardware sampling times that can still be assigned.		
	These free sampling times can be used by OA applications such as DCC or FBLOCKS.		
Note:	OA: Open Architecture		
p8400[0...2]	RTC time / RTC time		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	59	0
Description:	Sets and displays the time on the real-time clock in hours, minutes, and seconds.		
	The time is stored in the internal clock block in the drive and continues to run even if the supply voltage for the Control Unit is interrupted (for approx. 5 days).		
Index:	$\begin{aligned} & {[0]=\operatorname{Hour}(0 \ldots 23)} \\ & {[1]=\text { Minute }(0 \ldots 59)} \\ & {[2]=\text { Second }(0 \ldots 5)} \end{aligned}$		
Note:	The time from p8400 and p8401 is used to display the fault and alarm times.		
	The parameter is not reset when the factory setting is restored ($\mathrm{p} 0010=30, \mathrm{p} 0970$).		
	The time is entered and displayed in 24 -hour format.		
	RTC: Real-time clock		
p8401[0...2]	RTC date / RTC date		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	9999	[0] 1
			[1] 1
			[2] 1970
Description:	Sets and displays the date on the real-time clock in year, month, and day.		
	The date is stored in the internal clock block in the drive and continues to run even if the supply voltage for the Control Unit is interrupted (for approx. 5 days).		
Recommend.:	When the date is set as an index, the day should always be written last because, if a date is invalid, the day is always corrected to the last valid day in that particular month of the year.		

2.2 List of parameters

p8410[0...6]	RTC DTC1 weekday of activation / RTC DTC1 day act		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the weekday on which timer 1 is activated (DTC1).		
	The switch-on/off time is set in p8411/p8412 and the result displayed via binector output r 8413.		
Value:	0 : Weekday de-activated 1: Weekday activated		
Index:	$\begin{aligned} & {[0]=\text { Monday }} \\ & {[1]=\text { Tuesday }} \\ & {[2]=\text { Wednesday }} \\ & {[3]=\text { Thursday }} \\ & {[4]=\text { Friday }} \\ & {[5]=\text { Saturday }} \\ & {[6]=\text { Sunday }} \end{aligned}$		
Dependency:	Refer to: p8409, p8411, p8412, r8413		
Notice:	This parameter can only be changed when p8409 $=0$.		
Note:	DTC: Digital Time Clock (timer)		
	RTC: Real-time clock		
p8411[0..1]	RTC DTC1 switch-on time / RTC DTC1 t_ON		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	59	0
Description:	Setting of the switch-on time in hours and minutes for time switch 1 (DTC1). BO: r8413 = 1 signal:		
Index:	$\begin{aligned} & {[0]=\operatorname{Hour}(0 \ldots 23)} \\ & {[1]=\text { Minute }(0 \ldots 59)} \end{aligned}$		
Dependency:	Refer to: p8409, p8410, r8413		
Notice:	This parameter can only be changed when p8409 $=0$.		
Note:	DTC: Digital Time Clock (timer)		
	RTC: Real-time clock		
p8412[0...1]	RTC DTC1 off time / RTC DTC1 t_OFF		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	59	0
Description:	Sets the switch-off tim BO: r8413 = 0 signal: The condition for the	minutes for time 810) and switch-off	filled.
Index:	$\begin{aligned} & {[0]=\operatorname{Hour}(0 \ldots 23)} \\ & {[1]=\text { Minute }(0 \ldots 59)} \end{aligned}$		
Dependency:	Refer to: p8409, p8410, r8413		
Notice:	This parameter can only be changed when p8409 $=0$.		
Note:	DTC: Digital Time Clock (timer)		
	RTC: Real-time clock		

r8413.0...	BO: RTC DTC1 output / RTC DTC1 output			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and binector output for the output of time switch 1 (DTC1).			
	Where a weekday is de-activated, the following applies (p8410):			
	- The binector output for this timer is inactive (r8413.0 = 0).			
	Where a weekday is activated, the following applies (p8410):			
	- The ON/OFF time setting (p8411, p8412) for this timer has an instant effect on the binector output (r8413).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Timer on	Yes	No	-
	01 Timer ON negated	No	Yes	-
Dependency:	Refer to: p8409, p8410, p8411, p8412			
Notice:	This parameter can only be changed when p8409 $=0$.			
Note:	DTC: Digital Time Clock (timer)			
	RTC: Real-time clock			
p8420[0...6]	RTC DTC2 weekday of activation / RTC DTC2 day act			
	Access level: 3	Calculated: -	Data type: Integer16	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0	1	0	
Description:	Sets the weekday on which timer 2 is activated (DTC2).			
	The switch-on/off time is set in p8421/p8422 and the result displayed via binector output r8423.			
Value:	0: Weekday de-activated 1: Weekday activated			
Index:	[0] = Monday			
	$\begin{aligned} & {[0]=\text { Monday }} \\ & {[1]=\text { Tuesday }} \end{aligned}$			
	[2] = Wednesday			
	[3] = Thursday			
	[4] = Friday			
	[5] = Saturday			
	[6] = Sunday			
Dependency:	Refer to: p8409, p8421, p8422, r8423			
Notice:	This parameter can only be changed when p8409 $=0$.			
Note:	DTC: Digital Time Clock (timer)			
	RTC: Real-time clock			
p8421[0...1]	RTC DTC2 switch-on time / RTC DTC2 t_ON			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0	59	0	
Description:	Sets the switch on time in hours and minutes for time switch 2 (DTC2).			
	BO: r8423 = 1 signal:			
	The condition for the set weekday (p8420) and switch-on time has been fulfilled.			
Index:	$\begin{aligned} & {[0]=\operatorname{Hour}(0 \ldots 23)} \\ & {[1]=\text { Minute }(0 \ldots 59)} \end{aligned}$			
Dependency:	Refer to: p8409, p8420, r8423			
Notice:	This parameter can only be changed when $\mathrm{p} 8409=0$.			

2.2 List of parameters

Note:	DTC: Digital Time Clock (timer)
	RTC: Real-time clock

p8422[0...1]	RTC DTC2 off time / RTC DTC2 t_OFF		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	59	0
Description:	Sets the switch off time in hours and minutes for time switch 2 (DTC2). BO: r8423 $=0$ signal:		
Index:	$\begin{aligned} & {[0]=\operatorname{Hour}(0 \ldots 23)} \\ & {[1]=\text { Minute }(0 \ldots 59)} \end{aligned}$		
Dependency:	Refer to: p8409, p8420, r8423		
Notice:	This parameter can only be changed when p8409 $=0$.		
Note:	DTC: Digital Time Clock (timer)		
	RTC: Real-time clock		

r8423.0...	BO: RTC DTC2 output / RTC DTC2 output		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description:	Display and binector output for the output of timer 2 (DTC2).				
	Where a weekday is de-activated, the following applies (p8420):				
	- The binector output for this timer is inactive (r8423.0 = 0).				
	Where a weekday is activated, the following applies (p8420):				
	- The ON/OFF time setting (p8421, p8422) for this timer has an instant effect on the binector output (r8423).				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Timer on	Yes	No	-
	01	Timer ON negated	No	Yes	-

Dependency: Refer to: p8409, p8420, p8421, p8422
Notice: \quad This parameter can only be changed when $\mathrm{p} 8409=0$.
Note: DTC: Digital Time Clock (timer)

RTC: Real-time clock

p8430[0...6]	RTC DTC3 weekday of activation / RTC DTC3 day act		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the weekday on which timer 3 is activated (DTC3).		
	The switch-on/off time is set in p8431/p8432 and the result displayed via binector output r8433.		
Value:	0 : Weekday de-activated 1: Weekday activated		
Index:			
	[1] = Tuesday		
	[2] = Wednesday		
	[3] = Thursday		
	[4] = Friday		
	[5] = Saturday		
	[6] = Sunday		

Dependency:	Refer to: p8409, p8431, p8432, r8433
Notice:	This parameter can only be changed when p8409 = 0.
Note:	DTC: Digital Time Clock (timer)
	RTC: Real-time clock

p8431[0...1]	RTC DTC3 switch-on time / RTC DTC3 t_ON		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	59	0
Description:	Sets the switch on time in hours and minutes for timer 3 (DTC3).		
	BO: r8433 = 1 signal:		
	The condition for the set weekday (p 8430) and switch-on time has been fulfilled.		
Index:	$\begin{aligned} & {[0]=\operatorname{Hour}(0 \ldots 23)} \\ & {[1]=\text { Minute }(0 \ldots 59)} \end{aligned}$		
Dependency:	Refer to: p8409, p8430, r8433		
Notice:	This parameter can only be changed when p8409 $=0$.		
Note:	DTC: Digital Time Clock (timer)		
	RTC: Real-time clock		

p8432[0...1]	RTC DTC3 off time / RTC DTC3 t_OFF		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	59	0

Description:	Sets the switch off time in hours and minutes for timer 3 (DTC3).
	BO: $\mathrm{r} 8433=0$ signal:
	The condition for the set weekday (p8430) and switch-off time has been fulfilled.
Index:	$[0]=$ Hour $(0 \ldots 23)$
	$[1]=$ Minute $(0 \ldots 59)$
Dependency:	Refer to: p8409, p8430, r8433
Notice:	This parameter can only be changed when p8409 = 0.
Note:	DTC: Digital Time Clock (timer)
	RTC: Real-time clock

r8433.0... 1

BO: RTC DTC3 output / RTC DTC3 output

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: -	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
-	-	
Display and binector output for the output of timer 3 (DTC3).		
Where a weekday is de-activated, the following applies (p8430):		
- The binector output for this timer is inactive (r8433.0 = 0).		
Where a weekday is activated, the following applies (p8430):		
- The ON/OFF time setting (p8431, p8432) for this timer has an instant effect on the binector output (r8433).		

Bit field:

Dependency: Refer to: p8409, p8430, p8431, p8432
Bit Signal name 1 signal

0 signal FP
00 Timer on Yes No
01 Timer ON negated No Yes

Notice: \quad This parameter can only be changed when $\mathrm{p} 8409=0$.

2.2 List of parameters

Note:	DTC: Digital Time Clock (timer)
	RTC: Real-time clock

r8570[0...39]	Macro drive object / Macro DO		
	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description: Displays the macro file saved in the appropriate directory on the memory card/device memory.
Dependency: Refer to: p0015

Note: \quad For a value $=9999999$, the following applies: The read operation is still running.

r8571[0...39]	Macro Binector Input (BI) / Macro BI		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
	-	-	
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Note:	For a value = 9999999, the following applies: The read operation is still running.		

r8572[0...39]	Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
	-	-	
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Dependency:	Refer to: p1000		
Note:	For a value $=9999999$, the following applies: The read operation is still running.		

r8573[0...39]	Macro Connector Inputs (CI) for torque setpoints / Macro CI M_set		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
	-	-	
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Note:	For a value $=9999999$, the following applies: The read operation is still running.		

r8585	Macro execution actual / Macro executed	
	Access level: 3	Calculated: -
	Can be changed: -	Scaling: -
	Units group: -	Unit selection: -
	Min	Max
	-	-
Description:	Displays the macro currently being executed on the drive object.	
Dependency:	Refer to: p0015, p1000, r8570, r8571, r8572, r8573	

r8600	CAN device type / Device type		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays all of the devices connected to the CAN bus after run-up.r8600		
	$=00000000$ hex: No drive recognized.		
	= 02010192 hex: 1 Vector drive		
Note:	Corresponds to the CANopen object 1000 hex.		
	For each detected drive, the device type is displayed in object 67FF hex.		
r8601	CAN error register / Error register		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
		Max	Factory setting
	-	-	-
Description:	Displays the error register for CANopen.		
	Bit 0: Generic error.		
	0 signal: No error present.		
	1 signal: Generic error present.		
	Bit $1 . .3$ 3: Not supported (always a 0 signal).		
	Bit 4: Communications error.		
	0 signal: There is no message in the range $8700 \ldots 8799$.		
	1 signal: There is at least one message (fault or alarm) in the range $8700 \ldots 8799$.		
	Bit 5 ... 6: Not supported (always a 0 signal).		
	Bit 7:; Fault outside the range $8700 . .8799$.		
	0 signal: There is no fault outside the range $8700 \ldots 8799$.		
	1 signal: There is at least one fault outside the range $8700 \ldots 8799$.		
Note:	Corresponds to the CANopen object 1001 hex.		
p8602	CAN SYNC object / SYNC object		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0080 hex
Description:	Sets the SYNC object parameter for the following CANopen objects:$\text { - } 1005 \text { hex: COB-ID }$		
Note:	SINAMICS operates as SYNC load.		
	COB-ID: CAN object identification		
p8603	CAN COB-ID Emergency Message / COB-ID EMCY Msg		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the COB-ID for the emergency message (error telegram).		

2.2 List of parameters

It corresponds to the CANopen objects:

- 1014 hex: COB-ID

Note: If, when downloading, the pre-set value 0 is downloaded, then the CANopen pre-set value 80 hex + Node-ID is automatically set.
Online, the value 0 is rejected as, according to the CANopen Standard, COB-ID 0 is not permitted here.
The changeover of the node ID using the hardware switch at the Control Unit or per software has no effect on the COB-ID EMCY. The saved value remains effective.

p8606	CAN Producer Heartbeat Time / Prod Heartb Time	
CU230P-2_CAN	Access level: 3 Calculated: -	Data type: Unsigned16
	Can be changed: T Scaling: -	Dyn. index: -
	Units group: - Unit selection: -	Func. diagram: -
	Min Max	Factory setting
	0 [ms] 65535 [ms]	0 [ms]
Description:	Sets the time [ms] to cyclically send heartbeat telegrams.	
	The smallest cycle is 100 ms .	
	For p8606 = 0, heartbeat telegrams are not sent.	
Dependency:	Refer to: p8604	
Note:	Corresponds to the CANopen object 1017 hex.	
	Activating the heartbeat protocol automatically deactivates the node	

r8607[0...3]	CAN Identity Object / Identity object	
CU230P-2_CAN	Access level: 3 Calculated: -	Data type: Unsigned32
	Can be changed: - Scaling: -	Dyn. index: -
	Units group: - Unit selection: -	Func. diagram: -
	Min Max	Factory setting
	-	-
Description:	General device information display.	
Index:	[0] = Vendor ID [1] = Product code [2] = Revision number [3] = Serial number	
Note:	Corresponds to the CANopen object 1018 hex.	
	Re index 3:	
	The SINAMICS serial number comprises 60 bits.	
	Of these bits, the following are displayed in this index:	
	Bits $0 . . .19$: Consecutive number	

Bits 20 ... 23: Production ID

- 0 hex: Development
- 1 hex: P1 unique number
- 2 hex: P2 unique number
-3 hex: WA unique number
- 9 hex: Pattern
- F hex: All others

Bits 24 ... 27: Month of manufacture (0 means January, B means December)
Bits 28 ... 31: Year of manufacture (0 means 2002)

p8608[0..1]	CAN Clear Bus Off Error / Clear bus off err		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	As a result of a Bus Off error, the CAN controller is set into the initialization state.		
	Index 0:		
	The CAN controller is manually started after resolving the cause of the error with $\mathrm{p} 8608[0]=1$.		
	Index 1:		
	The automatic CAN bus start function is activated using p8608[1] $=1$.		
	At 2 second intervals, the CAN controller is automatically restarted until the cause of the error has been resolved and a CAN connection has been established.		
Value:	0: Inactive		
Index:	[0] = Manual controller start function [1] = Activating the automatic controller start function		
Note:	Re index 0 :		
	This parameter is automatically reset to 0 after start.		
p8609[0..1]	CAN Error Behavior / Error behavior		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	1
Description:	Sets the behavior of the CAN node referred to the communications error or equipment fault.		
Value:	$\begin{array}{ll}0: & \text { Pre-operational } \\ \text { 1: } & \text { No change } \\ \text { 2: } & \text { Stopped }\end{array}$		
Index:	[0] = Behavior for communication errors		
Note:	Corresponds to the CANopen object 1029 hex.		
r8610[0...1]	CAN First Server SDO / First server SDO		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	
Description:	Displays the identifier (client/server and server/client) of the SDO channel.		
Index:	[0] = COB-ID from the client to the server [1] = COB-ID from the server to the client		
Note:	Corresponds to the CANopen object 1200 hex.		

2.2 List of parameters

For p0014 = 0, the following applies:
Before a changed setting becomes permanently effective, a non-volatile RAM to ROM data save is required. To do this, set p0971 = 1 or p0014 $=1$.
Note: Every node ID change only becomes effective after a POWER ON.
The active node ID is displayed in r8621.
The parameter is not influenced by setting the factory setting.
It is only possible to independently set CANopen node ID and the PROFIBUS address using p0918 and p8620 (prerequisite: the address 0 is set for the address switch).

r8621	CAN Node-ID active / Node ID active		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the active CANopen Node ID.		
Dependency:	Refer to: p8620		
p8622	CAN bit rate / Bit rate		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	7	6
Description:	Setting the bit rate for the CAN bus.		
	The appropriate bit timings are selected that are defined in p8623 in the associated sub-index.		
	Example:		
	Bit rate $=20 \mathrm{kbit} / \mathrm{s}$--> p8622 $=6$--> associated bit timing is in p8623[6].		
Value:	0 : 1 Mbit/s		
	1: $800 \mathrm{kbit} / \mathrm{s}$		
	2: $\quad 500 \mathrm{kbit} / \mathrm{s}$		
	3: $\quad 250 \mathrm{kbit/} / \mathrm{s}$		
	4: $\quad 125 \mathrm{kbit} / \mathrm{s}$		
	5: $50 \mathrm{kbit} / \mathrm{s}$		
	6: $20 \mathrm{kbit} / \mathrm{s}$		
	7: $10 \mathrm{kbit/s}$		
Dependency:	Refer to: p8623		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when $\mathrm{r} 3996=0$.		
	For p0014 $=0$, the following applies:		
	Before a changed setting becomes permanently effective, a non-volatile RAM to ROM data save is required. To do this, set p0971 $=1$ or p0014 $=1$.		
Note:	The parameter is not	etting the factory se	

2.2 List of parameters

p8623[0...7]	CAN Bit Timing selection / Bit timing select		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	000F 7FFF hex	[0] 1405 hex
			[1] 1605 hex
			[2] 1C05 hex
			[3] 1COB hex
			[4] 1C17 hex
			[5] 1C3B hex
			[6] 0002 1C15 hex
			[7] 0004 1C2B hex
Description:	Sets the bit timing for the C_CAN controller to the associated and selected bit rate (p8622).		
	Bits are distributed to the following parameters of the C_CAN controller in p8623[0...7]:		
	Bit 0 ... 5: BRP (Baud Rate Prescaler)		
	Bit 6 ... 7: SJW (Synchronization Jump Width)		
	Bit $8 . . .11$: TSEG1 (Time Segment 1, before the sampling point)		
	Bit $12 . . .14$: TSEG2 (Time Segment 2, after the sampling point)		
	Bit 15: Reserved		
	Bit 16 ... 19: BRPE (Baud Rate Prescaler Extension)		
	Bit $20 . . .31$: Reserved		
	Example:		
	Bit rate $=20 \mathrm{kbit} / \mathrm{s}$--> p8622 $=6$--> associated bit timing is in p8623[6] --> 0001 2FB6		
Recommend.: Index:	Use the factory setting when setting the bit timing.		
	[0] $=1 \mathrm{Mbit} / \mathrm{s}$		
	$[1]=800 \mathrm{kbit} / \mathrm{s}$		
	[2] $=500 \mathrm{kbit} / \mathrm{s}$$[3]=250 \mathrm{kbit} / \mathrm{s}$		
	[4] $=125 \mathrm{kbit} / \mathrm{s}$		
	[5] $=50 \mathrm{kbit} / \mathrm{s}$		
	$\text { [6] = } 20 \mathrm{kbit} / \mathrm{s}$$[7]=10 \mathrm{kbit} / \mathrm{s}$		
Dependency:	Refer to: p8622		
Note:	The parameter is not influenced by setting the factory setting.		
p8630[0...2]	CAN virtual objects / Virtual objects		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	0
Description:	Activating access to parameters via manufacturer-specific CANopen objects and setting for the subindex area (index 1) and the parameter area (index 2) when using virtual objects.		
	This means that it is possible to access all SINAMICS parameters via CAN.		
	Index 0:		
	0 : Not possible to access virtual CANopen objects		
	1: Possible to access virtual CANopen objects		
	Index 1 (sub-index area):		
	0: 0 ... 255		
	1: 256 ... 511		
	2: 512 ... 767		
	3: 768 ... 1023		

	Index 2 (parameter area):		
	0: $1 . . .9999$		
	1: 10000 ... 19999		
	2: 20000 ... 29999		
	3: 30000 ... 39999		
Index:	[0] = Drive object number		
	[1] = Sub-index range		
	[2] = Parameter range		
p8641	CAN Abort Connection Option Code / Abort con opt code		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	3
Description:	Sets the drive behavior if a CAN communication error occurs.		
Value:	0: No response		
	1: OFF1		
	2: OFF2		
	3: OFF3		
r8680[0...36]	CAN Diagnosis Hardware / Diagnostics HW		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	-
Description:	Displays the register of the CAN controller C_CAN:		
	Register, Message Interface Register and Message Handler Register - referred to the CAN protocol.		
Index:	[0] = Control register		
	[1] = Status register		
	[2] = Error counter		
	[3] = Bit timing register		
	[4] = Interrupt register		
	[5] = Test register		
	[6] = Baud rate prescaler extension register		
	[7] = Interface 1 command request register		
	[8] = Interface 1 command mask register		
Note:	A description of the individual registers of the C_CAN controller can be taken from "C_CAN User's Manual".		
p8684	CAN NMT state after booting / NMT state aft boot		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	4	127	127
Description: Sets the CANopen NMT s		Sets the CANopen NMT state that is effective after booting.	
Value:	4: Stopped 5: Operational 127: Pre-operational		
Dependency:	Refer to: p8685		
Note:	Booting in the NMT state pre-operational corresponds to the CANopen standard		

p8685	CAN NMT states / NMT states		
CU230P-2_CAN	Calculated: -		
	Access level: 3	Scaling: -	Data type: Integer16

p8707[0...1]	CAN Receive PDO 8 / Receive PDO 8		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	8000 06DF hex	[0] 8000 06DF hex [1] 00FE hex
Description: Index:	Sets the communication parameters for CANopen Receive Process Data Object 8 (RPDO 8).$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \end{aligned}$		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Note:	Corresponds to the CANop Transmission types 0, 1, FE PDO: Process Data Object	1407 hex. an be set.	

p8710[0...3]	CAN Receive Mapping for RPDO 1/Mapping RPDO 1		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204,9206
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 1 (RPDO 1).		

Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANop Dummy mapping not supp The parameter can only be	1600 hex. line when the associal	870 x is set as invalid.
p8711[0...3]	CAN Receive Mappi	PDO 2 / Mapp	
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204, 9206
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 2 (RPDO 2).		
Index:	$\begin{aligned} & {[0]=\text { Mapped object } 1} \\ & {[1]=\text { Mapped object } 2} \\ & {[2]=\text { Mapped object } 3} \\ & {[3]=\text { Mapped object } 4} \end{aligned}$		
Note:	Corresponds to the CANopen object 1601 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8712[0...3]	CAN Receive Mapping for RPDO 3 / Mapping RPDO 3		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204, 9206
	Min	FFFF FFFF hex	0000 hex
	0000 hex		
	Sets the mapping parameters for CANopen Receive Process Data Object 3 (RPDO 3).		
Description:	$[0]=$ Mapped object 1		
Index:	$[1]=$ Mapped object 2		
	$[2]=$ Mapped object 3		
	$[3]=$ Mapped object 4		
	Corresponds to the CANopen object 1602 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8713[0...3]	CAN Receive Mapping for RPDO 4 / Mapping RPDO 4		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204, 9206
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 4 (RPDO 4).		
Index:	$[0]=$ Mapped object 1 $[1]=$ Mapped object 2 $[2]=$ Mapped object 3 $[3]=$ Mapped object 4		
Note:	Corresponds to the CANopen object 1603 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8714[0...3]	CAN Receive Mapping for RPDO 5 / Mapping RPDO 5		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 5 (RPDO 5).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1604 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8715[0...3]	CAN Receive Mapping for RPDO 6 / Mapping RPDO 6		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 6 (RPDO 6).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1605 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8716[0...3]	CAN Receive Mapping for RPDO 7 / Mapping RPDO 7		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 7 (RPDO 7).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] $=$ Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1606 hex.		
	Dummy mapping not supported.		
	The parameter can only be written online when the associated COB ID in p870x is set as invalid.		

p8717[0...3]	CAN Receive Mapping for RPDO 8 / Mapping RPDO 8		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Receive Process Data Object 8 (RPDO 8).		

Index:	$\begin{aligned} & {[0]=\text { Mapped object } 1} \\ & {[1]=\text { Mapped object } 2} \\ & {[2]=\text { Mapped object } 3} \\ & {[3]=\text { Mapped object } 4} \end{aligned}$
Note:	Corresponds to the CANopen object 1607 hex. Dummy mapping not supported. The parameter can only be written online when the associated COB ID in p870x is set as invalid.
p8720[0...4]	CAN Transmit PDO 1 / Transmit PDO 1
CU230P-2_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: C(3), T Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: 9208, 9210 Min Max Factory setting 0000 hex C000 06DF hex [0] C000 06DF hex [1] 00FE hex [2] 0000 hex [3] 0000 hex [4] 0000 hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 1 (TPDO 1). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency:	A valid COB-ID can only be set for the available (existing) channel.
Notice:	For inhibit time and event timer, the following apply: A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note:	Corresponds to the CANopen object 1800 hex. Transmission types $0,1 \ldots$ F0, FE and FF can be set. p2048: CANopen sampling time PDO: Process Data Object
p8721[0...4]	CAN Transmit PDO 2 / Transmit PDO 2
CU230P-2_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: C(3), T Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: 9208, 9210 Min Max Factory setting 0000 hex C000 06DF hex [0] C000 06DF hex [1] 00FE hex [2] 0000 hex [3] 0000 hex [4] 0000 hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 2 (TPDO 2). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency:	A valid COB-ID can only be set for the available (existing) channel.
Notice:	For inhibit time and event timer, the following apply: A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note:	Corresponds to the CANopen object 1801 hex. Transmission types $0,1 \ldots$ F0, FE and FF can be set. p2048: CANopen sampling time PDO: Process Data Object

2.2 List of parameters

p8722[0...4]	CAN Transmit PDO 3 / Transmit PDO 3
CU230P-2_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: $\mathrm{C}(3), \mathrm{T}$ Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: 9208, 9210 Min Max Factory setting 0000 hex C000 06DF hex $[0]$ C000 06DF hex $[1] 00 \mathrm{FE}$ hex $[2] 0000$ hex $[3] 0000$ hex $[4] 000 \mathrm{hex}$
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 3 (TPDO 3). [0] = PDO COB-ID [1] = PDO transmission type [2] = Inhibit time (in $100 \mu \mathrm{~s}$) [3] = Reserved [4] = Event timer (in ms)
Dependency: Notice: Note:	A valid COB-ID can only be set for the available (existing) channel. For inhibit time and event timer, the following apply: A value that is not a multiple integer of the CANopen sampling time is rounded-off. Corresponds to the CANopen object 1802 hex. Transmission types $0,1 \ldots$ F0, FE and FF can be set. p2048: CANopen sampling time PDO: Process Data Object
p8723[0...4]	CAN Transmit PDO 4 / Transmit PDO 4
CU230P-2_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: $\mathrm{C}(3), \mathrm{T}$ Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: 9208, 9210 Min Max Factory setting 0000 hex C000 06DF hex $[0]$ C000 06DF hex $[1] 00 F E$ hex $[2] 0000$ hex $[3] 0000$ hex $[4] 0000$ hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 4 (TPDO 4). [0] = PDO COB-ID [1] = PDO transmission type [2] = Inhibit time (in $100 \mu \mathrm{~s}$) [3] = Reserved [4] = Event timer (in ms)
Dependency: Notice:	A valid COB-ID can only be set for the available (existing) channel. For inhibit time and event timer, the following apply: A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note:	Corresponds to the CANopen object 1803 hex. Transmission types 0,1 ... F0, FE and FF can be set. p2048: CANopen sampling time PDO: Process Data Object

p8724[0...4]	CAN Transmit PDO 5 / Transmit PDO 5
CU230P-2_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: C(3), T Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: 9208 Min Max Factory setting 0000 hex C000 06DF hex [0] C000 06DF hex [1] 00FE hex $[2] 0000$ hex $[3] 0000$ hex $[4] 0000$ hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 5 (TPDO 5). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency: Notice:	A valid COB-ID can only be set for the available (existing) channel. For inhibit time and event timer, the following apply: A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note:	Corresponds to the CANopen object 1804 hex. Transmission types $0,1 \ldots$ F0, FE and FF can be set. p2048: CANopen sampling time PDO: Process Data Object
p8725[0...4]	CAN Transmit PDO 6 / Transmit PDO 6
CU230P-2_CAN	Access level: 3 Calculated: - Data type: Unsigned32 Can be changed: C(3), T Scaling: - Dyn. index: - Units group: - Unit selection: - Func. diagram: 9208 Min Max Factory setting 0000 hex C000 06DF hex [0] C000 06DF hex [1] 00FE hex $[2] 0000$ hex $[3] 0000$ hex $[4] 0000$ hex
Description: Index:	Sets the communication parameters for CANopen Transmit Process Data Object 6 (TPDO 6). $\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission type }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$
Dependency:	A valid COB-ID can only be set for the available (existing) channel.
Notice:	For inhibit time and event timer, the following apply: A value that is not a multiple integer of the CANopen sampling time is rounded-off.
Note:	Corresponds to the CANopen object 1805 hex. Transmission types $0,1 \ldots$ F0, FE and FF can be set. p2048: CANopen sampling time PDO: Process Data Object

2.2 List of parameters

p8726[0...4]	CAN Transmit PDO 7 / Transmit PDO 7		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication parameters for CANopen Transmit Process Data Object 7 (TPDO 7).		
Index:	$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission typ }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$		
Dependency:	A valid COB-ID can only be set for the available (existing) channel.		
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1806 hex.		
	Transmission types $0,1 \ldots$ F0, FE and FF can be set.		
	p2048: CANopen sampling time		
	PDO: Process Data Object		
p8727[0...4]	CAN Transmit PDO 8 / Transmit PDO 8		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	C000 06DF hex	[0] C000 06DF hex
			[1] 00FE hex
			[2] 0000 hex
			[3] 0000 hex
			[4] 0000 hex
Description:	Sets the communication pa	for CANopen Trans	Object 8 (TPDO 8).
Index:	$\begin{aligned} & {[0]=\text { PDO COB-ID }} \\ & {[1]=\text { PDO transmission typ }} \\ & [2]=\text { Inhibit time (in } 100 \mu \mathrm{~s}) \\ & {[3]=\text { Reserved }} \\ & {[4]=\text { Event timer (in ms) }} \end{aligned}$		
Dependency:	A valid COB-ID can only be	e available (existing)	
Notice:	For inhibit time and event timer, the following apply:		
	A value that is not a multiple integer of the CANopen sampling time is rounded-off.		
Note:	Corresponds to the CANopen object 1807 hex.		
	Transmission types 0, $1 \ldots$ F0, FE and FF can be set.		
	p2048: CANopen sampling time		
	PDO: Process Data Object		

p8730[0...3]	CAN Transmit Mapping for TPDO 1 / Mapping TPDO 1		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description: Index:	Sets the mapping paramet [0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4	Nopen Transmit Procer	1 (TPDO 1).
Note:	Corresponds to the CANopen object 1A00 hex.		
p8731[0...3]	CAN Transmit Mapping for TPDO 2 / Mapping TPDO 2		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description: Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A01 hex.		The parameter can only be written online when the associated COB ID in p872x is set as invalid.
p8732[0...3]	CAN Transmit Mapping for TPDO 3 / Mapping TPDO 3		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description: Index:	$\begin{aligned} & {[0]=\text { Mapped object } 1} \\ & {[1]=\text { Mapped object } 2} \\ & {[2]=\text { Mapped object } 3} \\ & {[3]=\text { Mapped object } 4} \end{aligned}$		
Note:	Corresponds to the CANopen object 1A02 hex.		
p8733[0..3]	CAN Transmit Mapping for TPDO 4 / Mapping TPDO 4		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208, 9210
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description: Index:	$\begin{aligned} & {[0]=\text { Mapped object } 1} \\ & {[1]=\text { Mapped object } 2} \\ & {[2]=\text { Mapped object } 3} \\ & {[3]=\text { Mapped object } 4} \end{aligned}$		

2.2 List of parameters

Note:	Corresponds to the CANopen object 1 A03 hex.
The parameter can only be written online when the associated COB ID in p872x is set as invalid.	

p8734[0...3]	CAN Transmit Mapping for TPDO 5 / Mapping TPDO 5		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 5 (TPDO 5).		
Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A04 hex.		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		

p8735[0...3]	CAN Transmit Mapping for TPDO 6 / Mapping TPDO 6		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 6 (TPDO 6).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A05 hex.		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		

p8736[0..3]	CAN Transmit Mapping for TPDO 7 / Mapping TPDO 7		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: $\mathrm{C}(3)$, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 7 (TPDO 7).		
Index:	[0] = Mapped object 1		
	[1] = Mapped object 2		
	[2] = Mapped object 3		
	[3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A06 hex.		
	The parameter can only be written online when the associated COB ID in p872x is set as invalid.		

p8737[0...3]	CAN Transmit Mapping for TPDO 8/Mapping TPDO 8		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(3), T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9208
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the mapping parameters for CANopen Transmit Process Data Object 8 (TPDO 8).		

Index:	[0] = Mapped object 1 [1] = Mapped object 2 [2] = Mapped object 3 [3] = Mapped object 4		
Note:	Corresponds to the CANopen object 1A07 hex.		
p8744	CAN PDO mappin	ation / PDO M	
CU230P-2_CAN	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: C, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9204, 9206, 9208, 9210
	Min	Max	Factory setting
	1	2	2
Description:	Selector switch for the PDO mapping.		
Value:	1: Predefined Connection Set		

r8745[0...15]	CO: CAN free PZD receive objects 16 bit / Free PZD recv 16		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: 4000 H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description: Access to free PZD receive objects 16 bit using the SDO transfer.
An index can only be used, if the corresponding object has not been mapped in a PDO.
Index:
[0] = PZD object 0
[1] = PZD object 1
[2] = PZD object 2
[3] = PZD object 3
[4] = PZD object 4
[5] = PZD object 5
[6] = PZD object 6
[7] = PZD object 7
[8] = PZD object 8
[9] = PZD object 9
[10] = PZD object 10
[11] = PZD object 11
[12] = PZD object 12
[13] = PZD object 13
[14] = PZD object 14
[15] = PZD object 15
Note: Index 0 corresponds to the CANopen object 5800 hex Index 1 corresponds to the CANopen object 5801 hex Index 2 corresponds to the CANopen object 5802 hex Index 3 corresponds to the CANopen object 5803 hex Index 4 corresponds to the CANopen object 5804 hex Index 5 corresponds to the CANopen object 5805 hex Index 6 corresponds to the CANopen object 5806 hex Index 7 corresponds to the CANopen object 5807 hex Index 8 corresponds to the CANopen object 5808 hex Index 9 corresponds to the CANopen object 5809 hex Index 10 corresponds to the CANopen object 580A hex Index 11 corresponds to the CANopen object 580B hex Index 12 corresponds to the CANopen object 580C hex Index 13 corresponds to the CANopen object 580D hex Index 14 corresponds to the CANopen object 580E hex Index 15 corresponds to the CANopen object 580F hex

2.2 List of parameters

2.2 List of parameters

r8751[0...15]	CAN mapped 16-bit transmit objects / TPDO 16 mapped		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays mapped 16-bit transmit CANopen objects in the process data buffer.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12...15] = Reserved		
Dependency:	Refer to: r8750		

r8760[0...14]	CAN mapped 32-bit receive objects / RPDO 32 mapped		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the mapped 32-bit receive CANopen objects in the process data buffer.		
Index:	[0] = PZD $1+2$		
	[1] = PZD $2+3$		
	[2] $=$ PZD $3+4$		
	[3] $=$ PZD $4+5$		
	[4] = PZD $5+6$		
	[5] = PZD $6+7$		
	[6] = PZD $7+8$		
	[7] = PZD $8+9$		
	[8] = PZD $9+10$		
	[9] = PZD 10 + 11		
	[10] = PZD $11+12$		
	[11...14] = Reserved		

r8761[0...14] CAN mapped 32-bit transmit objects / TPDO 32 mapped
CU230P-2_CAN

Description:
Displays mapped 32-bit transmit CANopen objects in the process data buffer.
Index:
[0] = PZD $1+2$
[1] = PZD $2+3$
[2] $=$ PZD $3+4$
[3] = PZD $4+5$
[4] $=$ PZD $5+6$
[5] $=$ PZD $6+7$
[6] = PZD $7+8$
[7] = PZD $8+9$
[8] = PZD $9+10$

r8797[0]	CO: CAN profile torque mode I16 setpoints / Pr Tq mod I16 set		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: 4000H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Display and connector output to interconnect standardized I16 setpoint CANopen objects of the profile torque mode for SDO transfer.		
	An index can only be used, if the corresponding object has not been mapped in a PDO.		
Index:	[0] = Target torque		
Note:	Re index 0 :		
	Corresponds to the CANopen object 6071 hex.		
	The displayed parameter value is scaled via the reference torque p2003:		
	4000 hex corresponds to p2003		
p8798[0..1]	CAN speed conversion factor / n_conv_factor		
CU230P-2_CAN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	4294967295	1
Description:	The factor converts the required velocity units into the internal velocity units (U/s).		
	With the factory setting, for CANopen, the velocity units are increments/second.		
	The parameter corresponds to the CANopen object 6094 hex.		
	The internal velocity is calculated as follows:		
	n_set_internal $=$ object $6094.1 /$ object 6094.2 * 1/(p0408 * $\left.2^{\wedge} \mathrm{p} 0418\right)$ * n_set_bus		
Index:	[0] = Counter		
	[1] = Denominator		
p8805	Identification and maintenance 4 configuration / I\&M 4 config		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the configuration for the content of identification and maintenance 4 (I\&M 4, p8809).		
Value:	0: \quad Standard value for I\&M 4 (p8809) 1: \quad User value for I\&M 4 (p8809)		
Dependency:	For $\mathrm{p} 8805=0$, if the user writes at least one value in p8809[0. .53], then p 8805 is automatically set to $=1$. When p8805 is reset $=0$, then the content of the factory setting is set in p8809.		
Note:	Re p8805 = 0:		
	PROFINET I\&M 4 (p8809) contains the information for the SI change tracking.		
	Re p8805 = 1:		
	PROFINET I\&M 4 (p8809) contains the values written by the user.		

p8806[0...53] Identification and Maintenance 1 / I\&M 1

CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
Description:	-	Parameters for the PROFINET data set "Identification and Maintenance 1" (I\&M 1).	
	This information is known as "System identifier" and "Location identifier".		

Dependency:	Refer to: p8807, p8808
Notice:	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.
	Re p8806[0...31]:
	System identifier.
	Re p8806[32...53]:
	Location identifier.

p8807[0...15]	Identification and Maintenance 2 / I\&M 2		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 2" (I\&M 2). This information is known as "Installation date".		
Dependency:	Refer to: p8806, p8808		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. Re p8807[0...15]:		
	Dates of installation or first commissioning of the (ASCII) device with the following format options. YYYY-MM-DD		
	or		
	YYYY-MM-DD hh:mm		
	- YYYY: year		
	- MM: month $01 . . .12$		
	- DD: day $01 . .31$		
	- hh: hours $00 \ldots 23$		
	- mm: minutes $00 \ldots 59$		
	Separators must be pla	he individual data,	ace ' ' and colon ' $:$ '.

p8808[0..53]	Identification and Maintenance 3 / I\&M 3		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 3" (I\&M 3). This information is known as "Supplementary information".		
Dependency:	Refer to: p8806, p8807		
Notice:	Only characters belonging to the standard ASCII character set may be used (32 dec to 126 dec).		
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual. Re p8808[0...53]: Any supplementary information and comments (ASCII).		

p8809[0...53]	Identification and Maintenance 4/I\&M 4		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	11111111 bin	Factory setting
	0000 bin	0000 bin	
Description:	Parameters for the PROFINET data set "Identification and Maintenance 4" (I\&M 4).		
	This information is known as "Signature".		

2.2 List of parameters


```
r8859[3] = 0
r8859[4] = 1300 --> first part, firmware version V13.00 (second part, see index 7)
r8859[5] = 2011 --> year 2011
r8859[6] = 2306 --> 23rd June
r8859[7] = 1700 --> second part, firmware version (complete version: V13.00.17.00)
```

r8909	PN device ID / PN device ID	
CU230P-2_PN	Access level: 3 Calculated: - Can be changed: - Scaling: - Units group: - Unit selection: - Min Max - -	Data type: Unsigned16 Dyn. index: - Func. diagram: - Factory setting
Description:	Displays the PROFINET Device ID. Every SINAMICS device type has its own PROFINET Device ID and its ow	PROFINET GSD.
Note:	List of the SINAMICS Device IDs: 0501 hex: S120/S150 0504 hex: G130/G150 050A hex: DC MASTER 050C hex: MV 050F hex: G120P 0510 hex: G120C 0511 hex: G120 CU240E-2 0512 hex: G120D 0513 hex: G120 CU250S-2 Vector 0514 hex: G110M	
p8920[0...239]	PN Name of Station / PN Name Stat	
CU230P-2_PN	Access level: 3 Calculated: - Can be changed: U, T Scaling: - Units group: - Unit selection: - Min Max	Data type: Unsigned8 Dyn. index: - Func. diagram: - Factory setting
Description:	Sets the station name for the onboard PROFINET interface on the Control The active station name is displayed in r 8930 .	
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting. PN: PROFINET	ist Manual.
p8921[0...3]	PN IP address of station / PN IP of stat	
CU230P-2_PN	Access level: 3 Calculated: - Can be changed: U, T Scaling: - Units group: - Unit selection: - Min Max 0 255	Data type: Unsigned8 Dyn. index: - Func. diagram: - Factory setting 0
Description:	Sets the IP address for the onboard PROFINET interface on the Control Unit. The active IP address is displayed in r8931.	
Note:	The interface configuration (p8920 and following) is activated with p8925. The parameter is not influenced by setting the factory setting.	

p8922[0...3]	PN Default Gateway of Station / PN Def Gateway		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Sets the default gateway for the onboard PROFINET interface on the Control Unit. The active default gateway is displayed in r8932.		
Note:	The interface configuration (p8920 and following) is activated with p8925.		
	The parameter is not influenced by setting the factory setting.		
p8923[0...3]	PN Subnet Mask of Station / PN Subnet Mask		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Sets the subnet mask for the onboard PROFINET interface on the Control Unit. The active subnet mask is displayed in r8933.		
Note:	The interface configuration (p8920 and following) is activated with p8925.		
	The parameter is not influenced by setting the factory setting.		
p8924	PN DHCP Mode / PN DHCP Mode		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	0
Description:	Sets the DHCP mode for the onboard PROFINET interface on the Control Unit. The active DHCP mode is displayed in r8934.		
Notice:	When the DHCP mode is active ($\mathrm{p} 8924>0$), then PROFINET communication via this interface is no longer possible However, the interface can be used by the STARTER/SCOUT commissioning tool.		
Note:	The interface configuration (p8920 and following) is activated with p8925.		
	The active DHCP mode is displayed in parameter r 8934.		
	The parameter is not influenced by setting the factory setting.		
	If value $=0$:		
	DHCP deactivated.		
	If value $=1$:		
	Reserved.		
	If value $=2$:		
	DHCP activated. The MAC address of this interface is used for client identification.		
	If value $=3$:		
	PN interface configuration / PN IF config		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	0
Description:	Setting to activate the in p8925 is automatically s	uration for the onb end of the operatio	terface on the Control U

| Value: | $0: \quad$ No function |
| :--- | :--- | :--- |
| | $1: \quad$ Reserved |
| | $2: \quad$ Save and activate configuration |
| Notice: | $3: \quad$ Delete configuration |
| | When the DHCP mode is active (p8924 > 0), then PROFINET communication via this interface is no longer possible! |
| Note | However, the interface can be used by the STARTER/SCOUT commissioning tool. |
| | Re p8925 = $2:$ |
| | The interface configuration (p8920 and following) is saved and activated after the next POWER ON. |
| | Re p8925 = 3: |
| | The factory setting of the interface configuration is loaded after the next POWER ON. |

r8930[0...239]	PN Name of Station active / PN Name Stat act		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description: Displays the active station name for the onboard PROFINET interface on the Control Unit.

r8931[0...3]	PN IP Address of Station active / PN IP of Stat act		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the active IP address for the onboard PROFINET interface on the Control Unit.		
r8932[0...3]	PN Default Gateway of Station active / PN Def Gateway act		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	255	Factory setting
Description:	Displays the active default gateway for the onboard PROFINET interface on the Control Unit.		

r8933[0...3]	PN Subnet Mask of Station active / PN Subnet Mask act		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the active subnet mask for the onboard PROFINET interface on the Control Unit.		

r8934	PN DHCP Mode active / PN DHCP Mode act		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	255	Factory setting
Description:	0	Displays the active DHCP mode for the onboard PROFINET interface on the Control Unit.	
Notice:	When the DHCP mode is active (parameter value greater than 0), PROFINET communication via this interface is no		
	longer possible! However, the interface can be used for commissioning tool such as STARTER or SCOUT.		

2.2 List of parameters

If value $=0:$
DHCP deactivated.
If value $=2:$
DHCP activated. The MAC address of this interface is used for client identification.
If value $=3:$

DHCP activated. The station name of this interface is used for client identification.

r8935[0...5]	PN MAC Address of Station / PN MAC of Station		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	00FF hex	-
Description:	Displays the MAC address for the onboard PROFINET interface on the Control Unit.		

p8981	Ethernet/IP ODVA STOP mode / Eth/IP ODVA STOP		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the STOP mode for the Ethernet/IP ODVA profile (p8980 = 1).		
Value:	0: OFF1		
Dependency:	Refer to: p8980		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p8982	Ethernet/IP ODVA speed scaling / Eth/IP ODVA n scal		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	123	133	128
Description: Value:	Sets the scaling for the speed for Ethernet/IP ODVA profile (p8980 = 1).		
	123: 32		
	124: 16		
	125: 8		
	126: 4		
	127: 2		
	128: 1		
	129: 0.5		
	130: 0.25		
	131: 0.125		
	132: 0.0625		
	133: 0.03125		
Dependency: Refer to: p8980			
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p8983	Ethernet/IP ODV	aling / Eth/IP O	
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	123	133	128
Description:	Sets the scaling for the torque for Ethernet/IP ODVA profile (p8980 = 1).		
	123: 32		
Value:	124: 16		
	125: 8		
	126: 4		
	127: 2		
	128: 1		
	129: 0.5		
	130: 0.25		
	131: 0.125		
	132: 0.0625		
	133: 0.03125		
Dependency:	Refer to: p8980		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		

2.2 List of parameters

p8991	USB memory access / USB mem acc		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	2	1
Description:	Selects the storage medium for access via the USB mass storage.		
Value:	1: Memory card		
Note:	A change only becomes effective after a POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p8999	USB functionality / USB Fct		
	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	3	3
Description:	Setting the USB functionality.		
Value:	1: USS commissioning via the virtual COM port Only memory access USB commissioning and memory access		
Note:	COMM: Commissioning.		
	A change only becomes effective after a POWER ON.		
	The parameter is not influenced by setting the factory setting.		

r9401	Safely remove memory card status / Mem_card rem stat					
	Acce	ess level: 2	Calculated		Data type: U	
	Can	be changed: -	Scaling: -		Dyn. index:	
	Unit	group: -	Unit selec	ion: -	Func. diagr	
	Min		Max		Factory sett	
	-		-		-	
Description:	Displays the status of the memory card.					
Bit field:		Signal name		1 signal	0 signal	FP
		Memory card		Yes	No	-
		Memory card		Yes	No	-
		SIEMENS me		Yes	No	-
		Memory card from the PC	ge medium	Yes	No	-
Dependency: Note:	Refer to: p9400					
	Re bit 01, 00:					
	Bit 1/0 $=0 / 0$: No memory card inserted (corresponds to p9400 $=0$).					
	Bit 1/0 = 0/1: "Safe removal" possible (corresponds to p9400 = 3).					
	Bit $1 / 0=1 / 0$: Status not possible.					
	Bit $1 / 0=1 / 1$: Memory card inserted (corresponds to p9400 $=1,2,100$).					
	Re bit 02, 00:					
	Bit 2/0 = 0/0: No memory card inserted.					
	Bit 2/0 $=0 / 1$: Memory card inserted, but not a SIEMENS memory card.					
	Bit $2 / 0=1 / 0$: Status not possible.					
	Bit $2 / 0=1 / 1$: SIEMENS memory card inserted.					
r9406[0...19]	PS file parameter number parameter not transferred / PS par_no n transf					
	Access level: 4		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dyn. index:	
	Units group: -		Unit selec	ion: -	Func. diagr	
	Min		Max		Factory sett	
			-		-	
Description:	Displays the parameters that were not able to be transferred when reading the parameter back-up files (PS files) from the non-volatile memory (e.g. memory card).					
	r9406[0] = 0					
	--> All of the parameter values were able to be transferred error-free.					
	$\mathrm{r} 9406[0 \ldots \mathrm{x}]>0$					
	--> indicates the parameter number in the following cases:					
	- parameter, whose value was not able to be completely accepted.					
	- indexed parameter, where at least 1 index was not able to be accepted. The first index that is not transferred is displayed in r9407.					
Dependency:	Refer to: r9407, r9408					
Note:	All indices from r9406 to r9408 designate the same parameter.					
	r9406[x] parameter number, parameter not accepted					
	r9407[x] parameter index, parameter not accepted					
	r9408[x] fault code, parameter not accepted					
r9407[0...19]	PS file parameter index parameter not transferred / PS parameter index					
	Access level: 4		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min				Factory setting	
	-					
Description:	Displays the first index of the parameters that could not be transferred when the parameter backup files (PS files) were read from the non-volatile memory (e.g. memory card).					

2.2 List of parameters

	If, from an indexed parameter, at least one index was not able to be transferred, then the parameter number is displayed in $\mathrm{r} 9406[\mathrm{n}]$ and the first index that was not transferred is displayed in $\mathrm{r} 9407[\mathrm{n}]$.
	r9406[0] = 0
	--> All of the parameter values were able to be transferred error-free.
	r9406[n] > 0
	--> Displays r9407[n] the first index of the parameter number r9406[n] that was not transferred.
Dependency:	Refer to: r9406, r9408
Note:	All indices from r9406 to r9408 designate the same parameter.
	r9406[x] parameter number, parameter not accepted
	r9407[x] parameter index, parameter not accepted
	r9408[x] fault code, parameter not accepted

r9408[0...19]	PS file fault code parameter not transferred / PS fault code		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description: Only for internal Siemens service purposes
Dependency: Refer to: r9406, r9407
Note: \quad All indices from r9406 to r9408 designate the same parameter.
r9406[x] parameter number, parameter not accepted
r9407[x] parameter index, parameter not accepted
r9408[x] fault code, parameter not accepted

r9409	Number of parameters to be saved/ Qty par to save		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of modified parameters and those that have still not be saved for this drive object.		
Dependency:	Refer to: 00971		
Notice:	Inherent to the system, the list of the parameters to be backed up is empty after the following actions: - Download		
	- Warm restart		
	- Factory setting		
	In these cases, a new parameter backup must be initiated, which is then the starting point for the list of modified parameters.		
Note:	The modified parameters that still need to be saved are internally listed in r9410 ... r9419.		

r9451[0...29]	Units changeover adapted parameters / Unit_chngov par		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
Description:	-	-	-
	Displays the parameters whose parameter would have to be changed during a units changeover.		

2.2 List of parameters

Note: \quad The directory and name of the file is displayed in the ASCII code.

r9926	Firmware check status / FW check status		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status when the firmware is checked when the system is booted.		
	0 : Firmware not yet checked.		
	1: Check running.		
	2: Check successfully completed.		
	3: Check indicates an error.		
Dependency:	Refer to: r9925		
p9930[0...8]	System logbook activation / SYSLOG activation		
	Access level: 4	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Only for service purposes.		
Index:	[0] = System logbook sta [1] = COM2/COM1 (0: C [2] = Activate file write (0: [3] = Display time stamp [4...7] = Reserved [8] = System logbook file	tive) M1) ayed) , each 10 kB)	
Notice:	Before powering down th If writing to the file is act Control Unit (p9930[2] =	it, ensure that the [2] = 1), writing to ensure that the sy	switched out (p9930[0] = activated again before been completely written

p9931[0...179] System logbook module selection / SYSLOG mod select.

Access level: 4	Calculated: -	Data type: Unsigned32
Can be changed: U, T	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0000 hex	FFFF FFFF hex	0000 hex
Only for service purposes.		

Description: Only for service purposes.

p9932	Save system logbook EEPROM / SYSLOG EEPROM save		
	Access level: 4	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Only for service purposes.		

2.2 List of parameters

2.2 List of parameters

Dependency: Note:	Refer to: p11058		
p11058	Free tec_ctrl 0 setpoint ramp-down time / Ftec0 setp t_r-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-down time for the free technology controller 0.		
Dependency:	Refer to: p11057		
Note:	The ramp-down time is referred to 100%.		
r11060	CO: Free tec_ctrl 0 setpoint after ramp-function generator / Ftec0 setp aft RFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_2	Unit selection: p11026	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]

Description: Display and connector output for the setpoint after the ramp-function generator of the free technology controller 0.

p11064	CI: Free tec_ctrl 0 actual value signal source / Ftec0 act v s_s		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the actual value of the free technology controller 0 .		
p11065	Free tec_ctrl 0 actual value smoothing time constant / Ftec0 act v T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	60.00 [s]	0.00 [s]
Description:	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 0 .		
p11067	Free tec_ctrl 0 actual value upper limit / Ftec0 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_2	Unit selection: p11026	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 0.		
Dependency:	Refer to: p11064		

p11068	Free tec_ctrl 0 actual value lower limit / Ftec0 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_2	Unit selection: p11026	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the free technology controller 0 .		
Dependency:	Refer to: p11064		
p11071	Free tec_ctrl 0 actual value inversion / Ftec0 act v inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0	1	0
Description:	Sets the inversion of the actual value signal of the free technology controller 0 .		
Value:	0: No inversion 1: Inversion		
r11072	CO: Free tec_ctrl 0 actual value after limiter / Ftec0 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_2	Unit selection: p11026	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 0 .		
r11073	CO: Free tec_ctrl 0 system deviation / Ftec0 sys dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_2	Unit selection: p11026	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the system deviation of the free technology controller 0.		
p11074	Free tec_ctrl 0 differentiation time constant / Ftec0 D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 0 . Value $=0$: Differentiation is de-activated.		
Note:			
p11080	Free tec_ctrl 0 proportional gain / Ftec0 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 0 . Value $=0$: The proportional gain is de-activated.		
Note:			

p11085	Free tec_ctrl 0 integral time / Ftec0 Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 0 . Value $=0$: The integral time is disabled. If the parameter is set to zero during operation, the I component retains its most recent value.		
Note:			
p11091	CO: Free tec_ctrl 0 limit maximum / Ftec0 lim max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the free technology controller 0 .		
Dependency:			
Note:	The maximum limit must always be greater than the minimum limit (p11091 > p11092).		
p11092	CO: Free tec_ctrl 0 limit minimum / Ftec0 lim min		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the free technology controller 0.		
Dependency:	Refer to: p11091		
Note:	The maximum limit must always be greater than the minimum limit (p11091 > p11092).		
p11093	Free tec_ctrl 0 limit ramp-up/ramp-down time / Ftec0 lim r-u/r-dn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limit (p11091, p11092) of the free technology controller 0 .		
Dependency:	Refer to: p11091, p11092		
Note:	The ramp-up/ramp-down times are referred to 100\%.		
r11094	CO: Free tec_ctrl 0 output signal / Ftec0 out_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the free technology controller 0 .		

p11097	CI: Free tec_ctrl 0 limit maximum signal source / Ftec0 lim max s_s		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	11091[0]
Description:	Sets the signal source for the maximum limit of the free technology controller 0 . Refer to: p11091		
Dependency:			
p11098	CI: Free tec_ctrl 0 limit minimum signal source / Ftec0 lim min s_s		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	11092[0]
Description:	Sets the signal source for the minimum limit of the free technology controller 0 .		
Dependency:	Refer to: p11092		
p11099	CI: Free tec_ctrl 0 limit offset signal source / Ftec0 lim offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the limit offset of the free technology controller 0 .		
p11100	BI: Free tec_ctrl 1 enable / Ftec1 enab		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to switch in/switch out the free technology controller 1. 1 signal: The technology controller is switched in. 0 signal: The technology controller is switched out.		
p11126	Free tec_ctrl 1 unit selection / Ftec1 unit sel		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(5)$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	1	46	1
Description: Value:	Sets the unit for the parameters of the free technology controller 1.		
	1: \%		
	2. 1 referred no dimensions		
	3: bar		
	4: ${ }^{\circ} \mathrm{C}$		
	5: Pa		
	6: $\mathrm{ltr} / \mathrm{s}$		
	7: $\mathrm{m}^{3} / \mathrm{s}$		
	8: $\quad \mathrm{tt} / \mathrm{min}$		
	9: $\quad \mathrm{m}^{3} / \mathrm{min}$		
	$\begin{array}{ll} \text { 10: } & \mathrm{ltr} / \mathrm{h} \\ \text { 11: } & \mathrm{m}^{3} / \mathrm{h} \end{array}$		

2.2 List of parameters

2.2 List of parameters

p11164	CI: Free tec_ctrl 1 actual value signal source / Ftec1 act v s_s		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the actual value of the free technology controller 1.		
p11165	Free tec_ctrl 1 actual value smoothing time constant / Ftec1 act v T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	60.00 [s]	0.00 [s]
Description:	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 1.		
p11167	Free tec_ctrl 1 actual value upper limit / Ftec1 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_3	Unit selection: p11126	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 1.		
Dependency:	Refer to: p11164		
p11168	Free tec_ctrl 1 actual value lower limit / Ftec1 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_3	Unit selection: p11126	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the free technology controller 1.		
Dependency:	Refer to: p 11164		
$\overline{\mathrm{p} 11171}$	Free tec_ctrl 1 actual value inversion / Ftec1 act v inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min		Factory setting
	0	1	0
Description:	Sets the inversion of the actual value signal of the free technology controller 1.		
Value:	0: No inversion 1: Inversion		
r11172	CO: Free tec_ctrl 1 actual value after limiter / Ftec1 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_3	Unit selection: p11126	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 1.		

r11173	CO: Free tec_ctrl 1 system deviation / Ftec1 sys dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_3	Unit selection: p11126	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the system deviation of the free technology controller 1.		
p11174	Free tec_ctrl 1 differentiation time constant / Ftec1 D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 1.		
Note:	Value $=0$: Differentiation is de-activated.		
p11180	Free tec_ctrl 1 proportional gain / Ftec1 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 1.		
Note:	Value $=0$: The proportional gain is de-activated		
p11185	Free tec_ctrl 1 integral time / Ftec1 Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 1. Value $=0$: The integral time is disabled. If the parameter is set to zero during operation, the I component retains its most recent value.		
Note:			
p11191	CO: Free tec_ctrl 1 limit maximum / Ftec1 lim max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the free technology controller 1.		
Dependency:	Refer to: p11192		
Note:	The maximum limit must always be greater than the minimum limit (p11191 > p11192).		

2.2 List of parameters

p11192	CO: Free tec_ctrl 1 limit minimum / Ftec1 lim min		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the free technology controller 1.		
Dependency:	Refer to: p11191		
Note:	The maximum limit must always be greater than the minimum limit (p11191 > p11192).		
p11193	Free tec_ctrl 1 limit ramp-up/ramp-down time / Ftec1 lim r-u/r-dn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limit (p11191, p11192) of the free technology controller 1.		
Dependency:	Refer to: p11191, p11192		
Note:	The ramp-up/ramp-down times are referred to 100\%.		
r11194	CO: Free tec_ctrl 1 output signal / Ftec1 out_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the output signal of the free technology controller 1.		
p11197	CI: Free tec_ctrl 1 limit maximum signal source / Ftec1 lim max s_s		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-		11191[0]
Description:	Sets the signal source for the maximum limit of the free technology controller 1.		
Dependency:	Refer to: p11191		
p11198	CI: Free tec_ctrl 1 limit minimum signal source / Ftec1 lim min s_s		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	11192[0]
Description:	Sets the signal source for the minimum limit of the free technology controller 1. Refer to: p11192		
Dependency:			

p11199	CI: Free tec_ctrl 1 limit offset signal source / Ftec1 lim offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the limit offset of the free technology controller 1.		
p11200	BI: Free tec_ctrl 2 enable / Ftec2 enab		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source to switch in/switch out the free technology controller 2.		
	0 signal: The technology controller is switched out.		
p11226	Free tec_ctrl 2 unit selection / Ftec2 unit sel		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C (5)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	1	46	1
Description:	Sets the unit for the parameters of the free technology controller 2.		
Value:	1: \%		
	2: $\quad 1$ referred no dimensions		
	$\begin{array}{ll}\text { 3: } & \text { bar } \\ \text { 4: } & { }^{\circ} \mathrm{C}\end{array}$		
	5: Pa		
	6: $\mathrm{ltr} / \mathrm{s}$		
	7: $\mathrm{m}^{3} / \mathrm{s}$		
	8: $\mathrm{ltr} / \mathrm{min}$		
	9: $\quad \mathrm{m}^{3} / \mathrm{min}$		
	10: $\mathrm{ltr} / \mathrm{h}$		
	11: $\mathrm{m}^{3} / \mathrm{h}$		
	12: kg / s		
	13: $\mathrm{kg} / \mathrm{min}$		
	14: $\quad \mathrm{kg} / \mathrm{h}$		
	15: $\quad \mathrm{t} / \mathrm{min}$		
	16: t/h		
	17: N		
	18: kN		
	$\text { 19: } \quad \mathrm{Nm}$		
	20: psi		
	21: ${ }^{\circ} \mathrm{F}$		
	22: gallon/s		
	23: inch ${ }^{3} / \mathrm{s}$		
	24: gallon/min		
	25: \quad inch ${ }^{3} / \mathrm{min}$		
	26: gallon/h		
	27: $\mathrm{inch}^{3} / \mathrm{h}$		
	28: lb / s		
	29: lb/min		
	30: lb/h		
	31: lbf		
	32: lbf ft		

2.2 List of parameters

p11253	CI: Free tec_ctrl 2 setpoint signal source / Ftec2 setp s_src		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint of the free technology controller 2.		
p11257	Free tec_ctrl 2 setpoint ramp-up time / Ftec2 setp t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-up time for the free technology controller 2.		
Dependency:	Refer to: p11258		
Note:	The ramp-up time is referred to 100%.		
p11258	Free tec_ctrl 2 setpoint ramp-down time / Ftec2 setp t_r-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-down time of the free technology controller 2.		
Dependency:	Refer to: p11257		
Note:	The ramp-down time is referred to 100%.		
$\overline{\mathbf{r 1 1 2 6 0}}$	CO: Free tec_ctrl 2 setpoint after ramp-function generator / Ftec2 setp aft RFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_4	Unit selection: p11226	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]		
Description:	Display and connector output for the setpoint after the ramp-function generator of the free technology controller 2.		
p11264	CI: Free tec_ctrl 2 actual value signal source / Ftec2 act v s_s		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
Description:	Sets the signal source for the actual value of the free technology controller 2.		
p11265	Free tec_ctrl 2 actual value smoothing time constant / Ftec2 act v T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	60.00 [s]	0.00 [s]
Description:	Sets the smoothing time constant (PT1) for the actual value of the free technology controller 2.		

p11267	Free tec_ctrl 2 actual value upper limit / Ftec2 act v up lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_4	Unit selection: p11226	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the free technology controller 2. Refer to: p11264		
Dependency:			
p11268	Free tec_ctrl 2 actual value lower limit / Ftec2 act v lo lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_4	Unit selection: p11226	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the free technology controller 2. Refer to: p11264		
Dependency:			
p11271	Free tec_ctrl 2 actual value inversion / Ftec2 act vinv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0	1	0
Description:	Sets the inversion of the	signal of the free technolo	
Value:	0 : \quad No inversion 1: Inversion		
r11272	CO: Free tec_ctrl 2 actual value after limiter / Ftec2 act v af lim		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_4	Unit selection: p11226	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector output for the actual value after the limiter of the free technology controller 2.		
r11273	CO: Free tec_ctrl 2 system deviation / Ftec2 sys dev		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_4	Unit selection: p11226	Func. diagram: 7030
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Display and connector o	system deviation of the fre	y controller 2.
p11274	Free tec_ctrl 2 differentiation time constant / Ftec2 D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the differentiation (D component) of the free technology controller 2. Value $=0$: Differentiation is de-activated.		
Note:			

p11280	Free tec_ctrl 2 proportional gain / Ftec2 Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the free technology controller 2.		
Note:	Value $=0$: The proportional gain is de-activated.		
p11285	Free tec_ctrl 2 integral time / Ftec2 Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the free technology controller 2. Value $=0$: The integral time is disabled. If the parameter is set to zero during operation, the I component retains its most recent value.		
Note:			
p11291	CO: Free tec_ctrl 2 limit maximum / Ftec2 lim max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the free technology controller 2.		
Dependency:	Refer to: p11292		
Note:	The maximum limit must always be greater than the minimum limit (p11291 > p11292).		
p11292	CO: Free tec_ctrl 2 limit minimum / Ftec2 lim min		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the free technology controller 2.		
Dependency:	Refer to: p11291		
Note:	The maximum limit must always be greater than the minimum limit (p11291 > p11292).		
p11293	Free tec_ctrl 2 limit ramp-up/ramp-down time / Ftec2 lim r-u/r-dn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling:	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7030
	Min	Max	Factory setting
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramp-up and ramp-down time for the maximum and minimum limit (p11291, p11292) of the free technology controller 2.		
Dependency:	Refer to: p11291, p11292		
Note:	The ramp-up/ramp-down times are referred to 100%.		

2.2 List of parameters

2.2 List of parameters

$[2]=$ Input 12
$[3]=$ Input 13

r20035	BO: AND 1 output Q / AND 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10$ \& 11 \& 12 \& 3 of instance AND 1 of the AND function block.		
p20036	AND 1 run-time group / AND 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance AND 1 of the AND function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20037	AND 1 run sequence / AND 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	0	32000	20
Description:	Setting parameter for the run sequence of instance AND 1 within the run-time group set in p20036.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20038[0...3]	BI: AND 2 inputs / AND 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12, \mathrm{I} 3$ of instance AND 2 of the AND function block.		
Index:	[0] = Input 10		
	[1] = Input I1		
	$\begin{aligned} & {[2]=\text { Input } 12} \\ & {[3]=\text { Input } 13} \end{aligned}$		
r20039	BO: AND 2 output Q / AND 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10$ \& 11 \& 12 \& 13 of instance AND 2 of the AND function block.		

2.2 List of parameters

p20049	OR O run sequence / OR O RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	0	32000	60
Description:	Setting parameter for the run sequence of instance OR 0 within the run-time group set in p20048.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20050[0...3]	BI: OR 1 inputs / OR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities IO, I1, I2, I3 of instance OR 1 of the OR function block.$[0]=\text { Input } 10$		
	[1] = Input 11		
	[2] = Input 12		
	[3] = Input 33		
r20051	BO: OR 1 output Q / OR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10\|11\| 12 \mid 13$ of instance OR 1 of the OR function block.		

p20052	OR 1 run-time group / OR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance OR 1 of the OR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20053	OR 1 run sequence / OR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	0	32000	70
Description:	Setting parameter for the run sequence of instance OR 1 within the run-time group set in p20052.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20054[0...3]	BI: OR 2 inputs / OR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance OR 2 of the OR function block.		
Index:	$[0]=$ Input 10		
	$[1]=$ Input I1		
	$[2]=$ Input 12		
	$[3]=$ Input I3		

r20055	BO: OR 2 output Q / OR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10\|11\| 12 \mid 13$ of instance OR 2 of the OR function block.		

p20056	OR 2 run-time group / OR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	1		
Description:	Setting parameter for the run-time group in which the instance OR 2 of the OR function block is to be called.		
Value:	$1:$	Run-time group 1	
	$2:$	Run-time group 2	
	$3:$	Run-time group 3	
	$4:$	Run-time group 4	
	$5:$	Run-time group 5	
	$6:$	Run-time group 6	
	$9999:$	Do not calculate	

p20057	OR 2 run sequence / OR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	32000	Factory setting
	0	80	
Description:	Setting parameter for the run sequence of instance OR 2 within the run-time group set in p20056.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20058[0...3]	BI: OR 3 inputs / OR 3 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance OR 3 of the OR function block.		
Index:	$[0]=$ Input IO		

2.2 List of parameters

p20064	XOR 0 run-time gro	0 RTG	
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance XOR 0 of the XOR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20065	XOR 0 run sequence / XOR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	110
Description:	Setting parameter for the run sequence of instance XOR 0 within the run-time group set in p20064.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20066[0...3]	BI: XOR 1 inputs / XOR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities $10,11, I 2, I 3$ of instance XOR 1 of the XOR function block. [0] = Input 10		
	$[1]=$ Input I1		
	[2] = Input 12		
	[3] = Input 13		
r20067	BO: XOR 1 output Q / XOR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity Q of instance XOR 1 of the XOR function block.		
p20068	XOR 1 run-time group / XOR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	1	9999	9999
Description: Value:	Setting parameter for the run-time group in which the instance XOR 1 of the XOR function block is to be called.		
	$\begin{array}{ll}\text { 1: } & \text { Run-time group } 1 \\ \text { 2: } & \text { Run-time group } 2\end{array}$		

p20073	XOR 2 run sequence / XOR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	130
Description:	Setting parameter for the run sequence of instance XOR 2 within the run-time group set in p20072.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20074[0...3]	BI: XOR 3 inputs / XOR 3 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance XOR 3 of the XOR function block. [0] = Input 10		
	[1] = Input 11		
	[2] = Input 12		
	[3] = Input 13		
r20075	BO: XOR 3 output Q / XOR 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity Q of instance XOR 3 of the XOR function block.		

p20076	XOR 3 run-time group / XOR 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance XOR 3 of the XOR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20077	XOR 3 run sequence / XOR 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	140
Description:	Setting parameter for the run sequence of instance XOR 3 within the run-time group set in p20076.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20078	BI: NOT 0 input I / NOT 0 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity 1 of instance NOT 0 of the inverter.		
r20079	BO: NOT 0 inverted output / NOT 0 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for the inverted output of instance NOT 0 of the inverter.		
p20080	NOT 0 run-time group / NOT 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 0 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20081	NOT 0 run sequence / NOT 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	160
Description:	Setting parameter for	e of instance NOT	me group set in p20080.
Note:	The function blocks sequence value.	sequence value are	function blocks with a higher run
p20082	BI: NOT 1 input I/ NOT 1 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity l of instance NOT 1 of the inverter.		

2.2 List of parameters

r20083	BO: NOT 1 inverted output / NOT 1 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 1 of the inverter.		
p20084	NOT 1 run-time group / NOT 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 1 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20085	NOT 1 run sequence / NOT 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	170
Description:	Setting parameter for the run sequence of instance NOT 1 within the run-time group set in p20084.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20086	BI: NOT 2 input I / NOT 2 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of i	ty I of instance NOT	
r20087	BO: NOT 2 inverted output / NOT 2 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 2 of the inverter.		

p20088	NOT 2 run-time group / NOT 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 2 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20089	NOT 2 run sequence / NOT 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	180
Description:	Setting parameter for the run sequence of instance NOT 2 within the run-time group set in p20088.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20090	BI: NOT 3 input I / NOT 3 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source of input quantity l of instance NOT 3 of the inverter.		
r20091	BO: NOT 3 inverted output / NOT 3 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
		-	-
Description:	Display parameter for the inverted output of instance NOT 3 of the inverter.		
p20092	NOT 3 run-time group / NOT 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description: Value:	Setting parameter for the run-time group in which the instance NOT 3 of the inverter is to be called.		
	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5		

	6: Run-time group 6 9999: Do not calculate		
p20093	NOT 3 run sequence / NOT 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	190
Description:	Setting parameter for the run sequence of instance NOT 3 within the run-time group set in p20092.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20094[0...3]	CI: ADD 0 inputs / ADD 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance ADD 0 of the adder.		
Index:	$[0]=$ Input X0		
	[1] = Input X1		
	[2] = Input X2		
	[3] = Input X3		
r20095	CO: ADD 0 output Y / ADD 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the	ntity $\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2$	ADD 0 of the adder.
p20096	ADD 0 run-time group / ADD 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance ADD 0 of the adder is to be called.		
Value:	5: Run-time group 5		
p20097	ADD 0 run sequence / ADD 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	210
Description:	Setting parameter for the run sequence of instance ADD 0 within the run-time group set in p20096.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

2.2 List of parameters

r20103	CO: SUB 0 difference Y / SUB 0 difference Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the difference $\mathrm{Y}=\mathrm{X} 1-\mathrm{X} 2$ of instance SUB 0 of the subtractor.		
p20104	SUB 0 run-time group / SUB 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance SUB 0 of the subtractor is to be called.		
Value:	5: Run-time group 5		
	$\begin{array}{ll}\text { 6: } & \text { Run-time group 6 } \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20105	SUB 0 run sequence / SUB 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	240
Description:	Setting parameter for the run sequence of instance SUB 0 within the run-time group set in p20104.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20106[0...1]	CI: SUB 1 inputs / SUB 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
Description:	Sets the signal source of minuend X 1 and subtrahend X 2 of instance SUB 1 of the subtractor.		
Index:	$\begin{aligned} & {[0]=\text { Minuend X1 }} \\ & {[1]=\text { Subtrahend X2 }} \end{aligned}$		
r20107	CO: SUB 1 difference Y / SUB 1 difference Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the difference $\mathrm{Y}=\mathrm{X} 1-\mathrm{X} 2$ of instance SUB 1 of the subtractor.		

p20113	MUL O run sequence / MUL O RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	270
Description:	Setting parameter for the run sequence of instance MUL 0 within the run-time group set in p20112.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20114[0...3]	CI: MUL 1 inputs / MUL 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source of the factors X0, X1, X2, X3 of instance MUL 1 of the multiplier.		
Index:	$[0]=$ Factor X0		
	$[1]=$ Factor X1		
	$[2]=$ Factor X2		
	$[3]=$ Factor X3		

r20115	CO: MUL 1 product Y / MUL 1 product Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the product $\mathrm{Y}=\mathrm{X} 0$ * $\mathrm{X} 1{ }^{*} \mathrm{X} 2{ }^{\text {* }} \mathrm{X} 3$ of instance MUL 1 of the multiplier.		

p20116	MUL 1 run-time group / MUL 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance MUL 1 of the multiplier is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20117	MUL 1 run sequence / MUL 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	280
Description:	Setting parameter for the run sequence of instance MUL 1 within the run-time group set in p20116.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

2.2 List of parameters

p20123[0...1]	CI: DIV 1 inputs / DIV 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of dividend X1 and divisor X2 of instance DIV 1 of the divider. [0] = Dividend X0		
Index:			
	[1] = Divisor X1		
r20124[0...2]	CO: DIV 1 quotient / DIV 1 quotient		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for quotients $\mathrm{Y}=\mathrm{X} 1 / \mathrm{X} 2$, integer number quotients YIN , and division remainder MOD $=(\mathrm{Y}-\mathrm{YIN}) \mathrm{x}$ X2 of instance DIV 1 of the divider.		
Index:	$\begin{aligned} & {[0]=\text { Quotient } \mathrm{Y}} \\ & {[1]=\text { Integer number quotient YIN }} \\ & {[2]=\text { Div remainder MOD }} \end{aligned}$		
r20125	BO: DIV 1 divisor is zero QF / DIV 1 divisor=0 QF		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the signal QF that the divisor X2 of instance DIV 1 of the divider is zero.$\mathrm{X} 2=0.0 \Rightarrow \mathrm{QF}=1$		
p20126	DIV 1 run-time group / DIV 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance DIV 1 of the divider is to be called.		
Value:	$\begin{array}{ll}\text { 5: } & \text { Run-time group } 5 \\ \text { 6: } & \text { Run-time group } 6\end{array}$		
	6: Run-time group 6 9999: Do not calculate		
p20127	DIV 1 run sequence / DIV 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	310
Description:	Setting parameter for the run sequence of instance DIV 1 within the run-time group set in p20126.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20128	CI: AVA 0 input X / AVA 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the input quantity X of instance AVA 0 of the absolute value generator with sign evaluation.		
r20129	CO: AVA 0 output Y / AVA 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance AVA 0 of the absolute value generator with sign evaluation.		
r20130	BO: AVA 0 input negative SN / AVA 0 input neg SN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for signal SN that the input quantity X of instance AVA 0 of the absolute value generator with sign evaluation is negative.$X<0.0 \Rightarrow \mathrm{SN}=1$		
p20131	AVA 0 run-time group / AVA 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance AVA 0 of the absolute value generator with sign evaluation is to be called.		
Value:	$\begin{array}{ll} \text { 5: } & \text { Run-time gro } \\ \text { 6: } & \text { Run-time gro } \\ \text { 9999: } & \text { Do not calcul } \end{array}$		
p20132	AVA 0 run sequence / AVA 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	0	32000	340
Description:	Setting parameter for the run sequence of instance AVA 0 within the run-time group set in p20131.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20133	CI: AVA 1 input X / AVA 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the input quantity X of instance AVA 1 of the absolute value generator with sign evaluation.		
r20134	CO: AVA 1 output Y / AVA 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance AVA 1 of the absolute value generator with sign evaluation.		
r20135	BO: AVA 1 input negative SN / AVA 1 input neg SN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
		-	-
Description:	Display parameter for signal SN that the input quantity X of instance AVA 1 of the absolute value generator with sign evaluation is negative.		
p20136	AVA 1 run-time group / AVA 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance AVA 1 of the absolute value generator with sign evaluation is to be called.		
Value:	5: Run-time grou 6: Run-time grou 9999: Do not calcula		
p20137	AVA 1 run sequence / AVA 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	0	32000	350
Description:	Setting parameter for the run sequence of instance AVA 1 within the run-time group set in p20136.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20138	BI: MFP 0 input pulse I/ MFP 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 0 of the pulse generator.		
p20139	MFP 0 pulse duration in ms / MFP 0 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 0 of the pulse generator.		
r20140	BO: MFP 0 output Q / MFP 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for	of instance MFP 0 o	ator.
p20141	MFP 0 run-time group / MFP 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 0 of the pulse generator is to be called		
Value:	6: Run-time group 6 9999: Do not calculate		
p20142	MFP 0 run sequence / MFP 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
Description:	Setting parameter for the run sequence of instance MFP 0 within the run-time group set in p20141.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20143	BI: MFP 1 input pulse I / MFP 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
			0
Description:	Sets the signal source for the input pulse I of instance MFP 1 of the pulse generator.		

p20144	MFP 1 pulse duration in ms / MFP 1 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 1 of the pulse generator.		
r20145	BO: MFP 1 output Q / MFP 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance MFP 1 of the pulse generator.		
p20146	MFP 1 run-time group / MFP 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 1 of the pulse generator is to be called.		
Value:	$\begin{array}{ll}\text { 5: } & \text { Run-time gro } \\ \text { 6: } & \text { Run-time gro } \\ \text { 9999: } & \text { Do not calcul }\end{array}$		
p20147	MFP 1 run sequence / MFP 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	380
Description:	Setting parameter for the run sequence of instance MFP 1 within the run-time group set in p20146.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20148	BI: PCL 0 input pulse I / PCL 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
Description:	Sets the signal sourc	ulse I of instance PC	hortener.
p20149	PCL 0 pulse duration in ms / PCL 0 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PCL 0 of the pulse shortener.		

r20150	BO: PCL 0 output Q / PCL 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PCL 0 of the pulse shortener.		
p20151	PCL 0 run-time group / PCL 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PCL 0 of the pulse shortener is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20152	PCL 0 run sequence / PCL 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	400
Description:	Setting parameter for the run sequence of instance PCL 0 within the run-time group set in p20151.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20153	BI: PCL 1 input pulse I / PCL 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
		-	0
Description:	Sets the signal sourc	ulse I of instance PC	hortener.
p20154	PCL 1 pulse duration in ms / PCL 1 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for	T in milliseconds of	the pulse shortener.
r20155	BO: PCL 1 output Q / PCL 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PCL 1 of the pulse shortener.		

2.2 List of parameters

p20156	PCL 1 run-time group / PCL 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PCL 1 of the pulse shortener is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20157	PCL 1 run sequence / PCL 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	410
Description:	Setting parameter for the run sequence of instance PCL 1 within the run-time group set in p20156.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20158	BI: PDE 0 input pulse I / PDE 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 0 of the closing delay device.		
p20159	PDE 0 pulse delay time in ms / PDE 0 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 0 of the closing delay device.		
r20160	BO: PDE 0 output Q / PDE 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDE 0 of the closing delay device.		
p20161	PDE 0 run-time group / PDE 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 0 of the closing delay device is to be called.		

Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20162	PDE 0 run sequence / PDE 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	430
Description:	Setting parameter for the run sequence of instance PDE 0 within the run-time group set in p20161.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20163	BI: PDE 1 input pulse I / PDE 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for the input pulse I of instance PDE 1 of the closing delay device.		
p20164	PDE 1 pulse delay time in ms / PDE 1 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 1 of the closing delay device.		
r20165	BO: PDE 1 output Q / PDE 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
		Max	Factory setting
		-	-
Description:	Display parameter for output pulse Q of instance PDE 1 of the closing delay device.		
p20166	PDE 1 run-time group / PDE 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 1 of the closing delay device is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20167	PDE 1 run sequence / PDE 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	440
Description:	Setting parameter for the run sequence of instance PDE 1 within the run-time group set in p20166.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20168	BI: PDF 0 input pulse I / PDF 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDF 0 of the breaking delay device.		
p20169	PDF 0 pulse extension time in ms / PDF 0 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 0 of the breaking delay devic		

Description: Setting parameter for the run sequence of instance PDF 0 within the run-time group set in p20171.

p20178[0...1]	BI: PST 0 inputs / PST 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for input pulse I and the reset input R of instance PST 0 of the pulse extension element. [0] = Input pulse \|		
	[1] = Reset input R		
p20179	PST 0 pulse duration in ms / PST 0 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PST 0 of the pulse extension element.		
r20180	BO: PST 0 output Q / PST 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PST 0 of the pulse extension element.		
p20181	PST 0 run-time group / PST 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PST 0 of the pulse extension element is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20182	PST 0 run sequence / PST 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	0	7999	490
Description:	Setting parameter for the run sequence of instance PST 0 within the run-time group set in p20181.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20188[0...1]	BI: RSR 0 inputs / RSR 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for set input S and reset input R of instance RSR 0 of the RS flipflop.$\begin{aligned} & {[0]=\text { Set S }} \\ & {[1]=\text { Reset R }} \end{aligned}$		
Index:			
r20189	BO: RSR 0 output Q / RSR 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance RSR 0 of the RS flipflop		
r20190	BO: RSR 0 inverted output QN / RSR 0 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for	QN of instance RS	
p20191	RSR 0 run-time group / RSR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance RSR 0 of the RS flipflop is to be called.		
Value:	1: Run-time grou		
	2: Run-time grou		
	3: Run-time grou		
	4: Run-time grou		
	5: Run-time grou		
	6: Run-time grou		
	9999: Do not calcula		
p20192	RSR 0 run sequence / RSR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	7999	520
Description:	Setting parameter for the run sequence of instance RSR 0 within the run-time group set in p20191.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20193[0...1]	BI: RSR 1 inputs / RSR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for set input S and reset input R of instance RSR 1 of the RS flipflop.$[0]=\text { Set S }$		
Index:			
	[1] = Reset R		
r20194	BO: RSR 1 output Q / RSR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance RSR 1 of the RS flipflop		
r20195	BO: RSR 1 inverted output QN / RSR 1 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for inverted output QN of instance RSR 1 of the RS flipflop.		
p20196	RSR 1 run-time group / RSR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance RSR 1 of the RS flipflop is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20197	RSR 1 run sequence / RSR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	7999	530
Description:	Setting parameter for the run sequence of instance RSR 1 within the run-time group set in p20196.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20198[0...3]	BI: DFR 0 inputs / DFR 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source for trigger input I, D input D, set input S, and reset input R of instance $D F R 0$ of the D flipflop.$\begin{aligned} & {[0]=\text { Trigger input I }} \\ & {[1]=\text { D input D }} \\ & {[2]=\text { Set S }} \\ & {[3]=\text { Reset R }} \end{aligned}$		
r20199	BO: DFR 0 output Q / DFR 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance DFR 0 of the D flipflop.		
r20200	BO: DFR 0 inverted output QN / DFR 0 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
		-	
Description:	Display parameter for the inverted output QN of instance DFR 0 of the D flipflop.		
p20201	DFR 0 run-time group / DFR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance DFR 0 of the D flipflop is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20202	DFR 0 run sequence / DFR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	32000	550
Description:	Setting parameter for the run sequence of instance DFR 0 within the run-time group set in p20201.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20203[0...3]	BI: DFR 1 inputs / DFR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source for trigger input I, D input D, set input S, and reset input R of instance $D F R 1$ of the D flipflop.$\begin{aligned} & {[0]=\text { Trigger input I }} \\ & {[1]=\text { D input D }} \\ & {[2]=\text { Set S }} \\ & {[3]=\text { Reset R }} \end{aligned}$		
r20204	BO: DFR 1 output Q / DFR 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance DFR 1 of the D flipflop.		
r20205	BO: DFR 1 inverted output QN / DFR 1 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for the inverted output QN of instance DFR 1 of the D flipflop.		
p20206	DFR 1 run-time group / DFR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance DFR 1 of the D flipflop is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20207	DFR 1 run sequence / DFR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	32000	560
Description:	Setting parameter for the run-time group of instance DFR 1 within the run-time group set in p20206.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20208[0...1]	BI: BSW 0 inputs / BSW 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities 10 and $I 1$ of instance BSW 0 of the binary changeover switch$\begin{aligned} & {[0]=\text { Input } 10} \\ & {[1]=\text { Input I1 }} \end{aligned}$		
Index:			
p20209	BI: BSW 0 switch setting I/ BSW 0 sw_setting		
	Access level: 3	Calculated:-	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source	etting I of instance	y changeover switch.
r20210	BO: BSW 0 output Q / BSW 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for	Q of instance BSW	angeover switch.
p20211	BSW 0 run-time group / BSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance BSW 0 of the binary changeover switch is to be called.		
Value:	1: Run-time grou		
	2: Run-time grou		
	3: Run-time grou		
	4: Run-time grou		
	5: Run-time grou		
	6: Run-time grou		
	9999: Do not calcula		
p20212	BSW 0 run sequence / BSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	0	7999	580
Description:	Setting parameter for the run sequence of instance BSW 0 within the run-time group set in p20211.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20218[0...1]	CI: NSW 0 inputs / NSW 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $\mathrm{X0}$ and X 1 of instance NSW 0 of the numeric changeover switch.$[0]=\text { Input } X 0$		
	[1] = Input X1		
p20219	BI: NSW 0 switch setting I/ NSW 0 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the switch setting I of instance NSW 0 of the numeric changeover switch.		
r20220	CO: NSW 0 output Y / NSW 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for	Y of instance NSW 0	changeover switch.
p20221	NSW 0 run-time group / NSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NSW 0 of the numeric changeover switch is to be called.		
Value:	5: Run-time grou		
	6: Run-time grou		
	9999: Do not calcula		
p20222	NSW 0 run sequence / NSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	0	32000	610
Description:	Setting parameter for the run sequence of instance NSW 0 within the run-time group set in p20221.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

2.2 List of parameters

p20228	CI: LIM 0 input X / LIM 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance LIM 0 of the limiter.		
p20229	LIM 0 upper limit value LU / LIM 0 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for the upper limit value LU of instance LIM 0 of the limiter.		
p20230	LIM 0 lower limit value LL / LIM 0 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for	alue LL of instance LIM	
r20231	CO: LIM 0 output Y / LIM 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the limited output quantity Y of instance LIM 0 of the limiter.		
r20232	BO: LIM 0 input quantity at the upper limit QU / LIM 0 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 0 of limiter QU (upper limit reached), i.e. $Q U=1$ for $\mathrm{X}>=\mathrm{LU}$.		
r20233	BO: LIM 0 input quantity at the lower limit QL / LIM 0 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 0 of limiter QL (lower limit reached), i.e. $\mathrm{QL}=1$ for $\mathrm{X}<=\mathrm{LL}$.		

p20234	LIM 0 run-time group / LIM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LIM 0 of the limiter is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20235	LIM 0 run sequence / LIM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	0	32000	640
Description:	Setting parameter for the run sequence of instance LIM 0 within the run-time group set in p20234.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20236	CI: LIM 1 input X / LIM 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance LIM 1 of the limiter.		
p20237	LIM 1 upper limit value LU / LIM 1 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235 E36	0.0000
Description:	Setting parameter for the upper limit value LU of instance LIM 1 of the limiter.		
p20238	LIM 1 lower limit value LL / LIM 1 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the lower limit value LL of instance LIM 1 of the limiter.		
r20239	CO: LIM 1 output Y / LIM 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the limited output quantity Y of instance LIM 1 of the limiter.		

2.2 List of parameters

r20240	BO: LIM 1 input quantity at the upper limit QU / LIM 1 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 1 of limiter QU (upper limit reached), i.e. $\mathrm{QU}=1$ for $\mathrm{X}>=\mathrm{LU}$.		
r20241	BO: LIM 1 input quantity at the lower limit QL / LIM 1 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 1 of limiter QL (lower limit reached), i.e. $\mathrm{QL}=1$ for $\mathrm{X}<=\mathrm{LL}$.		
p20242	LIM 1 run-time group / LIM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LIM 1 of the limiter is to be called.		
Value:	$\begin{array}{ll}\text { 5: } & \text { Run-time group 5 } \\ \text { 6: } & \text { Run-time group 6 } \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20243	LIM 1 run sequence / LIM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	0	32000	650
Description:	Setting parameter for the run sequence of instance LIM 1 within the run-time group set in p20242. The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
Note:			
p20244[0...1]	CI: PT1 0 inputs / PT1 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantity X and of setting value SV of instance PT1 0 of the smoothing element$\begin{aligned} & {[0]=\text { Input X }} \\ & {[1]=\text { Setting value SV }} \end{aligned}$		

p20245	BI: PT1 0 accept setting value S / PT1 0 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the "accept setting value" signal of instant PT1 0 of the smoothing element.		
p20246	PT1 0 smoothing time constant in ms / PT1 0 T_smooth ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0.00	340.28235E36	0.00
Description:	Sets the smoothing time constant T in milliseconds of instance PT1 0 of the smoothing element.		
r20247	CO: PT1 0 output Y / PT1 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for	output quantity Y of inst	the smoothing element.
p20248	PT1 0 run-time group / PT1 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PT1 0 of the smoothing element is to be called.		
Value:	6: Run-time group 6 9999: Do not calculate		
p20249	PT1 0 run sequence / PT1 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0	32000	
Description:	Setting parameter for the run sequence of instance PT1 0 within the run-time group set in p20248.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20250[0...1]	CI: PT1 1 inputs / PT1 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source of input quantity X and of setting value SV of instance PT1 1 of the smoothing element.		

2.2 List of parameters

Index:	$[0]=\operatorname{Input} X$
	$[1]=$ Setting value SV

p20251	BI: PT1 1 accept setting value S / PT1 1 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the "accept setting value" signal of instant PT1 1 of the smoothing element.		

p20252	PT1 1 smoothing time constant in ms / PT1 1 T_smooth ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0.00	$340.28235 E 36$	0.00
Description:	Sets the smoothing time constant T in milliseconds of instance PT1 1 of the smoothing element.		

r20253	CO: PT1 1 output Y / PT1 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	-

Description: Display parameter for the smoothed output quantity Y of instance PT1 1 of the smoothing element.

p20254	PT1 1 run-time group / PT1 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PT1 1 of the smoothing element is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20255	PT1 1 run sequence / PT1 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0	32000	680
Description:	Setting parameter for the run sequence of instance PT1 1 within the run-time group set in p20254.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20256[0...1]	CI: INT 0 inputs / INT 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantity X and of setting value SV of instance INT 0 of the integrator.$\begin{aligned} & {[0]=\text { Input X }} \\ & {[1]=\text { Setting value SV }} \end{aligned}$		
p20257	INT 0 upper limit value LU / INT 0 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the upper limit value LU of instance INT 0 of the integrator.		
p20258	INT 0 lower limit value LL / INT 0 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the lower limit value LL of instance INT 0 of the integrator.		
p20259	INT 0 integrating time constant in ms / INT 0 T_Integr ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	0.00	340.28235E36	0.00
Description:	Sets the integrating time constant Ti in milliseconds of instance INT 0 of the integrator.		
p20260	BI: INT 0 accept setting value S / INT 0 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
			0
Description:	Sets the signal source	setting value" signal of	of the integrator.
r20261	CO: INT 0 output Y / INT 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance INT 0 of the integrator. If $L L>=L U$, then the output quantity $Y=L U$.		

2.2 List of parameters

p20273	LVM 0 run-time group / LVM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LVM 0 of the double-sided limiter is to be called.		
Value:	5: Run-time group 5		
	$\begin{array}{ll}\text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20274	LVM 0 run sequence / LVM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	0	7999	720
Description:	Setting parameter for the run sequence of instance LVM 0 within the run-time group set in p20273.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20275	CI: LVM 1 input X / LVM 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance LVM 1 of the double-sided limiter.		
p20276	LVM 1 interval average value M / LVM 1 avg value M		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the interval average M of instance LVM 1 of the double-sided limiter.		
p20277	LVM 1 interval limit L / LVM 1 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for	L of instance LVM 1 of	ded limiter.
p20278	LVM 1 hyst HY / LVM 1 hyst HY		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for hysteresis HY of instance LVM 1 of the double-sided limiter.		

2.2 List of parameters

p20284	CI: DIF 0 input X / DIF 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance DIF 0 of the differentiating element.		
p20285	DIF 0 differentiating time constant in ms / DIF 0 T_diff ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	0.00	340.28235 E 36	0.00
Description:	Sets the differentiating time constant Td in milliseconds of instance DIF 0 of the differentiating element.		
r20286	CO: DIF 0 output Y / DIF 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance DIF 0 of the differentiating element.		
p20287	DIF 0 run-time group / DIF 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance DIF 0 of the differentiating element is to be called.		
Value:	$\begin{array}{ll}\text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20288	DIF 0 run sequence / DIF 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	0		750
Description:	Setting parameter for the run sequence of instance DIF 0 within the run-time group set in p20287.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20300	BI: NOT 4 input I / NOT 4 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source of input quantity l of instance NOT 4 of the inverter.		

r20301	BO: NOT 4 inverted output / NOT 4 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 4 of the inverter.		
p20302	NOT 4 run-time group / NOT 4 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 4 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20303	NOT 4 run sequence / NOT 4 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	770
Description:	Setting parameter for the run sequence of instance NOT 4 within the run-time group set in p20302.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20304	BI: NOT 5 input I/ NOT 5 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of i	ty I of instance NOT	
r20305	BO: NOT 5 inverted output / NOT 5 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 5 of the inverter.		

2.2 List of parameters

p20306	NOT 5 run-time group / NOT 5 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 5 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20307	NOT 5 run sequence / NOT 5 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	780
Description:	Setting parameter for the run sequence of instance NOT 5 within the run-time group set in p20306.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20308[0...3]	CI: ADD 2 inputs / ADD 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	0	
Description:	Sets the signal source of input quantities $X 0, X 1, X 2, X 3$ of instance ADD 2 of the adder.		
Index:	$[0]=$ Input $X 0$		
	$[1]=$ Input $X 1$		
	$[2]=$ Input $X 2$		
	$[3]=$ Input $X 3$		

r20309	CO: ADD 2 output Y / ADD 2 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	-	Factory setting
	-	-	
Description:	Display parameter for the output quantity $Y=X 0+X 1+X 2+X 3$ of instance ADD 2 of the adder.		

p20310	ADD 2 run-time group / ADD 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance ADD 2 of the adder is to be called.		

Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20311	ADD 2 run sequence / ADD 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	800
Description:	Setting parameter for the run sequence of instance ADD 2 within the run-time group set in p20310.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20312[0...1]	CI: NCM 0 inputs / NCM 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities XO and X 1 of instance NCM 0 of the numeric comparator.$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		
r20313	BO: NCM 0 output QU / NCM 0 output QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QU of instance NCM 0 of the numeric comparator. QU is only set if $\mathrm{X0} 0 \mathrm{X} 1$.		
r20314	BO: NCM 0 output QE / NCM 0 output QE		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QE of instance NCM 0 of the numeric comparator. QE is only set if $\mathrm{X0}=\mathrm{X} 1$.		
r20315	BO: NCM 0 output QL / NCM 0 output QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QL of instance NCM 0 of the numeric comparator. QL is only set if $\mathrm{XO}<\mathrm{X} 1$.		

p20316	NCM 0 run-time group / NCM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NCM 0 of the numeric comparator is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20317	NCM 0 run sequence / NCM 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	0	32000	820
Description:	Setting parameter for the run sequence of instance NCM 0 within the run-time group set in p20316.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20318[0...1]	CI: NCM 1 inputs / NCM 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $\mathrm{X0}$ and X 1 of instance NCM 1 of the numeric comparator.		
Index:	[0] = Input X0		
	[1] = Input X1		
r20319	BO: NCM 1 output QU / NCM 1 output QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QU of instance NCM 1 of the numeric comparator. QU is only set if $\mathrm{X0} 0 \mathrm{X} 1$.		

r20320	BO: NCM 1 output QE / NCM 1 output QE		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	-	Factory setting
Description:	-	-	
	Display parameter for binary quantity QE of instance NCM 1 of the numeric comparator.		
	QE is only set if X0 = X1.		

2.2 List of parameters

r20326	BO: RSR 2 inverted output QN / RSR 2 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for inverted output QN of instance RSR 2 of the RS flipflop.		
p20327	RSR 2 run-time group / RSR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance RSR 2 of the RS flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	$\begin{array}{ll}\text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20328	RSR 2 run sequence / RSR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	7999	850
Description:	Setting parameter for the run sequence of instance RSR 2 within the run-time group set in p20327.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20329[0...3]	BI: DFR 2 inputs / DFR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
		-	0
Description: Index:	Sets the signal source for trigger input I, D input D, set input S, and reset input R of instance $D F R 2$ of the D flipflop		
	$[1]=\mathrm{D}$ input D		
	[2] $=$ Set S		
	[3] = Reset R		
r20330	BO: DFR 2 output Q / DFR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance DFR 2 of the D flipflop.		

r20331	BO: DFR 2 inverted output QN / DFR 2 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output QN of instance DFR 2 of the D flipflop.		
p20332	DFR 2 run-time group / DFR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance DFR 2 of the D flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20333	DFR 2 run sequence / DFR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	32000	870
Description:	Setting parameter for the run-time group of instance DFR 2 within the run-time group set in p20332.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20334	BI: PDE 2 input pulse I / PDE 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source for	Ise I of instance PD	delay device.
p20335	PDE 2 pulse delay time in ms / PDE 2 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 2 of the closing delay device.		

2.2 List of parameters

r20336	BO: PDE 2 output Q / PDE 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDE 2 of the closing delay device.		
p20337	PDE 2 run-time group / PDE 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 2 of the closing delay device is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6		
p20338	PDE 2 run sequence / PDE 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	890
Description:	Setting parameter for the run sequence of instance PDE 2 within the run-time group set in p20337.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20339	BI: PDE 3 input pulse I / PDE 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal sourc	ulse I of instance PD	delay device.
p20340	PDE 3 pulse delay time in ms / PDE 3 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 3 of the closing delay device.		
r20341	BO: PDE 3 output Q / PDE 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PDE 3 of the closing delay device.		

p20342	PDE 3 run-time group / PDE 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 3 of the closing delay device is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20343	PDE 3 run sequence / PDE 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	900
Description:	Setting parameter for the run sequence of instance PDE 3 within the run-time group set in p20342.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20344	BI: PDF 2 input pulse I / PDF 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDF 2 of the breaking delay device.		
p20345	PDF 2 pulse extension time in ms / PDF 2 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 2 of the breaking delay device.		
r20346	BO: PDF 2 output Q / PDF 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for	of instance PDF 2	ay device.
p20347	PDF 2 run-time group / PDF 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PDF 2 of the breaking delay device is to be called.		

2.2 List of parameters

Value:	$\begin{array}{ll} \text { 5: } & \text { Run-time group } 5 \\ \text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate } \end{array}$		
p20348	PDF 2 run sequenc	RunSeq	
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0	32000	920
Description:	Setting parameter for the	ce of instance PDE	e group set in p20347.
Note:	The function blocks with a sequence value.	equence value are	function blocks with a higher run
p20349	BI: PDF 3 input puls	3 inp_pulse I	
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for	Ise I of instance PD	g delay device.
p20350	PDF 3 pulse extens	in ms / PDF 3	
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for puls	time T in milliseco	F 3 of the breaking delay device.
r20351	BO: PDF 3 output Q	output Q	
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
Description:	Display parameter for outp	of instance PDF 3	ay device.
p20352	PDF 3 run-time gro	$3 \text { RTG }$	
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the	up in which the ins	breaking delay device is to be ca
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20353	PDF 3 run sequence / PDF 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0	32000	930
Description:	Setting parameter for the run sequence of instance PDE 3 within the run-time group set in p20352.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20354	BI: MFP 2 input pulse I / MFP 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 2 of the pulse generator.		
p20355	MFP 2 pulse duration in ms / MFP 2 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for	T in milliseconds of in	the pulse generator.
r20356	BO: MFP 2 output Q / MFP 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for	of instance MFP 2 of	tor.
p20357	MFP 2 run-time group / MFP 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 2 of the pulse generator is to be called		
Value:	5: Run-time grou 6: Run-time grou 9999: Do not calcula		
p20358	MFP 2 run sequence / MFP 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	950

Description: Setting parameter for the run sequence of instance MFP 2 within the run-time group set in p20357.

2.2 List of parameters

Note: \quad| The function blocks with a lower run sequence value are calculated before function blocks with a higher run |
| :--- |
| sequence value. |

p20359	BI: MFP 3 input	3 inp_pulse I	
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal sourc	ulse I of instance MF	enerator.
p20360	MFP 3 pulse du	/ MFP 3 pulse_	
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling:	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for	T in milliseconds of i	the pulse generator.

r20361	BO: MFP 3 output Q / MFP 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	-	Factory setting
	-	-	
Description:	Display parameter for output pulse Q of instance MFP 3 of the pulse generator.		

p20362	MFP 3 run-time group / MFP 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 3 of the pulse generator is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20363	MFP 3 run sequence / MFP 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	960
Description:	Setting parameter for the run sequence of instance MFP 3 within the run-time group set in p20362.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20372	CI: PLI 0 input X / PLI 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for input X of the polyline (20 breakpoints) of instance PLI 0 .		
r20373	CO: PLI 0 output Y / PLI 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
		-	-
Description:	Display parameter for the output quantity Y of the polyline (20 breakpoints) of instance PLI 0		
p20374[0...19]	PLI 0 X-coordinate, A breakpoint / PLI 0 X-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description: Index:	Sets the x-coordinates [0] = Breakpoint 0 [1] = Breakpoint 1 [2] = Breakpoint 2 [3] = Breakpoint 3 [4] = Breakpoint 4 [5] = Breakpoint 5 [6] = Breakpoint 6 [7] = Breakpoint 7 [8] = Breakpoint 8 [9] = Breakpoint 9 [10] = Breakpoint 10 [11] = Breakpoint 11 [12] = Breakpoint 12 [13] = Breakpoint 13 [14] = Breakpoint 14 [15] = Breakpoint 15 [16] = Breakpoint 16 [17] = Breakpoint 17 [18] = Breakpoint 18 [19] = Breakpoint 19	oints (A0...A19) of the p	akpoints) of instance PLI 0.
p20375[0...19]	PLI 0 Y-coordinate, B breakpoint / PLI 0 Y-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description: Index:	$\begin{aligned} & {[0]=\text { Breakpoint } 0} \\ & {[1]=\text { Breakpoint } 1} \\ & {[2]=\text { Breakpoint } 2} \\ & {[3]=\text { Breakpoint } 3} \\ & {[4]=\text { Breakpoint } 4} \end{aligned}$		

2.2 List of parameters

	[5] = Breakpoint 5 [6] = Breakpoint 6 [7] = Breakpoint 7 [8] = Breakpoint 8 [9] = Breakpoint 9 [10] = Breakpoint 10 [11] = Breakpoint 11 [12] = Breakpoint 12 [13] = Breakpoint 13 [14] = Breakpoint 14 [15] = Breakpoint 15 [16] = Breakpoint 16 [17] = Breakpoint 17 [18] = Breakpoint 18 [19] = Breakpoint 19		
p20376	PLI 0 run-time group / PLI 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PLI 0 of the polyline is to be called		
Value:	6: Run-time group 6 9999: Do not calculate		
p20377	PLI 0 run sequence / PLI 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	0	32000	980
Description:	Setting parameter for the run sequence of instance PLI 0 within the run-time group set in p20376.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20378	CI: PLI 1 input X / PLI 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal sourc	he polyline (20 breakpo	PLI 1.
r20379	CO: PLI 1 output Y / PLI 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the output quantity Y of the polyline (20 breakpoints) of instance PLI 1		

p20380[0...19]	PLI 1 X-coordin	point / PLI 1 X-co	
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the x -coordinates for the breakpoints (A0...A19) of the polyline (20 breakpoints) of instance PLI 1 .		
Index:	$\begin{aligned} & {[0]=\text { Breakpoint } 0} \\ & {[1]=\text { Breakpoint } 1} \end{aligned}$		
	[2] = Breakpoint 2		
	[3] = Breakpoint 3		
	[4] = Breakpoint 4		
	[5] = Breakpoint 5		
	[6] = Breakpoint 6		
	$[7]=$ Breakpoint 7		
	[8] = Breakpoint 8		
	[9] = Breakpoint 9		
	[10] = Breakpoint 10		
	[11] = Breakpoint 11		
	[12] = Breakpoint 12		
	[13] = Breakpoint 13		
	[14] = Breakpoint 14		
	[15] = Breakpoint 15		
	$\begin{aligned} & {[16]} \\ & {[17]}\end{aligned}=$ Breakpoint 16		
	[18] = Breakpoint 18		
	[19] = Breakpoint 19		
p20381[0...19]	PLI 1 Y-coordinate, B breakpoint / PLI 1 Y-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the y-coordinates for the breakpoints (B0...B19) of the polyline (20 breakpoints) of instance PLI 1.		
Index:	[0] = Breakpoint 0		
	[1] = Breakpoint 1		
	[2] = Breakpoint 2		
	[3] = Breakpoint 3		
	[4] = Breakpoint 4		
	[5] = Breakpoint 5		
	[6] = Breakpoint 6		
	[7] = Breakpoint 7		
	[8] = Breakpoint 8		
	[9] = Breakpoint 9		
	[10] = Breakpoint 10		
	[11] = Breakpoint 11		
	[12] = Breakpoint 12		
	[13] = Breakpoint 13		
	[14] = Breakpoint 14		
	[15] = Breakpoint 15		
	[16] = Breakpoint 16		
	[17] = Breakpoint 17		
	[18] = Breakpoint 18		
	[19] = Breakpoint 19		

2.2 List of parameters

p20382	PLI 1 run-time group / PLI 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PLI 1 of the polyline is to be called		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calcula		
p20383	PLI 1 run sequence / PLI 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	0	32000	990
Description:	Setting parameter for the run sequence of instance PLI 1 within the run-time group set in p20382.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p31020	Multi-zone control interconnection / Zone_ctrl intercon		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Setting for interconnecting multi-zone control		
Value:	0 : Removing the multi-zone control interconnection 1: Interconnecting multi-zone control		
Notice:	When multi-zone control is interconnected, outputs r31024 and r31027 are always connected to index 0 of parameters p2253 and p2264. Any changes made to the command data set (CDS) in p2253 and p2264 are ignored.		
Note:	Re p31020 $=0$:		
	The following BICO interconnections are automatically removed:		
	- p31023[0] = 0		
	- p31023[2] = 0		
	- p31026[0] $=0$		
	- p31026[1] = 0		
	- p2253[0] = 0		
	- p2264[0] = 0		
	Rep31020 = 1:		
	The following BICO interconnections are automatically established:		
	- p31023[0] = r0755[0]		
	- p31023[2] = r0755[1]		
	- p31026[0] = r0755[2]		
	- p31026[1] = r0755[3]		
	- p2253[0] = r31024		
	- p2264[0] = r31027		

Re p31022 = 11:
The highest value of actual values 1, 2, and 3 is used as r31027.

p31023[0...3]	CI: Multi-zone control setpoint input / Zone_ctrl setp inp		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoin
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the multi-zone control setpoints.		
r31024	CO: Multi-zone control setpoint output / Zone_ctrl set outp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the relevant setpoint at the multi-zone control output.		

p31025	BI: Multi-zone control day/night switchover / Zone_ctl day_night		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the day/night multi-zone control switchover.		

p31026[0...2]	CI: Multi-zone control actual-value input / Zon_ctrl act inp		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the multi-zone control actual values.		
r31027	CO: Multi-zone control actual-value output / Zon_ctrl act outp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the relevant actual value at the multi-zone control output.		
r61000[0...239]	PROFINET Name of Station / PN Name of Station		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	-	-	-
Description:	Displays PROFINET Name of Station.		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		

r61001[0...3]	PROFINET IP of Station / PN IP of Station		
CU230P-2_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	-	-	-
Description:	Displays PROFINET IP of Station.		

2.3 Parameters for data sets

2.3.1 Command Data Sets (CDS)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: CDS
p0641[0...n] CI: Current limit variable / Curr lim var
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n] BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Operation enable
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p1000[0...n] Speed setpoint selection / n_set sel
p1020[0...n] BI: Fixed speed setpoint selection Bit $0 / n$ _set_fixed Bit 0
p1021[0...n] BI: Fixed speed setpoint selection Bit $1 / n _$set_fixed Bit 1
p1022[0...n] BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2
p1023[0...n] BI: Fixed speed setpoint selection Bit 3 /n_set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n] BI: Motorized potentiometer inversion / MotP inv
p1041[0...n] BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1042[0...n] CI: Motorized potentiometer automatic setpoint / Mop auto setpoint
p1043[0...n] BI: Motorized potentiometer accept setting value / MotP acc set val
p1044[0...n] CI: Motorized potentiometer setting value / Mop set val
p1051[0...n] CI: Speed limit RFG positive direction of rotation / n_limit RFG pos
p1052[0...n] CI: Speed limit RFG negative direction of rotation / n_limit RFG neg
p1055[0...n] BI: Jog bit $0 / \mathrm{Jog}$ bit 0
p1056[0...n] BI: Jog bit $1 / \mathrm{Jog}$ bit 1
p1070[0...n] CI: Main setpoint / Main setpoint
p1071[0...n] CI: Main setpoint scaling / Main setp scal
p1075[0...n] CI: Supplementary setpoint / Suppl setp
p1076[0...n] CI: Supplementary setpoint scaling / Suppl setp scal
p1085[0...n] CI: Speed limit in positive direction of rotation / n_limit pos
p1088[0...n] Cl: Speed limit in negative direction of rotation / n_limit neg
p1098[0...n] CI: Skip speed scaling / n_skip scal
p1106[0...n] CI: Minimum speed signal source / n_min s_src
p1108[0...n] BI: Total setpoint selection / Total setp sel
p1109[0...n] Cl: Total setpoint / Total setp
p1110[0...n] BI: Inhibit negative direction / Inhib neg dir
p1111[0...n] BI: Inhibit positive direction / Inhib pos dir
p1113[0...n] BI: Setpoint inversion / Setp inv
p1122[0...n] BI: Bypass ramp-function generator / Bypass RFG
p1138[0...n] CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal
p1139[0...n] CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal
p1140[0...n] BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable
p1141[0...n] BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n] BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1143[0...n] BI: Ramp-function generator, accept setting value / RFG accept set v
p1144[0...n] CI: Ramp-function generator setting value / RFG setting value
p1201[0...n] BI: Flying restart enable signal source / Fly_res enab S_src

2.3 Parameters for data sets

p1230[0...n]	BI : DC braking activation / DC brake act
p2103[0..n]	BI: 1. Acknowledge faults / 1. Acknowledge
p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge
p2105[0...n]	BI: 3. Acknowledge faults / 3. Acknowledge
p2106[0...n]	BI: External fault 1 / External fault 1
p2107[0...n]	BI: External fault 2 / External fault 2
p2108[0...n]	BI: External fault 3 / External fault 3
p2112[0...n]	BI: External alarm 1 / External alarm 1
p2116[0...n]	BI: External alarm 2 / External alarm 2
p2117[0...n]	BI: External alarm 3 / External alarm 3
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n]	BI: RFG active / RFG active
p2151[0...n]	CI : Speed setpoint for messages/signals / n_set for msg
p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2
p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n]	$\mathrm{BI}:$ Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2253[0...n]	Cl : Technology controller setpoint $1 /$ Tec_ctrl setp 1
p2254[0...n]	Cl : Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI : Technology controller actual value / Tec_ctrl act val
p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ hold
p2289[0...n]	CI: Technology controller pre-control signal / Tec_ctr prectr_sig
p2296[0...n]	Cl : Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
p2298[0...n]	CI : Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs
p3111[0...n]	BI: External fault 3 enable / Ext fault 3 enab
p3112[0...n]	BI: External fault 3 enable negated / Ext flt 3 enab neg
p3230[0...n]	CI : Load monitoring speed actual value / Load monit n_act
p3232[0...n]	BI: Load monitoring failure detection / Load_moni fail_det
p3330[0...n]	$\mathrm{BI}: 2 / 3$ wire control command $1 / 2 / 3$ wire cmd 1
p3331[0...n]	$\mathrm{BI}: 2 / 3$ wire control command $2 / 2 / 3$ wire cmd 2
p3332[0...n]	BI : $2 / 3$ wire control command $3 / 2 / 3$ wire cmd 3

2.3.2 Drive data sets (DDS)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: DDS
p0340[0...n] Automatic calculation motor/control parameters / Calc auto par
p0640[0...n] Current limit / Current limit
p0644[0...n] Current limit excitation induction motor / Imax excitat ASM
p1001[0...n] CO: Fixed speed setpoint $1 / n _$set_fixed 1
p1002[0...n] CO: Fixed speed setpoint $2 / n _$set_fixed 2
p1003[0...n] CO: Fixed speed setpoint $3 / n _$set_fixed 3
p1004[0...n] CO: Fixed speed setpoint $4 / n _$set_fixed 4
p1005[0...n] CO: Fixed speed setpoint $5 / n$ set fixed 5
p1006[0...n] CO: Fixed speed setpoint $6 / n _$set_fixed 6
p1007[0...n] CO: Fixed speed setpoint $7 / n _$set_fixed 7
p1008[0...n] CO: Fixed speed setpoint $8 / n _$set_fixed 8
p1009[0...n] CO: Fixed speed setpoint $9 / n _$set_fixed 9
p1010[0...n] CO: Fixed speed setpoint $10 / n _$set_fixed 10
p1011[0...n] CO: Fixed speed setpoint $11 / n _$set_fixed 11

p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12
p1013[0...n]	CO: Fixed speed setpoint $13 / \mathrm{n}$ _set_fixed 13
p1014[0...n]	CO: Fixed speed setpoint $14 / \mathrm{n}$ _set_fixed 14
p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15
p1030[0...n]	Motorized potentiometer configuration / Mop configuration
p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max
p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min
p1040[0...n]	Motorized potentiometer starting value / Mop start value
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time
p1058[0...n]	Jog 1 speed setpoint / Jog 1 n_set
p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set
p1063[0...n]	Speed limit setpoint channel / n_limit setp
p1080[0...n]	Minimum speed / n_min
p1082[0...n]	Maximum speed / n_max
p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg
p1091[0...n]	Skip speed 1 / n_skip 1
p1092[0...n]	Skip speed 2 / n_skip 2
p1093[0...n]	Skip speed 3 / n_skip 3
p1094[0...n]	Skip speed 4 / n_skip 4
p1101[0...n]	Skip speed bandwidth / n_skip bandwidth
p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time
p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time
p1123[0...n]	Ramp-function generator minimum ramp-up time / RFG t_RU min
p1127[0...n]	Ramp-function generator minimum ramp-down time / RFG t_RD min
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay
p1134[0...n]	Ramp-function generator rounding-off type / RFG round-off type
p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD
p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del
p1145[0...n]	Ramp-function generator tracking intensity. / RFG track intens
p1148[0...n]	Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act
p1200[0...n]	Flying restart operating mode / FlyRest op_mode
p1202[0...n]	Flying restart search current / FlyRest I_srch
p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact
p1226[0...n]	Threshold for zero speed detection / n_standst n_thresh
p1240[0...n]	Vdc controller configuration (vector control) / Vdc ctr config vec
p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level
p1247[0...n]	Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor
p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh
p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp
p1251[0...n]	Vdc controller integral time / Vdc_ctrl Tn
p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate
p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh
p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response
p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh
p1262[0...n]	Bypass dead time / Bypass t_dead
p1271[0...n]	Flying restart maximum frequency for the inhibited direction / FlyRes f_max dir
p1280[0...n]	Vdc controller configuration (U/f) / Vdc_ctr config U/f
p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor
p1284[0...n]	Vdc_max controller time threshold (U/f) / Vdc_max t_thresh
p1285[0...n]	Vdc_min controller switch-in level (kinetic buffering) (U/f) / Vdc_min on_level

2.3 Parameters for data sets

```
p1287[0...n] Vdc_min controller dynamic factor (kinetic buffering) (U/f) / Vdc_min dyn_factor
p1290[0...n] Vdc controller proportional gain (U/f) / Vdc_ctrl Kp
p1291[0...n] Vdc controller integral time (U/f) / Vdc_ctrl Tn
p1292[0...n] Vdc controller rate time (U/f) / Vdc_ctrl t_rate
p1295[0...n] Vdc_min controller time threshold (U/f) / Vdc_min t_thresh
p1296[0...n] Vdc_min controller response (kinetic buffering) (U/f / Vdc_min response
p1297[0...n] Vdc_min controller speed threshold (U/f) / Vdc_min n_thresh
p1300[0...n] Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode
p1310[0..n] Starting current (voltage boost) permanent / I_start (Ua) perm
p1311[0...n] Starting current (voltage boost) when accelerating / I_start accel
p1312[0...n] Starting current (voltage boost) when starting / I_start start
p1331[0...n] Voltage limiting / U_lim
p1333[0...n] U/f control FCC starting frequency / U/f FCC f_start
p1334[0...n] U/f control slip compensation starting frequency / Slip comp start
p1335[0..n] Slip compensation scaling / Slip comp scal
p1336[0..n] Slip compensation limit value / Slip comp lim val
p1338[0...n] U/f mode resonance damping gain / Uf Res_damp gain
p1339[0...n] U/f mode resonance damping filter time constant / Uf Res_damp T
p1340[0...n] I_max frequency controller proportional gain / I_max_ctrl Kp
p1341[0...n] I_max frequency controller integral time / I_max_ctrl Tn
p1345[0...n] I_max voltage controller proportional gain / I_max_U_ctrl Kp
p1346[0...n] I_max voltage controller integral time / I_max_U_ctrl Tn
p1349[0..n] U/f mode resonance damping maximum frequency / Uf res_damp f_max
p1400[0...n] Speed control configuration / n_ctrl config
p1401[0...n] Flux control configuration / Flux ctrl config
p1402[0\ldotsn] Closed-loop current control and motor model configuration / I_ctrl config
p1416[0...n] Speed setpoint filter 1 time constant / n_set_filt 1 T
p1452[0...n] Speed controller speed actual value smoothing time (sensorless) / n_C n_act T_s SL
p1461[0\ldotsn] Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal
p1463[0...n] Speed controller Tn adaptation speed upper scaling / n_ctr Tn n up scal
p1464[0...n] Speed controller adaptation speed lower / n_ctrl n lower
p1465[0...n] Speed controller adaptation speed upper / n_ctrl n upper
p1470[0...n] Speed controller encoderless operation P-gain / n_ctrl SL Kp
p1472[0...n] Speed controller encoderless operation integral time / n_ctrl SL Tn
p1496[0...n] Acceleration pre-control scaling / a_prectrl scal
p1517[0\ldots..n] Accelerating torque smoothing time constant / M_accel T_smooth
p1520[0..n] CO: Torque limit upper / M_max upper
p1521[0..n] CO: Torque limit lower / M_max lower
p1530[0...n] Power limit motoring / P_max mot
p1531[0...n] Power limit regenerative / P_max gen
p1553[0...n] Stall limit scaling / Stall limit scal
r1566[0...n] Flux reduction factor torque / Flux red fact torq
p1567[0...n] Magnetization scaling / Mag scale
p1570[0...n] CO: Flux setpoint / Flex setp
p1574[0...n] Voltage reserve dynamic / U_reserve dyn
p1578[0...n] Flux reduction flux decrease smoothing time / Flux red T_red
p1579[0\ldotsn] Flux reduction flux build-up smoothing time / Flux red T_incr
p1580[0...n] Efficiency optimization / Efficiency opt.
p1581[0...n] Flux reduction factor / Flux red factor
p1582[0...n] Flux setpoint smoothing time / Flux setp T_smth
p1584[0...n] Field weakening operation flux setpoint smoothing time / Field weak T_smth
p1586[0...n] Field weakening characteristic scaling / Field weak scal
p1590[0...n] Flux controller P gain / Flux controller Kp
p1592[0...n] Flux controller integral time / Flux controller Tn
p1596[0...n] Field weakening controller integral-action time / Field_ctrl Tn
```

p1601[0...n]	Current injection ramp time / I_inject t_ramp
p1610[0...n]	Torque setpoint static (sensorless) / M_set static
p1611[0...n]	Additional acceleration torque (sensorless) / M_suppl_accel
p1616[0...n]	Current setpoint smoothing time / I_set T_smooth
p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW
p1703[0...n]	Isq current controller pre-control scaling / Isq_ctr_prectrScal
p1715[0...n]	Current controller P gain / I_ctrl Kp
p1717[0...n]	Current controller integral-action time / I_ctrl Tn
p1720[0...n]	Current controller d axis p gain / Id_ctrl Kp
p1722[0...n]	Current controller d axis integral time / _ ctrl d-axis Tn
p1730[0...n]	Isd controller integral component shutdown threshold / Isd ctrl Tn shutd
p1731[0...n]	Isd controller combination current time component / Isd ctr I_combi T1
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp
p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall
p1749[0...n]	Motor model increase changeover speed encoderless operation / Incr n_chng no enc
p1750[0...n]	Motor model configuration / MotMod config
p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl
p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op
p1759[0...n]	Motor model changeover delay time open/closed-loop control / MotMod t op_cl
p1764[0...n]	Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp
p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn
p1774[0...n]	Motor model offset voltage compensation alpha / MotMod offs comp A
p1775[0...n]	Motor model offset voltage compensation beta / MotMod offs comp B
p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf
p1784[0...n]	Motor model feedback scaling / MotMod fdbk scal
p1785[0...n]	Motor model Lh adaptation Kp / MotMod Lh Kp
p1786[0...n]	Motor model Lh adaptation integral time / MotMod Lh Tn
r1787[0...n]	Motor model Lh adaptation corrective value / MotMod Lh corr
p1800[0...n]	Pulse frequency setpoint / Pulse freq setp
p1802[0...n]	Modulator mode / Modulator mode
p1803[0...n]	Maximum modulation depth / Modulat depth max
p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr
p1820[0...n]	Reverse the output phase sequence / Outp_ph_seq rev
p1959[0...n]	Rotating measurement configuration / Rot meas config
p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2
p2141[0...n]	Speed threshold 1/n_thresh val 1
p2142[0...n]	Hysteresis speed 1 / n _hysteresis 1
p2149[0...n]	Monitoring configuration / Monit config
p2150[0...n]	Hysteresis speed 3 / n_hysteresis 3
p2153[0...n]	Speed actual value filter time constant / n_act_filt T
p2155[0...n]	Speed threshold 2 / n_thresh val 2
p2156[0...n]	On delay comparison value reached / t_on cmpr val rchd
p2161[0...n]	Speed threshold $3 / \mathrm{n}$ _thresh val 3
p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max
p2163[0...n]	Speed threshold 4 / n_thresh val 4
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4
p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_so
p2167[0...n]	Switch-on delay n_act = n_set/t_on n_{-}act=n_set
p2170[0...n]	Current threshold value / I_thres
p2171[0...n]	Current threshold value reached delay time / I_thresh rch t_del
p2172[0...n]	DC link voltage threshold value / Vdc thresh val
p2173[0...n]	DC link voltage comparison delay time / t_del Vdc
p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh
p2177[0...n]	Motor blocked delay time / Mot lock t_del
p2178[0...n]	Motor stalled delay time / Mot stall t_del

2.3 Parameters for data sets

p2179[0...n] Output load identification current limit / Outp_Id iden I_lim
p2180[0...n] Output load detection delay time / Out_load det t_del
p2181[0...n] Load monitoring response / Load monit resp
p2182[0...n] Load monitoring speed threshold value $1 / n$ nthresh 1
p2183[0...n] Load monitoring speed threshold value 2 / n_thresh 2
p2184[0...n] Load monitoring speed threshold value 3 / n_thresh 3
p2185[0...n] Load monitoring torque threshold 1 upper / M_thresh 1 upper
p2186[0...n] Load monitoring torque threshold 1 lower / M_thresh 1 lower
p2187[0...n] Load monitoring torque threshold 2 upper / M_thresh 2 upper
p2188[0...n] Load monitoring torque threshold 2 lower / M_thresh 2 lower
p2189[0...n] Load monitoring torque threshold 3 upper / M_thresh 3 upper
p2190[0...n] Load monitoring torque threshold 3 lower / M_thresh 3 lower
p2192[0...n] Load monitoring delay time / Load monit t_del
p2193[0...n] Load monitoring configuration / Load monit config
p2201[0...n] CO: Technology controller fixed value 1 / Tec_ctrl fix val1
p2202[0...n] CO: Technology controller fixed value 2 / Tec_ctr fix val 2
p2203[0...n] CO: Technology controller fixed value 3 / Tec_ctr fix val 3
p2204[0...n] CO: Technology controller fixed value 4 / Tec_ctr fix val 4
p2205[0...n] CO: Technology controller fixed value 5 / Tec_ctr fix val 5
p2206[0...n] CO: Technology controller fixed value $6 /$ Tec_ctr fix val 6
p2207[0...n] CO: Technology controller fixed value 7 / Tec_ctr fix val 7
p2208[0...n] CO: Technology controller fixed value $8 /$ Tec_ctr fix val 8
p2209[0...n] CO: Technology controller fixed value $9 /$ Tec_ctr fix val 9
p2210[0...n] CO: Technology controller fixed value 10 / Tec_ctr fix val 10
p2211[0...n] CO: Technology controller fixed value 11 / Tec_ctr fix val 11
p2212[0...n] CO: Technology controller fixed value 12 / Tec_ctr fix val 12
p2213[0...n] CO: Technology controller fixed value 13 / Tec_ctr fix val 13
p2214[0...n] CO: Technology controller fixed value 14 / Tec_ctr fix val 14
p2215[0...n] CO: Technology controller fixed value 15 / Tec_ctr fix val 15
p2216[0...n] Technology controller fixed value selection method / Tec_ctr FixVal sel
p2230[0...n] Technology controller motorized potentiometer configuration / Tec_ctr mop config
p2237[0...n] Technology controller motorized potentiometer maximum value / Tec_ctrl mop max
p2238[0...n] Technology controller motorized potentiometer minimum value / Tec_ctrl mop min
p2240[0...n] Technology controller motorized potentiometer starting value / Tec_ctrl mop start
p2247[0...n] Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up
p2248[0...n] Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown
p2370[0...n] Closed-loop cascade control enable / Csc_ctrl enab
p2390[0...n] Energy-saving mode start speed / En_sav n_start
p2391[0...n] Energy-saving mode delay time / En sav t delay
p2393[0...n] Energy-saving mode restart speed relative without tec_ctrl/En_savResNoTec_ctr
p2394[0...n] Energy-saving mode boost time period / En_sav t_boost
p2395[0...n] Energy-saving mode boost speed / En_sav n_boost
p2396[0...n] Energy-saving mode max shutdown time / En_sav t_off max
p2900[0...n] CO: Fixed value 1 [\%] / Fixed value 1 [\%]
p2901[0...n] CO: Fixed value 2 [\%] / Fixed value 2 [\%]
p2930[0...n] CO: Fixed value M [Nm] / Fixed value M [Nm]
p3231[0...n] Load monitoring speed deviation / Load monit n_dev
p3233[0...n] Torque actual value filter time constant / M_act_filt T
p3320[0...n] Fluid flow machine power point 1 / Fluid_mach P1
p3321[0...n] Fluid flow machine speed point 1 / Fluid_mach n1
p3322[0...n] Fluid flow machine power point 2 / Fluid_mach P2
p3323[0...n] Fluid flow machine speed point 2 / Fluid_mach n2
p3324[0...n] Fluid flow machine power point 3 / Fluid_mach P3
p3325[0...n] Fluid flow machine speed point 3 / Fluid_mach n3
p3326[0...n] Fluid flow machine power point 4 / Fluid_mach P4

p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4
p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5
p3329[0...n]	Fluid flow machine speed point 5 / Fluid_mach n5
p3855[0...n]	DC quantity controller configuration / DC_ctrl config
p3856[0...n]	Compound braking current / Compound I_brake
p3857[0...n]	DC quantity controller P gain / DC_ctrl Kp
p3858[0...n]	DC quantity controller integral time / DC_ctrl Tn
r3925[0...n]	Identification final display / Ident final_disp
r3927[0...n]	Motor data identification control word / MotID STW
r3928[0...n]	Rotating measurement configuration / Rot meas config
r3929[0...n]	Motor data identification modulated voltage generation / MotID U_gen mod

2.3.3 Motor data sets (MDS)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: MDS p0133[0...n] Motor configuration / Motor config
p0300[0...n] Motor type selection / Mot type sel
p0301[0...n] Motor code number selection / Mot code No. sel
p0304[0...n] Rated motor voltage / Mot U_rated
p0305[0...n] Rated motor current / Mot I_rated
p0306[0...n] Number of motors connected in parallel / Motor qty
p0307[0...n] Rated motor power / Mot P_rated
p0308[0...n] Rated motor power factor / Mot cos phi rated
p0309[0...n] Rated motor efficiency / Mot eta_rated
p0310[0...n] Rated motor frequency / Mot f_rated
p0311[0...n] Rated motor speed / Mot n_rated
r0313[0...n] Motor pole pair number, actual (or calculated) / Mot PolePairNo act
p0314[0...n] Motor pole pair number / Mot pole pair No.
p0316[0...n] Motor torque constant / Mot kT
p0320[0...n] Motor rated magnetizing current/short-circuit current / Mot I_mag_rated
p0322[0...n] Maximum motor speed / Mot n_max
p0323[0...n] Maximum motor current / Mot I_max
p0325[0...n] Motor pole position identification current 1st phase / Mot PoIID I 1st ph
p0327[0...n] Optimum motor load angle / Mot phi_load opt
p0328[0...n] Motor reluctance torque constant / Mot kT_reluctance
p0329[0...n] Motor pole position identification current / Mot PolID current
r0330[0...n] Rated motor slip / Mot slip_rated
r0331[0...n] Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act
r0332[0...n] Rated motor power factor / Mot cos phi rated
r0333[0...n] Rated motor torque / Mot M_rated
p0335[0...n] Motor cooling type / Mot cool type
r0337[0...n] Rated motor EMF / Mot EMF_rated
p0341[0...n] Motor moment of inertia / Mot M_mom of inert
p0342[0...n] Ratio between the total and motor moment of inertia / Mot MomInert Ratio
r0343[0...n] Rated motor current identified / Mot I_rated ident
p0344[0...n] Motor weight (for the thermal motor model) / Mot weight th mod
r0345[0...n] Nominal motor starting time / Mot t_start_rated
p0346[0...n] Motor excitation build-up time / Mot t_excitation
p0347[0...n] Motor de-excitation time / Mot t_de-excitat
p0350[0...n] Motor stator resistance cold / Mot R_stator cold
p0352[0...n] Cable resistance / R_cable
p0354[0...n] Motor rotor resistance cold / Mot R_r cold
p0356[0...n] Motor stator leakage inductance / Mot L_stator leak.
p0357[0...n] Motor stator inductance d axis / Mot L_stator d

2.3 Parameters for data sets

p0358[0...n] Motor rotor leakage inductance / Mot L_rot leak
p0360[0...n] Motor magnetizing inductance / Mot Lh
p0362[0...n] Motor saturation characteristic flux 1 / Mot saturat.flux 1
p0363[0...n] Motor saturation characteristic flux 2 / Mot saturat.flux 2
p0364[0...n] Motor saturation characteristic flux 3 / Mot saturat.flux 3
p0365[0...n] Motor saturation characteristic flux 4 / Mot saturat.flux 4
p0366[0...n] Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1
p0367[0...n] Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2
p0368[0...n] Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3
p0369[0...n] Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4
r0370[0...n] Motor stator resistance cold / Mot R_stator cold
r0372[0...n] Cable resistance / Mot R_cable
r0373[0...n] Motor rated stator resistance / Mot R_stator rated
r0374[0...n] Motor rotor resistance cold / Mot R_r cold
r0376[0...n] Rated motor rotor resistance / Mot rated R_rotor
r0377[0...n] Motor leakage inductance total / Mot L_leak total
r0382[0...n] Motor magnetizing inductance transformed / Mot L_magn transf
r0384[0...n] Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd
r0386[0...n] Motor stator leakage time constant / Mot T_stator leak
r0395[0...n] Actual stator resistance / R_stator act
r0396[0...n] Actual rotor resistance / R_rotor act
p0601[0...n] Motor temperature sensor type / Mot_temp_sens type
p0604[0...n] Mot_temp_mod 2/KTY alarm threshold / Mod 2/KTY A thresh
p0605[0...n] Mot_temp_mod 1/2 threshold / Mod 1/2 threshold
p0610[0...n] Motor overtemperature response / Mot temp response
p0611[0...n] I2t motor model thermal time constant / I2t mot_mod T
p0612[0...n] Mot_temp_mod activation / Mot_temp_mod act
p0614[0...n] Thermal resistance adaptation reduction factor / Therm R_adapt red
p0615[0...n] Mot_temp_mod 1 (I2t) fault threshold / I2t F thresh
p0620[0...n] Thermal adaptation, stator and rotor resistance / Mot therm_adapt R
p0621[0...n] Identification stator resistance after restart / Rst_ident Restart
p0622[0...n] Motor excitation time for Rs_ident after powering up again / t_excit Rs_id
p0625[0...n] Motor ambient temperature during commissioning / Mot T_ambient
p0626[0...n] Motor overtemperature, stator core / Mot T_over core
p0627[0...n] Motor overtemperature, stator winding / Mot T_over stator
p0628[0...n] Motor overtemperature rotor winding / Mot T_over rotor
p0629[0...n] Stator resistance reference / R_stator ref
r0630[0...n] Mot_temp_mod ambient temperature / Mod T_ambient
r0631[0...n] Mot_temp_mod stator iron temperature / Mod T_stator
r0632[0...n] Mot_temp_mod stator winding temperature / Mod T_winding
r0633[0...n] Mot_temp_mod rotor temperature / Mod rotor temp
p0650[0...n] Actual motor operating hours / Mot t_oper act
p0651[0...n] Motor operating hours maintenance interval / Mot t_op maint
p0826[0...n] Motor changeover motor number / Mot_chng mot No.
p1231[0...n] DC braking configuration / DCBRK config
p1232[0...n] DC braking braking current / DCBRK I_brake
p1233[0...n] DC braking time / DCBRK time
p1234[0...n] Speed at the start of DC braking / DCBRK n_start
p1710[0...n] Current controller adaptation d axis starting point KP / Id_adapt pt KP
p1711[0...n] Current controller adaptation d axis starting point KP adapted / Id_adap pt KP adap
p1712[0...n] Current controller adaptation d axis p gain adaptation / Id_ctrl Kp adapt
p1909[0...n] Motor data identification control word / MotID STW
p1980[0...n] PollD technique / PolID technique
r3926[0...n] Voltage generation alternating base voltage amplitude / U_gen altern base

2.3.4 Power unit Data Sets (PDS)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: PDS
p0124[0...n] CU detection via LED / CU detection LED
r0200[0...n] Power unit code number actual / PU code no. act
p0201[0...n] Power unit code number / PU code no
r0203[0...n] Actual power unit type / PU actual type
r0204[0...n] Power unit hardware properties / PU HW property

$2.4 \quad$ BICO parameters (connectors/binectors)

2.4.1 \quad Binector inputs (BI)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: BI
p0730 BI: CU signal source for terminal DO $0 / C U S$ Src DO 0
p0731 BI: CU signal source for terminal DO 1 / CU S_src DO 1
p0732 BI: CU signal source for terminal DO 2 / CU S_src DO 2
p0782[0...1] BI: CU analog outputs invert signal source / CU AO inv S_src
p0806 BI: Inhibit master control / PcCtrl inhibit
p0810 BI: Command data set selection CDS bit 0 / CDS select., bit 0
p0811 BI: Command data set selection CDS bit 1 / CDS select., bit 1
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n] BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Operation enable
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0860 BI: Line contactor feedback signal / Line contact feedb
p1020[0...n] BI: Fixed speed setpoint selection Bit $0 / n$ _set_fixed Bit 0
p1021[0...n] BI: Fixed speed setpoint selection Bit $1 / n _$set_fixed Bit 1
p1022[0...n] BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2
p1023[0...n] BI: Fixed speed setpoint selection Bit 3 /n_set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n] BI: Motorized potentiometer inversion / MotP inv
p1041[0...n] BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1043[0...n] BI: Motorized potentiometer accept setting value / MotP acc set val
p1055[0...n] BI: Jog bit $0 / \mathrm{Jog}$ bit 0
p1056[0...n] BI: Jog bit 1 / Jog bit 1
p1108[0...n] BI: Total setpoint selection / Total setp sel
p1110[0...n] BI: Inhibit negative direction / Inhib neg dir
p1111[0...n] BI: Inhibit positive direction / Inhib pos dir
p1113[0...n] BI: Setpoint inversion / Setp inv
p1122[0...n] BI: Bypass ramp-function generator / Bypass RFG
p1140[0...n] BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable
p1141[0...n] BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n] BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1143[0...n] BI: Ramp-function generator, accept setting value / RFG accept set v
p1201[0...n] BI: Flying restart enable signal source / Fly_res enab S_src
p1230[0...n] BI: DC braking activation / DC brake act
p1266 BI: Bypass control command / Bypass command
p1269[0...1] BI: Bypass switch feedback signal / Bypass FS
p2080[0...15] BI: Binector-connector converter status word 1 / Bin/con ZSW1
p2081[0...15] BI: Binector-connector converter status word 2 / Bin/con ZSW2
p2082[0...15] BI: Binector-connector converter status word 3 / Bin/con ZSW3
p2083[0...15] BI: Binector-connector converter status word 4 / Bin/con ZSW4
p2084[0...15] BI: Binector-connector converter status word 5 / Bin/con ZSW5
p2103[0...n] BI: 1. Acknowledge faults / 1. Acknowledge
p2104[0...n] BI: 2. Acknowledge faults / 2. Acknowledge
p2105[0...n] BI: 3. Acknowledge faults / 3. Acknowledge
p2106[0...n] BI: External fault 1 / External fault 1
p2107[0...n] BI: External fault 2 / External fault 2
p2108[0...n] BI: External fault 3 / External fault 3
p2112[0...n] BI: External alarm 1 / External alarm 1
p2116[0...n] BI: External alarm 2 / External alarm 2
p2117[0...n] BI: External alarm 3 / External alarm 3
$\mathrm{p} 2144[0 \ldots \mathrm{n}] \quad \mathrm{BI}:$ Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n] BI: RFG active / RFG active
p2200[0...n] BI: Technology controller enable / Tec_ctrl enable
p2220[0...n] BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0
p2221[0...n] BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1
p2222[0...n] BI: Technology controller fixed value selection bit $2 /$ Tec_ctrl sel bit 2
p2223[0...n] BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n] BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n] BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2286[0...n] BI: Hold technology controller integrator / Tec_ctr integ hold
p3111[0...n] BI: External fault 3 enable / Ext fault 3 enab
p3112[0...n] BI: External fault 3 enable negated / Ext flt 3 enab neg
p3232[0...n] BI: Load monitoring failure detection / Load_moni fail_det
p3330[0...n] BI: $2 / 3$ wire control command $1 / 2 / 3$ wire cmd 1
p3331[0...n] BI: $2 / 3$ wire control command $2 / 2 / 3$ wire cmd 2
p3332[0...n] BI: $2 / 3$ wire control command $3 / 2 / 3$ wire cmd 3
p3880 BI: ESM activation signal source / ESM act s s
p3883 BI: ESM direction of rotation signal source / ESM rot dir s s
p5614 BI: Pe set switch-on inhibit signal source / Pe sw on_inh s_src
p8785
BI: CAN status word bit 8 / Status word bit 8
p8786 BI: CAN status word bit 14 / Status word bit 14
p8787 BI: CAN status word bit 15 / Status word bit 15
p11000 BI: Free tec_ctrl 0 enable / Ftec0 enab
p11100 BI: Free tec_ctrl 1 enable / Ftec1 enab
p11200 BI: Free tec_ctrl 2 enable / Ftec2 enab
p20030[0...3] BI: AND 0 inputs / AND 0 inputs
p20034[0...3] BI: AND 1 inputs / AND 1 inputs
p20038[0...3] BI: AND 2 inputs / AND 2 inputs
p20042[0...3] BI: AND 3 inputs / AND 3 inputs
p20046[0...3] BI: OR 0 inputs / OR 0 inputs
p20050[0...3] BI: OR 1 inputs / OR 1 inputs
p20054[0...3] BI: OR 2 inputs / OR 2 inputs
p20058[0...3] BI: OR 3 inputs / OR 3 inputs
p20062[0...3] BI: XOR 0 inputs / XOR 0 inputs
p20066[0...3] BI: XOR 1 inputs / XOR 1 inputs
p20070[0...3] BI: XOR 2 inputs / XOR 2 inputs
p20074[0...3] BI: XOR 3 inputs / XOR 3 inputs
p20078 BI: NOT 0 input I / NOT 0 input I
p20082 BI: NOT 1 input I / NOT 1 input I
p20086 BI: NOT 2 input I / NOT 2 input I
p20090 BI: NOT 3 input I / NOT 3 input I
p20138 BI: MFP 0 input pulse I / MFP 0 inp_pulse I
p20143 BI: MFP 1 input pulse I / MFP 1 inp_pulse I
p20148 BI: PCL 0 input pulse I / PCL 0 inp_pulse I
p20153 BI: PCL 1 input pulse I / PCL 1 inp_pulse I
p20158 BI: PDE 0 input pulse I / PDE 0 inp_pulse I
p20163 BI: PDE 1 input pulse I / PDE 1 inp_pulse I
p20168 BI: PDF 0 input pulse I / PDF 0 inp_pulse I

```
p20173 BI: PDF 1 input pulse I / PDF 1 inp_pulse I
p20178[0...1] BI: PST 0 inputs / PST 0 inputs
p20183[0...1] BI: PST }1\mathrm{ inputs / PST 1 inputs
p20188[0...1] BI: RSR 0 inputs / RSR 0 inputs
p20193[0...1] BI: RSR }1\mathrm{ inputs / RSR 1 inputs
p20198[0...3] BI: DFR 0 inputs / DFR 0 inputs
p20203[0...3] BI: DFR }1\mathrm{ inputs / DFR 1 inputs
p20208[0...1] BI: BSW 0 inputs / BSW 0 inputs
p20209 BI: BSW 0 switch setting I / BSW 0 sw_setting
p20213[0..1] BI: BSW 1 inputs / BSW 1 inputs
p20214 BI: BSW 1 switch setting I / BSW 1 sw_setting
p20219 BI: NSW 0 switch setting I / NSW 0 sw_setting
p20224 BI: NSW 1 switch setting I / NSW 1 sw_setting
p20245 BI: PT1 0 accept setting value S / PT1 0 acc set val
p20251 BI: PT1 1 accept setting value S / PT1 1 acc set val
p20260 BI: INT 0 accept setting value S / INT 0 acc set val
p20300 BI: NOT 4 input I / NOT 4 input I
p20304 BI: NOT 5 input I / NOT 5 input I
p20324[0...1] BI: RSR 2 inputs / RSR 2 inputs
p20329[0...3] BI: DFR 2 inputs / DFR 2 inputs
p20334 BI: PDE 2 input pulse I / PDE 2 inp_pulse I
p20339 BI: PDE 3 input pulse I / PDE 3 inp_pulse I
p20344 BI: PDF 2 input pulse I / PDF 2 inp_pulse I
p20349 BI: PDF 3 input pulse I / PDF 3 inp_pulse I
p20354 BI: MFP 2 input pulse I / MFP 2 inp_pulse I
p20359 BI: MFP 3 input pulse I / MFP 3 inp_pulse I
p31025 Bl: Multi-zone control day/night switchover / Zone_ctl day_night
```


2.4.2 Connector inputs (CI)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: CI
p0641[0...n] CI: Current limit variable / Curr lim var
p0771[0...1] CI: CU analog outputs signal source / CU AO S_src
p1042[0...n] Cl: Motorized potentiometer automatic setpoint / Mop auto setpoint
p1044[0...n] CI: Motorized potentiometer setting value / Mop set val
p1051[0...n] CI: Speed limit RFG positive direction of rotation / n_limit RFG pos
p1052[0...n] CI: Speed limit RFG negative direction of rotation / n_limit RFG neg
p1070[0...n] CI: Main setpoint / Main setpoint
p1071[0...n] Cl: Main setpoint scaling / Main setp scal
p1075[0...n] CI: Supplementary setpoint / Suppl setp
p1076[0...n] CI: Supplementary setpoint scaling / Suppl setp scal
p1085[0...n] Cl: Speed limit in positive direction of rotation / n_limit pos
p1088[0...n] Cl: Speed limit in negative direction of rotation / n_limit neg
p1098[0...n] CI: Skip speed scaling / n_skip scal
p1106[0...n] Cl: Minimum speed signal source / n_min s_src
p1109[0...n] Cl: Total setpoint / Total setp
p1138[0...n] CI: Ramp-function generator ramp-up time scaling / RFG t_RU scal
p1139[0...n] CI: Ramp-function generator ramp-down time scaling / RFG t_RD scal
$\mathrm{p} 1144[0 \ldots \mathrm{n}] \quad \mathrm{Cl}$: Ramp-function generator setting value / RFG setting value
p2016[0...3] CI: Comm IF USS PZD send word / Comm USS send word
p2051[0...13] CI: PROFIdrive PZD send word / PZD send word
p2061[0...12] CI: PROFIBUS PZD send double word / PZD send DW
p2099[0...1] CI: Connector-binector converter signal source / Con/bin S_src
p2151[0...n] Cl: Speed setpoint for messages/signals / n_set for msg

p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val
p2289[0...n]	$\mathrm{CI}:$ Technology controller pre-control signal / Tec_ctr prectr_sig
p2296[0...n]	Cl : Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
p2298[0...n]	CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	Cl : Technology controller limit offset / Tech_ctrl lim offs
p3230[0...n]	CI : Load monitoring speed actual value / Load monit n_act
p3884	CI: ESM setpoint technology controller / ESM setp tech_ctrl
p8746[0...15]	CI: CAN free PZD send objects 16 bit / Free PZD send 16
p8748[0...7]	CI: CAN free PZD send objects 32 bit / Free PZD send 32
p11053	CI : Free tec_ctrl 0 setpoint signal source / Ftec0 setp s_s
p11064	Cl : Free tec_ctrl 0 actual value signal source / Ftec0 act v s_s
p11097	Cl : Free tec_ctrl 0 limit maximum signal source / Ftec0 lim max s_s
p11098	CI: Free tec_ctrl 0 limit minimum signal source / Ftec0 lim min s_s
p11099	CI: Free tec_ctrl 0 limit offset signal source / Ftec0 lim offs
p11153	Cl : Free tec_ctrl 1 setpoint signal source / Ftec1 setp s_s
p11164	Cl : Free tec_ctrl 1 actual value signal source / Ftec1 act v s_s
p11197	Cl : Free tec_ctrl 1 limit maximum signal source / Ftec1 lim max s_s
p11198	CI: Free tec_ctrl 1 limit minimum signal source / Ftec1 lim min s_s
p11199	CI: Free tec_ctrl 1 limit offset signal source / Ftec1 lim offs
p11253	CI: Free tec_ctrl 2 setpoint signal source / Ftec2 setp s_src
p11264	Cl : Free tec_ctrl 2 actual value signal source / Ftec2 act v s_s
p11297	CI: Free tec_ctrl 2 limit maximum signal source / Ftec2 lim max s_s
p11298	CI: Free tec_ctrl 2 limit minimum signal source / Ftec2 lim min s_s
p11299	CI: Free tec_ctrl 2 limit offset signal source / Ftec2 lim offs
p20094[0...3]	CI : ADD 0 inputs / ADD 0 inputs
p20098[0...3]	CI: ADD 1 inputs / ADD 1 inputs
p20102[0...1]	CI: SUB 0 inputs / SUB 0 inputs
p20106[0...1]	CI: SUB 1 inputs / SUB 1 inputs
p20110[0...3]	CI: MUL 0 inputs / MUL 0 inputs
p20114[0...3]	CI: MUL 1 inputs / MUL 1 inputs
p20118[0...1]	CI: DIV 0 inputs / DIV 0 inputs
p20123[0...1]	CI: DIV 1 inputs / DIV 1 inputs
p20128	CI : AVA 0 input X / AVA 0 input X
p20133	CI: AVA 1 input X / AVA 1 input X
p20218[0...1]	CI: NSW 0 inputs / NSW 0 inputs
p20223[0...1]	CI: NSW 1 inputs / NSW 1 inputs
p20228	CI: LIM 0 input X / LIM 0 input X
p20236	CI: LIM 1 input X / LIM 1 input X
p20244[0...1]	CI: PT1 0 inputs / PT1 0 inputs
p20250[0...1]	CI: PT1 1 inputs / PT1 1 inputs
p20256[0...1]	CI : INT 0 inputs / INT 0 inputs
p20266	CI: LVM 0 input $\mathrm{X} / \mathrm{LVM} 0$ input X
p20275	CI: LVM 1 input X / LVM 1 input X
p20284	CI: DIF 0 input X / DIF 0 input X
p20308[0...3]	CI: ADD 2 inputs / ADD 2 inputs
p20312[0...1]	CI : NCM 0 inputs / NCM 0 inputs
p20318[0...1]	CI : NCM 1 inputs / NCM 1 inputs
p20372	CI: PLI 0 input X / PLI 0 input X
p20378	CI: PLI 1 input X / PLI 1 input X
p31023[0...3]	CI: Multi-zone control setpoint input / Zone_ctrl setp inp
p31026[0...2]	CI: Multi-zone control actual-value input / Zon_ctrl act inp

2.4.3 Binector outputs (BO)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: BO r0751.0... 10 BO: CU analog inputs status word / CU AI status word
r0785.0... 1 BO: CU analog outputs status word / CU AO ZSW
r0807.0 BO: Master control active / PcCtrl active
r1025.0 BO: Fixed speed setpoint status / n_setp_fix status
r2043.0...2 BO: PROFIdrive PZD state / PD PZD state
r2090.0... 15 BO: PROFIdrive PZD1 receive bit-serial / PZD1 recv bitw
r2091.0...15 BO: PROFIdrive PZD2 receive bit-serial / PZD2 recv bitw
r2092.0... 15 BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw
r2093.0...15 BO: PROFIdrive PZD4 receive bit-serial / PZD4 recv bitw
r2094.0... 15 BO: Connector-binector converter binector output / Con/bin outp
r2095.0... 15 BO: Connector-binector converter binector output / Con/bin outp
r8413.0... 1 BO: RTC DTC1 output / RTC DTC1 output
r8423.0... 1 BO: RTC DTC2 output / RTC DTC2 output
r8433.0... 1 BO: RTC DTC3 output / RTC DTC3 output
r9935.0 BO: POWER ON delay signal / POWER ON t_delay
r20031 BO: AND 0 output Q / AND 0 output Q
r20035 BO: AND 1 output Q / AND 1 output Q
r20039 BO: AND 2 output Q / AND 2 output Q
r20043 BO: AND 3 output Q / AND 3 output Q
r20047 BO: OR 0 output Q / OR 0 output Q
r20051 BO: OR 1 output Q / OR 1 output Q
r20055 BO: OR 2 output Q / OR 2 output Q
r20059 BO: OR 3 output Q / OR 3 output Q
r20063 BO: XOR 0 output Q / XOR 0 output Q
r20067 BO: XOR 1 output Q / XOR 1 output Q
r20071 BO: XOR 2 output Q / XOR 2 output Q
r20075 BO: XOR 3 output Q / XOR 3 output Q
r20079 BO: NOT 0 inverted output / NOT 0 inv output
r20083 BO: NOT 1 inverted output / NOT 1 inv output
r20087 BO: NOT 2 inverted output / NOT 2 inv output
r20091 BO: NOT 3 inverted output / NOT 3 inv output
r20120 BO: DIV 0 divisor is zero QF / DIV 0 divisor=0 QF
r20125 BO: DIV 1 divisor is zero QF / DIV 1 divisor=0 QF
r20130 BO: AVA 0 input negative SN / AVA 0 input neg SN
r20135 BO: AVA 1 input negative SN / AVA 1 input neg SN
r20140 BO: MFP 0 output Q / MFP 0 output Q
r20145 BO: MFP 1 output Q / MFP 1 output Q
r20150 BO: PCL 0 output Q / PCL 0 output Q
r20155 BO: PCL 1 output Q / PCL 1 output Q
r20160 BO: PDE 0 output Q / PDE 0 output Q
r20165 BO: PDE 1 output Q / PDE 1 output Q
r20170 BO: PDF 0 output Q / PDF 0 output Q
r20175 BO: PDF 1 output Q / PDF 1 output Q
r20180 BO: PST 0 output Q / PST 0 output Q
r20185 BO: PST 1 output Q / PST 1 output Q
r20189 BO: RSR 0 output Q / RSR 0 output Q
r20190 BO: RSR 0 inverted output QN / RSR 0 inv outp QN
r20194 BO: RSR 1 output Q / RSR 1 output Q
r20195 BO: RSR 1 inverted output QN / RSR 1 inv outp QN
r20199 BO: DFR 0 output Q / DFR 0 output Q
r20200 BO: DFR 0 inverted output QN / DFR 0 inv outp QN
r20204 BO: DFR 1 output Q / DFR 1 output Q
r20205 BO: DFR 1 inverted output QN / DFR 1 inv outp QN
BO: DFR 2 output Q / DFR 2 output Q
r20331 BO: DFR 2 inverted output QN / DFR 2 inv outp QN
r20336 BO: PDE 2 output Q / PDE 2 output Q
r20341 BO: PDE 3 output Q / PDE 3 output Q
r20346 BO: PDF 2 output Q / PDF 2 output Q
r20351 BO: PDF 3 output Q / PDF 3 output Q
r20356 BO: MFP 2 output Q / MFP 2 output Q
r20361 BO: MFP 3 output Q / MFP 3 output Q

2.4.4 Connector outputs (CO)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: CO
r0021 CO: Actual speed smoothed / n_act smooth
r0025 CO: Output voltage smoothed / U_outp smooth
r0026 CO: DC link voltage smoothed / Vdc smooth
r0027 CO: Absolute actual current smoothed / I_act abs val smth
r0032 CO: Active power actual value smoothed / P_actv_act smth
r0034 CO: Motor utilization thermal / Mot_util therm
r0035 CO: Motor temperature / Mot temp
r0036 CO: Power unit overload I2t / PU overload I2t
r0037[0...19] CO: Power unit temperatures / PU temperatures
r0060 CO: Speed setpoint before the setpoint filter / n_set before filt.
r0062 CO: Speed setpoint after the filter / n_set after filter
r0063[0...2] CO: Speed actual value / n act
r0064 CO: Speed controller system deviation / n_ctrl system dev
r0066 CO: Output frequency / f_outp
r0067 CO: Output current maximum / I_outp max
r0068[0...1] CO: Absolute current actual value / I_act abs val
r0069[0...6] CO: Phase current actual value / I_phase act value
r0070 CO: Actual DC link voltage / Vdc act val

r0072	CO: Output voltage / U_output
r0074	CO: Modulat_depth / Modulat_depth
r0075	CO: Current setpoint field-generating / Id_set
r0076	CO: Current actual value field-generating / Id_act
r0077	CO: Current setpoint torque-generating / Iq_set
r0078	CO: Current actual value torque-generating / lq_act
r0079	CO: Torque setpoint / M_set
r0080[0...1]	CO: Torque actual value / M_act
r0082[0...2]	CO: Active power actual value / P_act
r0083	CO: Flux setpoint / Flex setp
r0084[0...1]	CO: Flux actual value / Flux act val
r0087	CO: Actual power factor / Cos phi act
r0289	CO: Maximum power unit output current / PU I_outp max
r0752[0...3]	CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act
r0755[0...3]	CO: CU analog inputs actual value in percent / CU AI value in \%
p0791[0...1]	CO: Fieldbus analog outputs / Fieldbus AO
r0944	CO: Counter for fault buffer changes / Fault buff change
p1001[0...n]	CO: Fixed speed setpoint 1 / n_set_fixed 1
p1002[0...n]	CO: Fixed speed setpoint $2 / \mathrm{n}$ _set_fixed 2
p1003[0...n]	CO: Fixed speed setpoint $3 / \mathrm{n}$ _set_fixed 3
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4
p1005[0...n]	CO: Fixed speed setpoint $5 / \mathrm{n}$ _set_fixed 5
p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6
p1007[0...n]	CO: Fixed speed setpoint $7 / \mathrm{n}$ _set_fixed 7
p1008[0...n]	CO: Fixed speed setpoint $8 / \mathrm{n}$ _set_fixed 8
p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9
p1010[0...n]	CO: Fixed speed setpoint $10 / \mathrm{n}$ _set_fixed 10
p1011[0...n]	CO: Fixed speed setpoint $11 / \mathrm{n}$ _set_fixed 11
p1012[0...n]	CO: Fixed speed setpoint $12 / \mathrm{n}$ _set_fixed 12
p1013[0...n]	CO: Fixed speed setpoint $13 / \mathrm{n}$ _set_fixed 13
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14
p1015[0...n]	CO: Fixed speed setpoint 15/n_set_fixed 15
r1024	CO: Fixed speed setpoint effective / n _set_fixed eff
r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG
r1050	CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG
r1073	CO: Main setpoint effective / Main setpoint eff
r1077	CO: Supplementary setpoint effective / Suppl setpoint eff
r1078	CO: Total setpoint effective / Total setpoint eff
p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos
r1084	CO: Speed limit positive effective / n_limit pos eff
p1086[0...n]	CO: Speed limit in negative direction of rotation / n _limit neg
r1087	CO: Speed limit negative effective / n _limit neg eff
r1112	CO: Speed setpoint after minimum limiting / n_set aft min_lim
r1114	CO: Setpoint after the direction limiting / Setp after limit
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp
r1149	CO: Ramp-function generator acceleration / RFG acceleration
r1170	CO: Speed controller setpoint sum / n_ctrl setp sum
r1258	CO: Vdc controller output / Vdc_ctrl output
r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output
r1337	CO: Actual slip compensation / Slip comp act val
r1343	CO: I_max controller frequency output / I_max_ctrl f_outp
r1348	CO: U/f control Eco factor actual value / U/f Eco fac act v
r1438	CO: Speed controller speed setpoint / n_ctrl n_set
r1445	CO: Actual speed smoothed / n _act smooth
r1468	CO: Speed controller P-gain effective / n _ctr Kp eff

r1482	CO: Speed controller I torque output / n_ctrl I-M_outp
r1493	CO: Moment of inertia total, scaled / M_mom inert tot_sc
r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl
r1518[0...1]	CO: Accelerating torque / M_accel
p1520[0...n]	CO: Torque limit upper / M_max upper
p1521[0...n]	CO: Torque limit lower / M_max lower
r1538	CO: Upper effective torque limit / M_max upper eff
r1539	CO: Lower effective torque limit / M_max lower eff
r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall
r1568[0...5]	CO: Open-loop flux control closed-loop controlled reluctance motor / Flux ctrl SRM
p1570[0...n]	CO: Flux setpoint / Flex setp
r1593[0...1]	CO: Field weakening controller / flux controller output / Field/FI_ctrl outp
r1597	CO: Field weakening controller output / Field_ctrl outp
r1598	CO: Total flux setpoint / Flux setp total
r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set
r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set
r1770	CO: Motor model speed adaptation proportional component / MotMod n_adapt Kp
r1771	CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn
r1801[0...1]	CO: Pulse frequency / Pulse frequency
r1809	CO: Modulator mode actual / Modulator mode act
r2050[0...11]	CO: PROFIBUS PZD receive word / PZD recv word
r2060[0...10]	CO: PROFIdrive PZD receive double word / PZD recv DW
r2089[0...4]	CO: Send binector-connector converter status word / Bin/con ZSW send
r2120	CO: Sum of fault and alarm buffer changes / Sum buffer changed
r2121	CO: Counter alarm buffer changes / Alrm buff changed
r2131	CO: Actual fault code / Act fault code
r2132	CO: Actual alarm code / Actual alarm code
r2169	CO: Actual speed smoothed signals / n_act smth message
p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val1
p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2
p2203[0...n]	CO: Technology controller fixed value 3 / Tec_ctr fix val 3
p2204[0...n]	CO: Technology controller fixed value 4 / Tec_ctr fix val 4
p2205[0...n]	CO: Technology controller fixed value 5 / Tec_ctr fix val 5
p2206[0...n]	CO: Technology controller fixed value 6 / Tec_ctr fix val 6
p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8
p2209[0...n]	CO: Technology controller fixed value 9 / Tec_ctr fix val 9
p2210[0...n]	CO: Technology controller fixed value 10 / Tec_ctr fix val 10
p2211[0...n]	CO: Technology controller fixed value 11 / Tec_ctr fix val 11
p2212[0...n]	CO: Technology controller fixed value 12 / Tec_ctr fix val 12
p2213[0...n]	CO: Technology controller fixed value 13 / Tec_ctr fix val 13
p2214[0...n]	CO: Technology controller fixed value 14 / Tec_ctr fix val 14
p2215[0...n]	CO: Technology controller fixed value 15 / Tec_ctr fix val 15
r2224	CO: Technology controller fixed value effective / Tec_ctr FixVal eff
r2245	CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG
r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt
r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt
r2272	CO: Technology controller actual value scaled / Tech_ctrl act scal
r2273	CO: Technology controller error / Tec_ctrl error
p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig
p2295	CO: Technology controller output scaling / Tec_ctrl outp scal

r2344	CO: Technology controller last speed setpoint (smoothed) / Tec_ctrl n_setp_sm
r2397[0...1]	CO: Energy-saving mode output speed actual / En_sav n_outp act
p2900[0...n]	CO: Fixed value 1 [\%] / Fixed value 1 [\%]
p2901[0...n]	CO: Fixed value 2 [\%] / Fixed value 2 [\%]
r2902[0...14]	CO: Fixed values [\%] / Fixed values [\%]
p2930[0...n]	CO: Fixed value M [Nm] / Fixed value M [Nm]
r3131	CO: Actual fault value / Act fault val
r3132	CO: Actual component number / Comp_no act
r8745[0...15]	CO: CAN free PZD receive objects 16 bit / Free PZD recv 16
r8747[0...7]	CO: CAN free PZD receive objects 32 bit / Free PZD recv 32
r8762	CO: CAN operating mode display / Op mode display
r8784	CO: CAN status word / Status word
r8792[0]	CO: CAN velocity mode 116 setpoint / Vel mod I16 set
r8796[0]	CO: CAN profile velocity mode I 32 setpoints / Pr vel mol32 set
r8797[0]	CO: CAN profile torque mode I16 setpoints / Pr Tq mod I16 set
r11060	CO: Free tec_ctrl 0 setpoint after ramp-function generator / Ftec0 setp aft RFG
r11072	CO: Free tec_ctrl 0 actual value after limiter / Ftec0 act v af lim
r11073	CO: Free tec_ctrl 0 system deviation / Ftec0 sys dev
p11091	CO: Free tec_ctrl 0 limit maximum / Ftec0 lim max
p11092	CO: Free tec_ctrl 0 limit minimum / Ftec0 lim min
r11094	CO: Free tec_ctrl 0 output signal / Ftec0 out_sig
r11160	CO: Free tec_ctrl 1 setpoint after ramp-function generator / Ftec1 setp aft RFG
r11172	CO: Free tec_ctrl 1 actual value after limiter / Ftec1 act v af lim
r11173	CO: Free tec_ctrl 1 system deviation / Ftec1 sys dev
p11191	CO: Free tec_ctrl 1 limit maximum / Ftec1 lim max
p11192	CO: Free tec_ctrl 1 limit minimum / Ftec1 lim min
r11194	CO: Free tec_ctrl 1 output signal / Ftec1 out_sig
r11260	CO: Free tec_ctrl 2 setpoint after ramp-function generator / Ftec2 setp aft RFG
r11272	CO: Free tec_ctrl 2 actual value after limiter / Ftec2 act v af lim
r11273	CO: Free tec_ctrl 2 system deviation / Ftec2 sys dev
p11291	CO: Free tec_ctrl 2 limit maximum / Ftec2 lim max
p11292	CO: Free tec_ctrl 2 limit minimum / Ftec2 lim min
r11294	CO: Free tec_ctrl 2 output signal / Ftec2 out_sig
r20095	CO: ADD 0 output Y / ADD 0 output Y
r20099	CO: ADD 1 output Y / ADD 1 output Y
r20103	CO: SUB 0 difference Y / SUB 0 difference Y
r20107	CO: SUB 1 difference Y / SUB 1 difference Y
r20111	CO: MUL 0 product $\mathrm{Y} / \mathrm{MUL} 0$ product Y
r20115	CO: MUL 1 product $\mathrm{Y} / \mathrm{MUL} 1$ product Y
r20119[0...2]	CO: DIV 0 quotient / DIV 0 quotient
r20124[0...2]	CO: DIV 1 quotient / DIV 1 quotient
r20129	CO: AVA 0 output Y / AVA 0 output Y
r20134	CO: AVA 1 output Y / AVA 1 output Y
r20220	CO: NSW 0 output Y / NSW 0 output Y
r20225	CO: NSW 1 output Y / NSW 1 output Y
r20231	CO: LIM 0 output Y / LIM 0 output Y
r20239	CO: LIM 1 output Y / LIM 1 output Y
r20247	CO: PT1 0 output Y / PT1 0 output Y
r20253	CO: PT1 1 output Y / PT1 1 output Y
r20261	CO: INT 0 output Y / INT 0 output Y
r20286	CO: DIF 0 output Y / DIF 0 output Y
r20309	CO: ADD 2 output Y / ADD 2 output Y
r20373	CO: PLI 0 output Y / PLI 0 output Y
r20379	CO: PLI 1 output Y / PLI 1 output Y
r31024	CO: Multi-zone control setpoint output / Zone_ctrl set outp

2.4.5 Connector/binector outputs (CO/BO)

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: CO/BO
r0046.0... 31 CO/BO: Missing enable sig / Missing enable sig
r0050.0... 1 CO/BO: Command Data Set CDS effective / CDS effective
r0051.0... 1 CO/BO: Drive Data Set DDS effective / DDS effective
r0052.0... 15 CO/BO: Status word 1 / ZSW 1
r0053.0... 11 CO/BO: Status word 2 / ZSW 2
r0054.0... 15 CO/BO: Control word 1 / STW 1
r0055.0... 15 CO/BO: Supplementary control word / Suppl STW
r0056.0... 15 CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl
r0056.0... 13 CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl
r0722.0... 12 CO/BO: CU digital inputs status / CU DI status
r0723.0... 12 CO/BO: CU digital inputs status inverted / CU DI status inv
r0835.2... 8 CO/BO: Data set changeover status word / DDS_ZSW
r0836.0... 1 CO/BO: Command Data Set CDS selected / CDS selected
r0837.0... 1 CO/BO: Drive Data Set DDS selected / DDS selected
r0863.1 CO/BO: Drive coupling status word/control word / CoupleZSW/STW
r0898.0... 10 CO/BO: Control word sequence control / STW seq_ctrl
r0899.0... 11 CO/BO: Status word sequence control / ZSW seq_ctrl
r1099.0 CO/BO: Skip band status word / Skip band ZSW
r1198.0... 15 CO/BO: Control word setpoint channel / STW setpoint chan
r1199.0...8 CO/BO: Ramp-function generator status word / RFG ZSW
r1204.0... 13 CO/BO: Flying restart U/f control status / FlyRest Uf st
r1204.0... 15 CO/BO: Flying restart U/f control status / FlyRest Uf st
r1205.0... 15 CO/BO: Flying restart vector control status / FlyRest vector st
r1205.0... 20 CO/BO: Flying restart vector control status / FlyRest vector st
r1214.0... 15 CO/BO: Automatic restart status / AR status
r1239.8... 13 CO/BO: DC braking status word / DCBRK ZSW
r1261.0... 11 CO/BO: Bypass control/status word / Bypass STW / ZSW
r1407.0... 23 CO/BO: Status word speed controller / ZSW n_ctrl
r1408.0... 14 CO/BO: Status word current controller / ZSW I_ctrl
r1838.0... 15 CO/BO: Gating unit status word 1 / Gating unit ZSW1
r2129.0... 15 CO/BO: Faults/alarms trigger signal / F/A trigger signal
r2135.12... 15 CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2
r2138.7...15 CO/BO: Control word faults/alarms / STW fault/alarm
r2139.0... 15 CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1
r2197.0... 13 CO/BO: Status word monitoring 1 / ZSW monitor 1
r2198.4... 12 CO/BO: Status word monitoring 2 / ZSW monitor 2
r2199.0... 5 CO/BO: Status word monitoring 3 / ZSW monitor 3
r2225.0 CO/BO: Technology controller fixed value selection status word / Tec_ctr FixVal ZSW
r2349.0... 12 CO/BO: Technology controller status word / Tec_ctrl status
r2379.0... 7 CO/BO: Closed-loop cascade control status word / Csc_ctrl ZSW
r2399.0...8 CO/BO: Energy-saving mode status would / En_save ZSW
r3113.0... 15 CO/BO: NAMUR message bit bar / NAMUR bit bar
r3333.0... 3 CO/BO: $2 / 3$ wire control control word / $2 / 3$ wire STW
r3859.1 CO/BO: DC quantity control status word / DC_ctrl ZSW
r3859.0... 1 CO/BO: Compound braking/DC quantity control status word / Comp-br/DC_ctr ZSW
r3889.0... 10 CO/BO: ESM status word / ESM ZSW
r4022.0... 3 CO/BO: PM330 digital inputs status / PM330 DI status
r4023.0... 3 CO/BO: PM330 digital inputs status inverted / PM330 DI stat inv
r5613.0... 1 CO/BO: Pe energy-saving active/inactive / Pe save act/inact

2.4 BICO parameters (connectors/binectors)

r8795.0... 15 CO/BO: CAN control word / Control word
r11049.0... 11 CO/BO: Free tec_ctrl 0 status word / Ftec0 stat_word
r11149.0...11 CO/BO: Free tec_ctrl 1 status word / Ftec1 stat_word
r11249.0...11 CO/BO: Free tec_ctrl 2 status word / Ftec2 stat_word

2.5 Parameters for write protection and know-how protection

2.5.1 Parameters with "WRITE NO LOCK"

The following list contains the parameters with the "WRITE_NO_LOCK" attribute. These parameters are not affected by the write protection.

p0003	Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm. par_filt
p0124[0...n]	CU detection via LED / CU detection LED
p0970	Reset drive parameters / Drive par reset
p0971	Save parameters / Save par
p0972	Drive unit reset / Drv_unit reset
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
p3981	Faults acknowledge drive object / Faults ackn DO
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p8805	Identification and maintenance 4 configuration / I\&M 4 config
p8806[0...53]	Identification and Maintenance 1 / I\&M 1
p8807[0...15]	Identification and Maintenance 2 / I\&M 2
p8808[0...53]	Identification and Maintenance 3 / I\&M 3
p8809[0...53]	Identification and Maintenance 4 / I\&M 4
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

2.5.2 Parameters with "KHP_WRITE_NO_LOCK"

The following list contains the parameters with the "KHP_WRITE_NO_LOCK" attribute. These parameters are not affected by the know-how protection.

Product: SINAMI p0003	G120, Version: 4702900, Language: eng, Type: KHP_WRITE_NO_LOCK Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm. par_filt
p0124[0...n]	CU detection via LED / CU detection LED
p0970	Reset drive parameters / Drive par reset
p0971	Save parameters / Save par
p0972	Drive unit reset / Drv_unit reset
p2040	Fieldbus interface monitoring time / Fieldbus t_monit
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
p3981	Faults acknowledge drive object / Faults ackn DO
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p8805	Identification and maintenance 4 configuration / I\&M 4 config
p8806[0...53]	Identification and Maintenance 1 / I\&M 1
p8807[0...15]	Identification and Maintenance 2 / I\&M 2
p8808[0...53]	Identification and Maintenance 3 / I\&M 3
p8809[0...53]	Identification and Maintenance 4 / I\&M 4
p8980	Ethernet/IPprofile / Eth/IP profile
p8981	Ethernet/IP ODVA STOP mode / Eth/IP ODVA STOP

2.5 Parameters for write protection and know-how protection

p8982	Ethernet/IP ODVA speed scaling / Eth/IP ODVA n scal
p8983	Ethernet/IP ODVA torque scaling / Eth/IP ODVA M scal
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

2.5.3 Parameters with "KHP_ACTIVE_READ"

The following list contains the parameters with the "KHP_ACTIVE_READ" attribute.
These parameters can also be read with activated know-how protection.

Product: SINAMICS G120, Version: 4702900, Language: eng, Type: KHP_ACTIVE_READ	
p0015	Macro drive unit / Macro drv unit
p0100	IEC/NEMA mot stds / IEC/NEMA mot stds
p0170	Number of Command Data Sets (CDS) / CDS count
p0180	Number of Drive Data Sets (DDS) / DDS count
p0300[0...n]	Motor type selection / Mot type sel
p0304[0...n]	Rated motor voltage / Mot U_rated
p0305[0...n]	Rated motor current / Mot I_rated
p0505	Selecting the system of units / Unit sys select
p0595	Technological unit selection / Tech unit select
p0730	BI: CU signal source for terminal DO 0 / CU S_src DO 0
p0731	BI: CU signal source for terminal DO 1 / CU S_src DO 1
p0732	BI: CU signal source for terminal DO 2 / CU S_src DO 2
p0806	BI: Inhibit master control / PcCtrl inhibit
p0922	PROFldrive PZD telegram selection / PZD telegr_sel
p1080[0...n]	Minimum speed / n_min
p1082[0...n]	Maximum speed / n_max
p1520[0...n]	CO: Torque limit upper / M_max upper
p2000	Reference speed reference frequency / n_ref f_ref
p2001	Reference voltage / Reference voltage
p2002	Reference current / I_ref
p2003	Reference torque / M_ref
p2006	Reference temp / Ref temp
p2030	Field bus int protocol selection / Field bus protocol
p2038	PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode
p2079	PROFIdrive PZD telegram selection extended / PZD telegr ext
p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764
p7764[0...n]	KHP OEM exception list / KHP OEM excep list
p11026	Free tec_ctrl 0 unit selection / Ftec0 unit sel
p11126	Free tec_ctrl 1 unit selection / Ftec1 unit sel
p11226	Free tec_ctrl 2 unit selection / Ftec2 unit sel

$2.6 \quad$ Quick commissioning ($\mathrm{p} 0010=1$)

The parameters required for the quick commissioning (p0010 = 1) are shown in Table 2-10:
Table 2-10 Quick commissioning (p0010 = 1)

Par. no.	Name	Access level		Changeable
p0010	Drive, commissioning parameter filter	1		C(1) T
p0015	Macro drive unit	1		C(1)
p0100	IEC/NEMA motor standard	1		C(1)
p0205	Power unit application	1		C(1,2)
p0230	Drive filter type, motor side	1		C(1,2)
p0300	Motor type selection	2		C(1,3)
p0301	Motor code number selection	2		C(1,3)
p0304	Rated motor voltage	1		C(1,3)
p0305	Rated motor current	1		C(1,3)
p0306	Number of motors connected in parallel	1		C(1,3)
p0307	Rated motor power	1		C(1,3)
p0308	Rated motor power factor	1		C(1,3)
p0309	Rated motor efficiency	1		C(1,3)
p0310	Rated motor frequency	1		C(1,3)
p0311	Rated motor speed	1		C(1,3)
p0314	Motor pole pair number	4		C(1,3)
p0316	Motor torque constant	3		C(1,3)UT
p0322	Maximum motor speed	1		C(1,3)
p0323	Maximum motor current	1		C(1,3)
p0335	Motor cooling type	2		$\mathrm{C}(1,3) \mathrm{T}$
p0500	Technology application	4	$\begin{aligned} & \text { PM230 } \\ & \text { PM330 } \end{aligned}$	$\mathrm{C}(1,5) \mathrm{T}$
p0500	Technology application	2	PM240 PM250 PM260, PM330	$\mathrm{C}(1,5) \mathrm{T}$
p0640	Current limit	2		C(1,3)UT
p0922	PROFIdrive telegram selection	1		C(1)T
p0970	Reset drive parameters	1		$\mathrm{C}(1,30)$
p1080	Minimum speed	1		C(1)T
p1082	Maximum speed	1		$\mathrm{C}(1) \mathrm{T}$
p1120	Ramp-function generator ramp-up time	1		C(1)UT
p1121	Ramp-function generator ramp-down time	1		C(1)UT
p1135	OFF3 ramp-down time	2		C(1)UT
p1300	Open-loop/closed-loop control operating mode	2		C(1)T

Table 2-10 Quick commissioning ($\mathrm{p} 0010=1$), continued

Par. no.	Name	Access level		Changeable
p1500	Torque setpoint selection	2		$\mathrm{C}(1) \mathrm{T}$
p1900	Motor data identification and rotating measurement	2		$\mathrm{C}(1) \mathrm{T}$
p3900	Completion of quick commissioning	1		C(1)

If p0010 = 1 is selected, p0003 (user access level) can be used to select the parameters that are to be accessed.

At the end of the quick commissioning, set p3900 $=1$ to perform the required motor calculations and reset all other parameters (not included in p0010 = 1) to their default settings.

Note

This only applies for the quick commissioning.

2 Parameters
2.6 Quick commissioning $(p 0010=1)$

Function diagrams

Content

3.1 Table of contents 494
3.2 Explanation of the function diagrams 499
3.3 Input/output terminals 504
3.4 PROFIenergy 516
3.5 PROFIdrive communication (PROFIBUS/PROFINET) 519
3.6 CANopen communication 534
3.7 Communication, fieldbus interface (USS, MODBUS, BACnet) 541
3.8 Internal control/status words 548
3.9 Setpoint channel 566
3.10 Vector control 576
3.11 Technology functions 600
3.12 Free function blocks 608
3.13 Technology controller 629
3.14 Signals and monitoring functions 634
3.15 Diagnostics 644
3.16 Data sets 650

3.1 Table of contents

3.2 Explanation of the function diagrams 499
1020 - Explanation of the symbols (part 1) 500
1021 - Explanation of the symbols (part 2) 501
1022 - Explanation of the symbols (part 3) 502
1030 - Handling BICO technology 503
3.3 Input/output terminals 504
2201 - Connection overview 505
2221 - Digital inputs, electrically isolated (DI 0 ... DI 5) 506
2242 - Digital outputs (DO 0 ... DO 2) 507
2251 - Analog inputs 0 ... 1 (AI 0 ... AI 1) 508
2252 - Analog input 2 (AI 2) 509
2256 - Analog inputs as digital inputs (DI 11 ... DI 12) 510
2261 - Analog outputs $0 \ldots 1$ (AO $0 \ldots$... AO 1) 511
2270 - Temperature evaluation LG-Ni1000/PT1000 (AI 3) 512
2272 - Two-wire control 513
2273 - Three-wire control 514
2275 - PM330 - digital inputs (DI $0 \ldots$ DI 4), digital outputs (DO $0 \ldots$ DO 1) 515
3.4 PROFlenergy 516
2381 - Control commands and interrogation commands 517
2382 - States 518
3.5 PROFIdrive communication (PROFIBUS/PROFINET) 519
2401 - Overview 520
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 521
2420 - Telegrams and process data (PZD) 522
2440 - PZD receive signals interconnection 523
2441 - STW1 control word interconnection (p2038 = 2) 524
2442 - STW1 control word interconnection (p2038 = 0) 525
2446 - STW3 control word interconnection 526
2450 - PZD send signals interconnection 527
2451 - ZSW1 status word interconnection (p2038 = 2) 528
2452 - ZSW1 status word interconnection (p2038 = 0) 529
2456 - ZSW3 status word interconnection 530
2468 - Receive telegram, free interconnection via BICO (p0922 = 999) 531
2470 - Send telegram, free interconnection via BICO (p0922 = 999) 532
2472 - Status words, free interconnection 533
3.6 CANopen communication 534
9204 - Receive telegram, free PDO mapping (p8744 = 2) 535
9206 - Receive telegram, Predefined Connection Set (p8744 = 1) 536
9208 - Send telegram, free PDO mapping (p8744 = 2) 537
9210 - Send telegram, Predefined Connection Set (p8744 = 1) 538
9220 - Control word, CANopen 539
9226 - Status word, CANopen 540
3.7 Communication, fieldbus interface (USS, MODBUS, BACnet) 541
9310 - Configuration, addresses and diagnostics 542
9342 - STW1 control word interconnection 543
9352 - ZSW1 status word interconnection 544
9360 - Receive telegram, free interconnection via BICO (p0922 = 999) 545
9370 - Send telegram, free interconnection via BICO (p0922 = 999) 546
9372 - Status words, free interconnection 547
3.8 Internal control/status words 548
2501 - Control word, sequence control 549
2503 - Status word, sequence control 550
2505 - Control word, setpoint channel 551
2510 - Status word 1 (r0052) 552
2511 - Status word 2 (r0053) 553
2512 - Control word 1 (r0054) 554
2513 - Control word 2 (r0055) 555
2522 - Status word, speed controller 556
2526 - Status word, closed-loop control 557
2530 - Status word, closed-loop current control 558
2534 - Status word, monitoring functions 1 559
2536 - Status word, monitoring functions 2 560
2537 - Status word, monitoring functions 3 561
2546 - Control word, faults/alarms 562
2548 - Status word, faults/alarms 1 and 2 563
2610 - Sequence control - Sequencer 564
2634 - Sequence control - Missing enable signals 565
3.9 Setpoint channel 566
3001 - Overview 567
3010 - Fixed speed setpoints, binary selection (p1016 = 2) 568
3011 - Fixed speed setpoints, direct selection (p1016 = 1) 569
3020 - Motorized potentiometer 570
3030 - Main/supplementary setpoint, setpoint scaling, jogging 571
3040 - Direction limitation and direction reversal 572
3050 - Skip frequency bands and speed limitations 573
3070 - Extended ramp-function generator 574
3080 - Ramp-function generator selection, status word, tracking 575
3.10 Vector control 576
6020 - Speed control and generation of the torque limits, overview 577
6030 - Speed setpoint, droop 578
6031 - Pre-control balancing, acceleration model 579
6040 - Speed controller 580
6050 - Kp_n-/Tn_n adaptation 581
6060 - Torque setpoint 582
6220 - Vdc_max controller and Vdc_min controller (vector control, PM230/PM240/PM330) 583
6300 - U/f control, overview 584
6301 - U/f characteristic and voltage boost 585
6310 - Resonance damping and slip compensation (U/f) 586
6320 - Vdc_max controller and Vdc_min controller (PM230/PM240/PM330), (U/f) 587
6490 - Speed control configuration 588
6491 - Flux control configuration 589
6630 - Upper/lower torque limit 590
6640 - Current/power/torque limits 591
6700 - Current control, overview 592
6710 - Current setpoint filter 593
6714 - Iq and Id controllers 594
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) 595
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) 596
6730 - Interface to the Power Module (ASM, p0300 = 1) 597
6797 - Closed-loop DC quantity control 598
6799 - Display signals 599
3.11 Technology functions 600
7017 - DC brake (p0300 = 1) 601
7030 - Free technology controller 0, 1, 2 602
7032 - Multi-zone control 603
7033 - Essential service mode (ESM) 604
7035 - Bypass 605
7036 - Cascade control 606
7038 - Energy-saving mode 607
3.12 Free function blocks 608
7200 - Sampling times of the runtime groups 609
7210 - AND (AND function blocks with 4 inputs) 610
7212 - OR (OR function blocks with 4 inputs) 611
7214 - XOR (XOR function blocks with 4 inputs) 612
7216 - NOT (inverter) 613
7220 - ADD (adder with 4 inputs), SUB (subtracter) 614
7222 - MUL (multiplier), DIV (divider) 615
7224 - AVA (absolute value generator) 616
7225 - NCM (numeric comparator) 617
7226 - PLI (polyline scaling) 618
7230 - MFP (pulse generator), PCL (pulse contractor) 619
7232 - PDE (ON delay) 620
7233 - PDF (OFF delay) 621
7234 - PST (pulse stretcher) 622
7240 - RSR (RS flip-flop), DFR (D flip-flop) 623
7250 - BSW (binary change-over switch), NSW (numeric change-over switch) 624
7260 - LIM (limiter) 625
7262 - PT1 (smoothing element) 626
7264 - INT (integrator), DIF (derivative-action element) 627
7270 - LVM (double-sided limit monitor with hysteresis) 628
3.13 Technology controller 629
7950 - Fixed value selection binary (p2216 = 2) 630
7951 - Fixed value selection direct (p2216 = 1) 631
7954 - Motorized potentiometer 632
7958 - Closed-loop control 633
3.14 Signals and monitoring functions 634
8005 - Overview 635
8010 - Speed signals 1 636

3 Function diagrams

3.1 Table of contents
8011 - Speed signals 2 637
8012 - Torque signals, motor blocked/stalled 638
8013 - Load monitoring 639
8014 - Thermal monitoring, power unit 640
8016 - Thermal monitoring, motor 641
8017 - Thermal motor models 642
8020 - Monitoring functions 1 643
3.15 Diagnostics 644
8050 - Overview 645
8060 - Fault buffer 646
8065 - Alarm buffer 647
8070 - Faults/alarms trigger word (r2129) 648
8075 - Faults/alarms configuration 649
3.16 Data sets 650
8560 - Command Data Sets (CDS) 651
8565 - Drive Data Sets (DDS) 652

3.2 Explanation of the function diagrams

Function diagrams

1020 - Explanation of the symbols (part 1) 500
1021 - Explanation of the symbols (part 2) 501
1022 - Explanation of the symbols (part 3) 502
1030 - Handling BICO technology 503

The digital signal x must have the value "1" without interruption during time T1 or must have the value " 0 " during time T2 before output y changes its signal sta

Transfer function

Handling BICO technology

Binector:

\qquad Binectors are binary signals that can be freely interconnected ($\mathrm{BO}=$ Binector Output) They represent a bit of a "BO:" display parameter (e.g. bit 15 from ro723).

Connector: \qquad Connectors are "analog signals" that can be freely interconnected (e.g. percentage variables, speeds or torques) Connectors are also "CO:" display parameters (CO = Connector Output).

Parameterization

At the signal destination, the required binector or connector is selected using appropriate parameters:
"BI:" parameter for binectors ($\mathrm{BI}=$ Binector Input
"Cl:" parameter for connectors (CI = Connector Input)

Example:

The main setpoint for the speed controller (CI: p1070) should be received from the output of the motorized potentiometer (CO: r1050) and the "jog" command (BI: p1055) from Digital Input DI 0 (BO: r0722.0, Terminal 5 (KI. 5)) on the CU230

Parameterizing steps

(1) $p 1055[0]=722.0 \quad$ Terminal $5(\mathrm{KI} .5)$ acts as "Jog bit 0 ".
(2) $p 1070[0]=1050$ The output of the motorized potentiometer acts as main setpoint for the speed controller.

1	2	3	4	5	6		7	8
Explanations on the function diagrams					fp_1030_97	1.vsd	Function diagram	- 1030-
Handling BICO technology					07.04.2014	V4.7	G120 CU230P-2	

3.3 Input/output terminals

Function diagrams

2201 - Connection overview 505
2221 - Digital inputs, electrically isolated (DI 0 ... DI 5) 506
2242 - Digital outputs (DO 0 ... DO 2) 507
2251 - Analog inputs 0 ... 1 (AI $0 \ldots \mathrm{Al} 1$) 508
2252 - Analog input 2 (AI 2) 509
2256 - Analog inputs as digital inputs (DI 11 ... DI 12) 510
2261 - Analog outputs $0 \ldots 1$ (AO $0 \ldots$ AO 1) 511
2270 - Temperature evaluation LG-Ni1000/PT1000 (AI 3) 512
2272 - Two-wire control 513
2273 - Three-wire control 514
2275 - PM330-digital inputs (DI $0 \ldots$ DI 4), digital outputs (DO $0 \ldots$ DO 1) 515

$3.4 \quad$ PROFlenergy

Function diagrams

2381 - Control commands and interrogation commands 517
2382 - States
Control commands and interrogation commands

\qquad
"Query_Version"
"Get_Measurement_List"
"Get_Measurement_List_with_object_number" \longrightarrow
"Get_Measurement_Values"
"Get_Measurement_Values_with_object_number" \longrightarrow

3.5 PROFIdrive communication (PROFIBUS/PROFINET)
Function diagrams
2401 - Overview 520
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 521
2420 - Telegrams and process data (PZD) 522
2440 - PZD receive signals interconnection 523
2441 - STW1 control word interconnection (p2038 = 2) 524
2442 - STW1 control word interconnection (p2038 = 0) 525
2446 - STW3 control word interconnection 526
2450 - PZD send signals interconnection 527
2451 - ZSW1 status word interconnection (p2038 = 2) 528
2452 - ZSW1 status word interconnection (p2038 = 0) 529
2456 - ZSW3 status word interconnection 530
2468 - Receive telegram, free interconnection via BICO (p0922 = 999) 531
2470 - Send telegram, free interconnection via BICO (p0922 = 999) 532
2472 - Status words, free interconnection 533

<1> If p0922 = 999 is changed to another value, the telegram is automatically assigned
If p0922 unequal 999 is changed to p0922 $=999$, the "old" telegram assignment is maintained!
<2> Freely interconnectable (pre-setting: MELD_NAMUR).
<3> Can be freely connected.
$<4>$ In order to comply with the PROFIdrive profile, PZD1 must be used as control word 1 (STW1) or status word 1 (ZSW1)
p2037 $=2$ should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile.

<3> r2090...r2095 Bit r2050[0...7] WORD

Signal receivers for PZD receive signals

	Signal receivers for PZD receive signals			<1>		<2>	
	Signal	Meaning	PROFIdrive Signal No.	Interconnection parameter	Function diagram	Data type	Scaling
	STW1	Control word 1	1	(bit serial)	[2442]	U16	-
	NSOLL_A	Speed setpoint A (16-bit)	5	p1070	[3030.2]	116	4000 hex $\widehat{\text { p } 2000 ~}$
<4>	M_LIM	Torque limit	310	p1552, p1554	[6060.1]	U16	4000 hex $\widehat{100 \%}$
<4>	STW3	Control word 3	304	(bit serial)	[2446]	U16	-

<1> When selecting a standard telegram or a manufacturer-specific telegram via p0922, these interconnection parameters of the command data set CDS are automatically set to 0 .
$2>$ Data type according to to the PROFIdrive profile: $116=\operatorname{Integer} 16, \mathrm{U} 16=$ Unsigned16
<3> Display parameters for receive data according to [2468]
<4> Only SIEMENS telegram 350

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET)					fp_2440_97	64.vsd	Function diagram	- 2440 -
PZD receive signals interconnection					07.04.2014	V4.7	CU230P-2 DP/PN	

<1> Used in telegram 20.
<4> The direction reversal can be locked. See p1110 and p1111.
<2> Bit 10 in STW1 must be set to ensure that the drive accepts the process data
<3> Interconnection is not disabled.

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET)					fp_2441_97	1.vsd	Function diagram	-2441-
STW1 control word interconnection (p2038 = 2)					07.04.2014	V4.7	CU230P-2 DP/PN	

PZD send word 1...8 p2051[0..7] WORD r2053[0...7] WORD

Telegram assignment according to p0922
[2420]

PROFIdrive sen telegram

<1> Data type according to the PROFIdrive profile: $116=$ Integer16, U16 = Unsigned16.

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET)					fp_2450_97_	4.vsd	Function diagram	- 2450 -
PZD send signals interconnection					07.04.2014	V4.7	CU230P-2 DP/PN	

$\begin{aligned} & \omega \\ & \stackrel{N}{\circ} \end{aligned}$	Signal sources for ZSW1 in Interface Mode VIK-NAMUR (p2038 = 2)					
	Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted <1>
$\begin{aligned} & N \\ & \underset{\sim}{N} \end{aligned}$	zSW1.0	1 = Ready for switching on	p2080[0] $=$ r0899.0	[2503.7]	Sequence control	-
,	ZSW1.1	1 = Ready for operation (DC link loaded, pulses inhibited)	p2080[1] $=$ r0899.1	[2503.7]	Sequence control	-
Σ	ZSW1.2	1 = Operation enabled (drive follows n _set)	p2080[2] = r0899.2	[2503.7]	Sequence control	-
	zSW1.3	1 = Fault present	p2080[3] = r2139.3	[2548.7]	[8060]	-
	ZSW1.4	1 = No coast down active (OFF2 inactive)	p2080[4] $=$ r0899.4	[2503.7]	Sequence control	-
	ZSW1.5	1 = No Quick stop active (OFF3 inactive)	p2080[5] $=$ r0899.5	[2503.7]	Sequence control	-
	zSW1.6	1 = Switching on inhibited active	p2080[6] $=$ r0899.6	[2503.7]	Sequence control	-
	ZSW1.7	1 = Alarm present	p2080[7] = r2139.7	[2548.7]	[8065]	-
	ZSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off	p2080[8] = r2197.7	[2534.7]	[8011]	-
	ZSW1.9	1 = Control requested	p2080[9] $=$ r0899.9	[2503.7]	[2503]	-
	ZSW1.10	$1=\mathrm{f}$ or n comparison value reached/exceeded	p2080[10] $=$ r2199.1	[2537.7]	[8010]	-
	ZSW1.11	$1=1, M$, or P limit not reached	p2080[11] $=$ r0056.13	[2522.7]	[6060]	\checkmark
	ZSW1.12	Reserved	-	-	-	-
	ZSW1.13	1 = No motor overtemperature alarm	p2080[13] $=$ r2135.14	[2548.7]	[8016]	\checkmark
	ZSW1.14	$\begin{aligned} & 1=\text { Motor rotates forwards }\left(n_{\text {act }} \geq 0\right) \\ & 0=\text { Motor rotates backwards }\left(n_{\text {_act }}<0\right) \end{aligned}$	p2080[14] = r2197.3	[2534.7]	[8011]	-
	ZSW1. 15	1 = Display CDS	$\begin{gathered} \mathrm{p} 2080[15]= \\ <2> \end{gathered}$	-	-	-
	<1> The ZSW1 is generated using the binector-connector converter (BI: p2080[0..15], inversion: p2088[0].0 ... p2088[0].15). <2> Interconnection is not disabled.					

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET)					fp_2451_97	1.vsd	Function diagram	- 2451 -
ZSW1 status word interconnection (p2038 = 2)					07.04.2014	V4.7	CU230P-2 DP/PN	

<1> To comply with the PROFIdrive profile, send word 1 must be used as status word 1 (ZSW1).
<2> Physical word values are inserted in the telegram as referenced variables. p200x apply as reference variables (telegram contents $=4000$ hex, if the input variable has the value p200x).
The following applies for temperature values: $100{ }^{\circ} \mathrm{C} \rightarrow 100 \%=4000$
<3> A PZD send word can either be supplied via connector input p2051[x] (WORD) or via p2061[x] (DWORD).

3.6 CANopen communication

Function diagrams

9204 - Receive telegram, free PDO mapping (p8744 = 2) 535
9206 - Receive telegram, Predefined Connection Set (p8744 = 1) 536
9208 - Send telegram, free PDO mapping (p8744 = 2) 537
9210 - Send telegram, Predefined Connection Set (p8744 = 1) 538
9220 - Control word, CANopen 539
9226 - Status word, CANopen 540

$\begin{aligned} & \omega \\ & \stackrel{\omega}{\omega} \end{aligned}$	Signal targets for control word CANopen (r8795)				
	Signal	Meaning	Interconnection parameters <1>	[Function diagram] internal control word	[Function diagram] signal target
uədon \forall ' 'pıом ןоиұиoכ - 0ZZ6	STW. 0	$\boldsymbol{\Sigma}=$ ON (pulses can be enabled) $0=$ OFF1 (braking with RFG, then pulse suppression and ready for switching on)	p0840[0] = r2090.0	[2501.3]	Sequence control
	STW. 1	1 = No coast-down activated (enable possible) $0=$ Activate coast-down (immediate pulse suppression and switching on inhibited)	p0844[0] = r2090.1	[2501.3]	Sequence control
	STW. 2	1 = No Quick stop activated (enable possible) $0=$ Activate Quick stop (OFF3 ramp p1135, then pulse suppression and switching on inhibited)	p0848[0] = r2090.2	[2501.3]	Sequence control
	STW. 3	1 = Enable operation (pulses can be enabled) $0=$ Inhibit operation (suppress pulses)	p0852[0] = r2090.3	[2501.3]	Sequence control
	STW. 4	1 = Enable ramp-function generator $0=$ Inhibit ramp-function generator	p1140[0] $=$ r2090.4 ${ }^{\text {c2> }}$	[2501.3]	[3070]
	STW. 5	1 = Continue ramp-function generator 0 = Freeze ramp-function generator	$\mathrm{p} 1141[0]=\mathrm{r} 2090.5$	[2501.3]	[3070]
	STW. 6	1 = Enable setpoint $0=$ Inhibit setpoint (set the ramp-function generator input to zero)	$\mathrm{p} 1142[0]=\mathrm{r} 2090.6$	[2501.3]	[3070]
	STW. 7	Σ = Acknowledge fault	p2103[0] = r2090.7	[2546.1]	[8060]
	STW. 8	1 = Stop	$\underset{\substack{<2>\\<3>}}{ }$	-	[3070]
	STW. 9	Reserved	-	-	-
	STW. 10	Reserved	-	-	-
	STW. 11	Can be freely connected	pxxxx[y] $=$ r2090.11	-	-
	STW. 12	Can be freely connected	$\mathrm{pxxxx[y]}=\mathrm{r} 2090.12$	-	-
	STW. 13	Can be freely connected	pxxxx[y] $=$ r2090.13	-	-
	STW. 14	Can be freely connected	pxxxx[y] $=$ r2090.14	-	-
	STW. 15	Can be freely connected	pxxxx[y] $=$ r2090.15	-	-

<1> Depending on the position of the CANopen control word in p8750, the number of the binector to be connected changes.
<2> Not taken into account for the automatic control word interconnection (p8790).

1	2	3	4	5	6		7	8
CANopen					fp_9220_97_68.vsd		Function diagram	-9220-
Control word, CANopen					07.04.2014	V4.7	G120 CU230P-2 CAN	

3.7 Communication, fieldbus interface (USS, MODBUS, BACnet)
Function diagrams
9310 - Configuration, addresses and diagnostics 542
9342 - STW1 control word interconnection 543
9352 - ZSW1 status word interconnection 544
9360 - Receive telegram, free interconnection via BICO (p0922 = 999) 545
9370 - Send telegram, free interconnection via BICO (p0922 = 999) 546
9372 - Status words, free interconnection 547

$\begin{aligned} & \dot{\omega} \\ & \stackrel{1}{o} \end{aligned}$	Signal sources for fieldbus ZSW1					
	Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted <1>
\bigcirc	ZSW1.0	1 = Ready for switching on	p2080[0] = 08899.0	[2503.7]	Sequence control	-
1	zsw1.1	1 = Ready for operation (DC link loaded, pulses inhibited)	p2080[1] = r0899.1	[2503.7]	Sequence control	-
\sum	ZSW1.2	1 = Operation enabled (drive follows n _set)	p2080[2] $=$ r0899.2	[2503.7]	Sequence control	-
$\stackrel{\stackrel{1}{0}}{\sim}$	ZSW1.3	1 = Fault present	p2080[3] $=$ r2139.3	[2548.7]	[8060]	-
\bigcirc	zSW1.4	1 = No coast down active (OFF2 inactive)	p2080[4] $=$ r0899.4	[2503.7]	Sequence control	-
$\stackrel{\stackrel{\rightharpoonup}{\top}}{ }$	ZSW1.5	1 = No Quick stop active (OFF3 inactive)	p2080[5] = r0899.5	[2503.7]	Sequence control	-
$\frac{1}{2}$	ZSW1.6	$1=$ Switching on inhibited active	p2080[6] $=$ r0899.6	[2503.7]	Sequence control	-
꿀	ZSW1.7	1 = Alarm present	p2080[7] $=$ r2139.7	[2548.7]	[8065]	-
	ZSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off	p2080[8] = r2197.7	[2534.7]	[8011]	-
	ZSW1.9	1 = Control requested <2>	p2080[9] = r0899.9	[2503.7]	[2503]	-
	ZSW1.10	$1=\mathrm{f}$ or n comparison value reached/exceeded	p2080[10] $=$ r2199.1	[2536.7]	[8010]	-
	ZSW1.11	$1=1, \mathrm{M}$, or P limit not reached	p2080[11] $=$ r1407.7	[2522.7]	[6060]	\checkmark
	ZSW1.12	Reserved	p2080[12] $=$ r0899.12	[2503.7]	[2701]	-
	ZSW1.13	1 = No motor overtemperature alarm	p2080[13] $=$ r2135.14	[2548.7]	[8016]	\checkmark
	ZSW1.14	$\begin{aligned} & 1=\text { Motor rotates forwards }\left(n _ \text {act } \geq 0\right) \\ & 0=\text { Motor rotates backwards }\left(n_{-} \text {act }<0\right) \end{aligned}$	p2080[14] $=$ r2197.3	[2534.7]	[8011]	-
	ZSW1.15	1 = No alarm, thermal overload, power unit	p2080[15] $=$ r2135.15	[2548.7]	[8014]	\checkmark

<1> The ZSW1 is generated using the binector-connector converter (BI: p2080[0..15], inversion: p2088[0].0 ... p2088[0].15). $<2>$ The drive is ready to accept data.

1	2	3	4	5	6		7	8
Fieldbus Interface (USS, MODBUS, BACnet)					fp_9352_97	2.vsd	Function diagram	-9352-
ZSW1 status word interconnection					07.04.2014	V4.7	CU230P-2 BT/HV	

3.8 Internal control/status words

Function diagrams

2501 - Control word, sequence control 549
2503 - Status word, sequence control 550
2505 - Control word, setpoint channel 551
2510 - Status word 1 (r0052) 552
2511 - Status word 2 (r0053) 553
2512 - Control word 1 (r0054) 554
2513 - Control word 2 (r0055) 555
2522 - Status word, speed controller 556
2526 - Status word, closed-loop control 557
2530 - Status word, closed-loop current control 558
2534 - Status word, monitoring functions 1 559
2536 - Status word, monitoring functions 2 560
2537 - Status word, monitoring functions 3 561
2546 - Control word, faults/alarms 562
2548 - Status word, faults/alarms 1 and 2 563
2610 - Sequence control - Sequencer 564
2634 - Sequence control - Missing enable signals 565

$3.9 \quad$ Setpoint channel

Function diagrams

3001 - Overview 567
3010 - Fixed speed setpoints, binary selection (p1016 = 2) 568
3011 - Fixed speed setpoints, direct selection (p1016 = 1) 569
3020 - Motorized potentiometer 570
3030 - Main/supplementary setpoint, setpoint scaling, jogging 571
3040 - Direction limitation and direction reversal 572
3050 - Skip frequency bands and speed limitations 573
3070 - Extended ramp-function generator 574
3080 - Ramp-function generator selection, status word, tracking 575

1	2	3	4	5	6		7	8
Setpoint channel					fp_3011_97	51.vsd	Function diagram	- 3011 -
Fixed speed setpoints, direct selection (p1016 = 1)					07.04.2014	V4.7	G120 CU230P-2	

STW seq_ctrl

PcCtrl active

 r0807.0 p1055 r089 [2501.7] ro898.8Setpoint from external OP or operating tool

1> Jogging can only be activated in the operating state "Ready for operation (S2)
<2> If technology controller is activated (p2200>0, p2251 = 0) connected with r2349.4.
<4> The connection to the source for the main and additional setpoint is estabished automatically via the setting in p1000.

1	2	3	4	5	6		7	8
Setpoint channel					fp_3030_97	$1 . v s d$	Function diagram	3030 -
Main/supplementary setpoint, setpoint scaling, jogging					07.04.2014	V4.7	G120 CU230P-2	

$3.10 \quad$ Vector control

Function diagrams

6020 - Speed control and generation of the torque limits, overview 577
6030 - Speed setpoint, droop 578
6031 - Pre-control balancing, acceleration model 579
6040 - Speed controller 580
6050 - Kp_n-/Tn_n adaptation 581
6060 - Torque setpoint 582
6220 - Vdc_max controller and Vdc_min controller (vector control, PM230/PM240/PM330) 583
6300 - U/f control, overview 584
6301 - U/f characteristic and voltage boost 585
6310 - Resonance damping and slip compensation (U/f) 586
6320 - Vdc_max controller and Vdc_min controller (PM230/PM240/PM330), (U/f) 587
6490 - Speed control configuration 588
6491 - Flux control configuration 589
6630 - Upper/lower torque limit 590
6640 - Current/power/torque limits 591
6700 - Current control, overview 592
6710 - Current setpoint filter 593
6714 - Iq and Id controllers 594
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) 595
6723 - Field weakening controller, flux controller (ASM, p0300 $=1$) 596
6730 - Interface to the Power Module (ASM, p0300 = 1) 597
6797 - Closed-loop DC quantity control 598
6799 - Display signals 599

[^3]

[^4]

ノ๐ұиоэ ィоғэәへ Оレ・غ
sweı6е！р ио！џ৩иヵ」

$\begin{aligned} & \text { n_reg Konfig } \\ & \text { p1400[D] } \end{aligned}$	Speed control configuration			
$\xrightarrow[<3>]{ }$	Bit No.	Meaning		
	00	1 = Automatic Kp/Tn adaptation active		\rightarrow [6040.3]
	\ldots	Reserved		
	05	$1=\mathrm{Kp} / \mathrm{Tn}$ adaptation active		\rightarrow [6040.3]
	\ldots	Reserved		
	15	1 = Sensorless vector control, speed pre-control active		\rightarrow [6030.6]
	\ldots	Reserved		
	18	$1=$ Moment of inertia estimator active	<1>	
	19	1 = Anti-windup for integral component		
	20	1 = Acceleration model		\rightarrow [6031.4]
	21	$1=$ Free Tn reduction active	<2>	
	22	1 = Obtain moment of inertia estimator value for pulse inhibit	<1>	

3.11 Technology functions

Function diagrams

7017 - DC brake (p0300 = 1) 601
7030 - Free technology controller 0, 1, 2 602
7032 - Multi-zone control 603
7033 - Essential service mode (ESM) 604
7035 - Bypass 605
7036 - Cascade control 606
7038 - Energy-saving mode 607

3 Function diagrams

3.12 Free function blocks

$3.12 \quad$ Free function blocks

Function diagrams

7200 - Sampling times of the runtime groups 609
7210 - AND (AND function blocks with 4 inputs) 610
7212 - OR (OR function blocks with 4 inputs) 611
7214 - XOR (XOR function blocks with 4 inputs) 612
7216 - NOT (inverter) 613
7220 - ADD (adder with 4 inputs), SUB (subtracter) 614
7222 - MUL (multiplier), DIV (divider) 615
7224 - AVA (absolute value generator) 616
7225 - NCM (numeric comparator) 617
7226 - PLI (polyline scaling) 618
7230 - MFP (pulse generator), PCL (pulse contractor) 619
7232 - PDE (ON delay) 620
7233 - PDF (OFF delay) 621
7234 - PST (pulse stretcher) 622
7240 - RSR (RS flip-flop), DFR (D flip-flop) 623
7250 - BSW (binary change-over switch), NSW (numeric change-over switch) 624
7260 - LIM (limiter) 625
7262 - PT1 (smoothing element) 626
7264 - INT (integrator), DIF (derivative-action element) 627
7270 - LVM (double-sided limit monitor with hysteresis) 628

	Run-time group						$\begin{aligned} & \text { RTG sampling time [ms] } \\ & \mathrm{r} 20001[0 . .9] \end{aligned}$
	1	2	3	4	5	6	
	$\mathrm{r} 20001[1]=8 \mathrm{~ms}$	$\mathrm{r} 20001[2]=16 \mathrm{~ms}$	r20001[3] $=32 \mathrm{~ms}$	$\mathrm{r} 20001[4]=64 \mathrm{~ms}$	r20001[5] = 128 ms	r20001[6] $=256 \mathrm{~ms}$	
Logic function blocks AND, OR, XOR, NOT	X	X	X	X	X	X	
Arithmetic function blocks ADD, SUB, MUL, DIV, AVA, NCM, PLI	-	-	-	-	X	X	
Time function blocks MFP, PCL, PDE, PDF, PST	-	-	-	-	X	X	
Memory function blocks RSR, DSR	X	X	X	X	X	X	
Switch function block NSW	-	-	-	-	X	X	
Switch function block BSW	X	X	X	X	X	X	
Control function blocks LIM, PT1, INT, DIF	-	-	-	-	X	X	
Complex function blocks LVM	-	-	-	-	X	X	

1	2	3	4	5	6		7	8
Free Function Blocks					fp_7200_97_	51.vsd	Function diagram	- 7200 -
Sampling times of the runtime groups					07.04.2014	V4.7	G120 CU230P-2	

1	2	3	4	5	6		7	8
Free function blocks - Arithmetic function blocks					fp_7225_97	1.vsd	Function diagram	-7225-
NCM (numeric comparator)					07.04.2014	V4.7	G120 CU230P-2	

Note:
This function block randomly adapts output variable Y to input variable X by means of up to 20 breakpoints in 4 quadrants.
interpolation is carried out linearly between the breakpoints. Outlying the area A0 to A19, the characteristic curve runs horizontally. During configuration, you must ensure that the values of A0 to A19 are arranged in ascending order. Otherwise the values at the ou
previous value.
If breakpoints are not needed (e.g., A16/B16 and higher), the following values of the X - and Y -coordinates (A16/B16 to A19/B19) must be assigned the same values as A15/B15.

1	2	3	4	5	6		7	8
Free function blocks - Arithmetic function blocks					fp_7226_97	1.vsd	Function diagram	-7226-
PLI (polyline scaling)					07.04.2014	V4.7	G120 CU230P-2	

3.13 Technology controller

Function diagrams

7950 - Fixed value selection binary (p2216 = 2) 630
7951 - Fixed value selection direct (p2216 = 1) 631
7954 - Motorized potentiometer 632
7958 - Closed-loop control 633

3.14 Signals and monitoring functions

Function diagrams

8005 - Overview 635
8010 - Speed signals 1 636
8011 - Speed signals 2 637
8012 - Torque signals, motor blocked/stalled 638
8013 - Load monitoring 639
8014 - Thermal monitoring, power unit 640
8016 - Thermal monitoring, motor 641
8017 - Thermal motor models 642
8020 - Monitoring functions 1 643

Motor locked detection or motor locked monitoring function

<1> The response to these faults can be defined.
<2> Fault evaluation only with p2181>0 and p2193>0.

1	2	3	4	5	6		7	8
Signals and monitoring functions					fp_8013_97	4.vsd	Function diagram	- 8013 -
Load monitoring					07.04.2014	V4.7	G120 CU230P-2	

Mot temp [$\left.{ }^{\circ} \mathrm{C}\right]$
r0035 [8017.1]

3.15 Diagnostics

Function diagrams

8050 - Overview 645
8060 - Fault buffer 646
8065 - Alarm buffer 647
8070 - Faults/alarms trigger word (r2129) 648
8075 - Faults/alarms configuration 649

[8070] Faults/alarms trigger word

Changing the fault response for maximum 20 faults $\langle 1\rangle$

Changing the message type - fault <==> alarm for maximum 20 faults/alarms <1>

Changing the acknowledge mode for maximum 20 faults <1>

<1> The fault response, acknowledge mode and message type for all faults and alarms are set to meaningful default values in the factory setting Changes are only possible in specific value ranges specified by SIEMENS
When the message type is changed, the supplementary information is tranferred from fault value r0949 to alarm value r 2124 and vice versa

1	2	3	4	5	6	7	8
Diagnostics					fp_8075_97_51.vsd	Function diagram	-8075-
Faults/alarms configuration					07.04.2014 V4.7	G120 CU230P-2	

3.16 Data sets

Function diagrams

8560 - Command Data Sets (CDS) 651
8565 - Drive Data Sets (DDS) 652
Note
Data sets can only be applied and cleared when p0010 $=15$
is set．

<1>A BICO interconnection to a parameter which is part of a drive data set always influences the currently effective data set.

1	2	3	4	5	6		7	8
Data sets					fp_8565_97	54.vsd	Function diagram	-8565-
Drive Data Sets (DDS)					07.04.2014	V4.7	G120 CU230P-2	

Faults and alarms

Content

4.1 Overview of faults and alarms 654
4.2 List of faults and alarms 666

4.1 Overview of faults and alarms

4.1.1 General information

Fault and alarm displays (messages)

In the case of a fault, the drive signals the corresponding fault(s) and/or alarm(s).
For example, the following methods for displaying faults and alarms are available:

- Display via the fault and alarm buffer with PROFIBUS/PROFINET
- Display online via the commissioning software
- Display and operating unit (e.g. BOP, AOP)

Differences between faults and alarms

The differences between faults and alarms are as follows:
Table 4-1 Differences between faults and alarms

Type	\quad Description
Faults	What happens when a fault occurs? - The appropriate fault reaction is triggered. - Status bit ZSW1.3 is set. - The fault is entered in the fault buffer.
	How are faults eliminated? - Remove the original cause of the fault. - Acknowledge the fault.
Alarms	What happens when an alarm occurs? - Status signal ZSW1.7 is set. - The alarm is entered in the alarm buffer.
How are alarms removed?	
- Alarms acknowledge themselves.	
If the cause of the alarm is no longer present, they automatically reset	
themselves.	

Fault reactions

The following fault reactions are defined:
Table 4-2 Fault reactions

List	PROFIdrive	Reaction	Description
NONE	-	None	No reaction when a fault occurs. Note With "Basic positioner" (r0108.4 = 1), the following applies: When a fault occurs with fault reaction "NONE", an active traversing task is interrupted and the system switches to tracking mode until the fault has been rectified and acknowledged.
OFF1	$\begin{array}{\|l\|} \hline \text { ON/ } \\ \text { OFF } \end{array}$	Brake along the ramp-function generator down ramp followed by pulse inhibit	Closed-loop speed control (p1300 = 20, 21) - $n _$set $=0$ is input immediately to brake the drive along the rampfunction generator ramp down (p1121). - When zero speed is detected, the motor holding brake (if parameterized) is closed (p 1215). The pulses are suppressed when the brake application time (p 1217) expires. Zero speed is detected if the actual speed drops below the threshold (p 1226) or if the monitoring time (p 1227) started when the speed setpoint <= speed threshold (p1226) has expired. Torque control (p1300 = 22, 23) - The following applies for torque control: Reaction as for OFF2. - When the system switches to torque control with p1501, the following applies: No separate braking reaction. If the actual speed value drops below the speed threshold (p1226) or the timer stage (p 1227) has expired, the motor holding brake (if one is being used) is closed. The pulses are suppressed when the brake application time (p 1217) expires.
OFF1 DELAYED	-	As for OFF1, however delayed	Faults with this fault response only become effective after the delay time in p3136 has expired. The remaining time up to OFF1 is displayed in r3137.
OFF2	$\begin{aligned} & \text { COAST } \\ & \text { STOP } \end{aligned}$	Internal/external pulse inhibit	Speed and torque control - Instantaneous pulse suppression, the drive "coasts" to a standstill. - The motor holding brake (if one is being used) is closed immediately. - Switching on inhibited is activated.

Table 4-2 Fault reactions, continued

List	PROFIdrive	Reaction	Description
OFF3	QUICK STOP	Braking along the OFF3 down ramp followed by pulse inhibit	Closed-loop speed control (p1300 = 20, 21) - n_set = 0 is input immediately to brake the drive along the OFF3 ramp down (p1135). - When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the closing time of the holding brake (p 1217) expires. Zero speed is detected if the actual speed drops below the threshold ($p 1226$) or if the monitoring time ($p 1227$) started when the speed setpoint <= speed threshold (p1226) has expired. - Switching on inhibited is activated. Torque control (p1300 = 22, 23) - Changeover to speed-controlled operation and other reactions as described for speed-controlled operation.
STOP2	-	n _set $=0$	- n _set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135). - The drive remains in closed-loop speed control.
IASC/DCBRK	-	-	- For synchronous motors, the following applies: If a fault occurs with this fault reaction, an internal armature shortcircuit is triggered. The conditions for p1231 = 4 must be observed. - For induction motors, the following applies: If a fault occurs with this fault reaction, DC braking is triggered. DC braking must have been commissioned (p 1230 to p 1239).
ENCODER	-	Internal/external pulse inhibit (p0491)	The fault reaction ENCODER is applied as a function of the setting in p0491. Factory setting: p0491 = 0 --> Encoder fault causes OFF2 Notice When changing p0491, it is imperative that the information in the description of this parameter is carefully observed.

Acknowledging faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been removed.

Table 4-3 Acknowledging faults

Acknowledgemen t	Description
POWER ON	The fault is acknowledged via a POWER ON (switch Control Unit off and on again). Note If this action has not removed the fault cause, the fault is displayed again immediately after power up.
IMMEDIATELY	Faults can be acknowledged as follows: 1 Acknowledge by setting parameter: $\text { p3981 = } 0 \text {--> } 1$ 2 Acknowledge via binector inputs: p2103 BI: 1. Acknowledge faults p2104 BI: 2. Acknowledge faults p2105 BI: 3. Acknowledge faults 3 Acknowledge via PROFIBUS control signal: STW1.7 = 0 --> 1 (edge) Note - These faults can also be acknowledged by a POWER ON. - If the cause of the fault has not been removed, the fault will continue to be displayed after acknowledgement. - Safety Integrated faults The "Safe Torque Off" (STO) function must be deselected before these faults are acknowledged.
PULSE INHIBIT	The fault can only be acknowledged when the pulses are inhibited (r0899.11 = 0). The same options are available for acknowledging as described under acknowledge IMMEDIATELY.

4.1.2 Explanation of the list of faults and alarms

The data in the following example has been chosen at random. The information listed below is the maximum amount of information that a description can contain. Some of the information is optional.

The "List of faults and alarms" (Page 666) has the following layout:

Axxxxx (F, N)	Fault location (optional): Name
Message class:	Text of the message class (number according to PROFIdrive)
Reaction:	NONE
Acknowledgement:	NONE
Cause:	Description of possible causes.
	Fault value (r0949, interpret format): or alarm value (r2124, interpret format): (optional)
	Information about fault or alarm values (optional).
Remedy:	Description of possible remedies.

Axxxxx	Alarm xxxxx
Axxxxx (F, N)	Alarm xxxxx (message type can be changed in F or N)
Fxxxxx	Fault xxxxx
Fxxxxx (A, N)	Fault xxxxx (message type can be changed in A or \mathbf{N})
Nxxxxx	No message
Nxxxxx (A)	No message (message type can be changed in A)
	A message comprises a letter followed by the relevant number.
	The meaning of the letters is as follows:

- A means "Alarm"
- F means "Fault"
- N means "No message" or "Internal message"

The optional brackets indicate whether the type specified for this message can be changed and which message types can be adjusted via parameters (p2118, p2119).

Information on reaction and acknowledgement is specified independently for a message with an adjustable message type (e.g. reaction to F, acknowledgement for F).

Note

You can change the default properties of a fault or alarm by setting parameters.
References: /BA5/ SINAMICS G120 Operating Instructions Frequency Converter with CU230P-2 Control Units, Section "Alarms, faults, and system messages"

The "List of faults and alarms" (Page 666) supplies information referred to the properties of a message set as default. If the properties of a specific message are changed, the corresponding information may have to be modified in this list.

Fault location (optional): Name

The fault location (optional), the name of the fault or alarm and the message number are all used to identify the message (e.g. with the commissioning software).

Message value:

The information provided under the message value informs you about the composition of the fault/alarm value.

Example:

Message value: Component number: \%1, fault cause: \%2
This message value contains information about the component number and cause of the fault. The entries \%1 and \%2 are placeholders, which are filled appropriately in online operation (e.g. with the commissioning software).

Message class:

For each message, specifies the associated message class with the following structure:
Text of the message class (number according to PROFIdrive)
The message classes are transferred at different interfaces to higher-level control systems and their associated display and operating units.

The message classes that are available are shown in Table "Message classes and coding of various diagnostic interfaces" (Page 660). In addition to the text of the message class and their number according to PROFIdrive - as well as a brief help text regarding the cause and remedy - they also include information about the various diagnostic interfaces:

- PN (hex)

Specifies the "Channel error type" of the PROFINET channel diagnostics.
When activating the channel diagnostics, using the GSDML file, the texts listed in the table can be displayed.

- DS1 (dec)

Specifies the bit number in date set DS1 of the diagnostic alarm for SIMATIC S7.
When the diagnostic alarms are activated, the texts listed in the table can be displayed.

- DP (dec)

Specifies the "Error type" of the channel-related diagnostics for PROFIBUS.
When the channel diagnostics are activated, the texts listed in the standard and the GSD file can be displayed.

- ET 200 (dec)

Specifies the "Error type" of the channel-related diagnostics for the SIMATIC ET 200pro FC-2 device.

When the channel diagnostics are activated, the texts listed in the standard and the GSD file of the ET 200pro can be displayed.

- NAMUR (r3113.x)

Specifies the bit number in parameter r3113.

For the interfaces DP, ET 200, NAMUR, in some instances, the message classes are combined.

Table 4-4 Message classes and coding of various diagnostic interfaces

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{aligned} & \text { PN } \\ & \text { (hex) } \end{aligned}$	$\begin{gathered} \text { DS1 } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	ET 200 (dec)	NAMUR (r3113.x)
Hardware/software errors (1) A hardware or software malfunction was detected. Carry out a POWER ON for the relevant component. If it occurs again, contact the hotline.	9000	0	16	9	0
Line fault (2) A line supply fault has occurred (phase failure, voltage level ...). Check the line supply and fuses. Check the supply voltage. Check the wiring.	9001	1	17	24	1
Supply voltage fault (3) An electronics supply voltage fault ($48 \mathrm{~V}, 24 \mathrm{~V}, 5 \mathrm{~V}$...) was detected. Check the wiring. Check the voltage level.	9002	2	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	$\begin{aligned} & 2^{1} \\ & 3^{2} \end{aligned}$	15
DC-link overvoltage (4) The DC-link voltage has assumed an inadmissibly high value. Check the dimensioning of the system (line supply, reactor, voltages). Check the infeed settings.	9003	3	18	24	2
Power electronics fault (5) An impermissible operating state of the power electronics was detected (overcurrent, overtemperature, IGBT failure ...). Check compliance with the permissible load cycles. Check the ambient temperatures (fan).	9004	4	19	24	3
Overtemperature of the electronic component (6) The temperature in the component has exceeded the highest permissible limit. Check the ambient temperature / control cabinet ventilation.	9005	5	20	5	4
Ground fault / inter-phase short-circuit detected (7) A ground fault / inter-phase short-circuit was detected in the power cables or in the motor windings. Check the power cables (connection). Check the motor.	9006	6	21	20	5
Motor overload (8) The motor was operated outside the permissible limits (temperature, current, torque ...). Check the load cycles and set limits. Check the ambient temperature / motor cooling.	9007	7	22	24	6
Communication to the higher-level controller faulted (9) The communication to the higher-level controller (internal coupling, PROFIBUS, PROFINET ...) is faulted or interrupted. Check the state of the higher-level controller. Check the communication connection/-wiring. Check the bus configuration/cycles.	9008	8	23	19	7
Safety monitoring channel has detected an error (10) A safe operation monitoring function has detected an error.	9009	9	24	25	8

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	$\begin{aligned} & \text { PN } \\ & \text { (hex) } \end{aligned}$	$\begin{aligned} & \text { DS1 } \\ & \text { (dec) } \end{aligned}$	$\begin{gathered} \text { DP } \\ \text { (dec) } \end{gathered}$	$\begin{gathered} \text { ET } 200 \\ \text { (dec) } \end{gathered}$	NAMUR (r3113.x)
Actual position/speed value incorrect or not available (11) An illegal signal state was detected while evaluating the encoder signals (track signals, zero marks, absolute values ...). Check the encoder / state of the encoder signals. Observe the maximum permissible frequencies.	900A	10	25	29	9
Internal (DRIVE-CLiQ) communication faulted (12) The internal communication between the SINAMICS components is faulted or interrupted. Check the DRIVE-CLiQ wiring. Ensure an EMCcompliant installation. Observe the maximum permissible quantity structures / cycles.	900B	11	26	31	10
Infeed fault (13) The infeed is faulty or has failed. Check the infeed and its environment (line supply, filters, reactors, fuses ...). Check the infeed control.	900C	12	27	24	11
Braking controller / Braking Module faulted (14) The internal or external Braking Module is faulted or overloaded (temperature). Check the connection/state of the Braking Module. Comply with the permissible number of braking operations and their duration.	900D	13	28	24	15
Line filter fault (15) The line filter monitoring has detected an excessively high temperature or another impermissible state. Check the temperature / temperature monitoring. Check the configuration to ensure that it is permissible (filter type, infeed, thresholds).	900E	14	17	24	15
External measured value / signal state outside of the permissible range (16) A measured value / signal state read in via the input area (digital/analog/temperature) has assumed an impermissible value/state. Identify and check the relevant signal. Check the set thresholds.	900F	15	29	26	15
Application / technological function faulty (17) The application / technological function has exceeded a (set) limit (position, velocity, torque ...). Identify and check the relevant limit. Check the setpoint specification of the higher-level controller.	9010	16	30	9	15
Error in the parameterization/configuration/commissioning procedure (18) An error was identified in the parameterization or in a commissioning procedure, or the parameterization does not match the actual device configuration. Determine the precise cause of the fault using the commissioning tool. Adapt the parameterization or device configuration.	9011	17	31	16	15

4.1 Overview of faults and alarms

Table 4-4 Message classes and coding of various diagnostic interfaces, continued

Text of the message class (number according to PROFIdrive) Cause and remedy.	Diagnostics interface				
	PN (hex)	DS1 (dec)	DP (dec)	ET 200 (dec)	NAMUR (r3113.x)
General drive fault (19) Group fault. Determine the precise cause of the fault using the commissioning tool.	9012	18	9	9	15
Auxiliary unit fault (20) The monitoring of an auxiliary unit (incoming transformer, cooling unit ...) has detected an illegal state. Determine the exact cause of the fault and check the relevant device.	9013	19	29	26	15

1. Undervoltage condition of the electronics power supply
2. Overvoltage condition of the electronics power supply

Reaction: Default fault reaction (adjustable fault reaction)

Specifies the default reaction in the event of a fault.
The optional parentheses indicate whether the default fault reactions can be changed and which fault reactions can be adjusted via parameters (p2100, p2101).

Note

See Table "Fault reactions" (Page 655).

Acknowledgement: Default acknowledgement (adjustable acknowledgement)

Specifies the default method of acknowledging faults after the cause has been eliminated. The optional parentheses indicate whether the default acknowledgement can be changed and which acknowledgement can be adjusted via parameters (p2126, p2127).

Note

See Table "Acknowledging faults" (Page 657).

Cause:

Describes the possible causes of the fault or alarm. A fault or alarm value can also be specified (optional).

Fault value (r0949, format):
The fault value is entered into the fault buffer in r0949[0...63] and specifies additional, more precise information about a fault.

Alarm value (r2124, format):
The alarm value specifies additional, more precise information about an alarm.
The alarm value is entered in the alarm buffer in r2124[0...63] and specifies additional, more precise information about an alarm.

Remedy:

Description of the methods available for eliminating the cause of the active fault/alarm

WARNING

In certain cases, servicing and maintenance personnel are responsible for choosing a suitable method for eliminating the cause of faults.

4.1.3 \quad Number ranges of faults and alarms

Note

The following number ranges represent an overview of all faults and alarms used in the SINAMICS drive family.

The faults and alarms for the product described in this List Manual are described in detail in "List of faults and alarms" (Page 666).

Faults and alarms are organized into the following number ranges:
Table 4-5 Number ranges of faults and alarms

of	To	Area
1000	3999	Control Unit
4000	4999	Reserved
5000	5999	Power section
6000	6899	Infeed
6900	6999	Braking Module
7000	7999	Drive
8000	8999	Option Board
9000	12999	Reserved
13000	13020	Licensing
13021	13099	Reserved
13100	13102	Know-how protection
13103	19999	Reserved
20000	29999	OEM
30000	30999	DRIVE-CLiQ component power unit
31000	31999	DRIVE-CLiQ component encoder 1
32000	32999	DRIVE-CLiQ component encoder 2 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
33000	33999	DRIVE-CLiQ component encoder 3 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
34000	34999	Voltage Sensing Module (VSM)
35000	35199	Terminal Module 54F (TM54F)
35200	35999	Terminal Module 31 (TM31)
36000	36999	DRIVE-CLiQ Hub Module
37000	37999	HF Damping Module

Table 4-5 Number ranges of faults and alarms, continued

of	To	Area
40000	40999	Controller Extension 32 (CX32)
41000	48999	Reserved
49000	49999	SINAMICS GM/SM/GL
50000	50499	Communication Board (COMM BOARD)
50500	59999	OEM Siemens
60000	65535	SINAMICS DC MASTER (closed-loop DC current control)

4.2 List of faults and alarms

4.2 List of faults and alarms

Product: SINAMICS G120, Version: 4702900, Language: eng
Objects: CU230P-2_BT, CU230P-2_CAN, CU230P-2_DP, CU230P-2_HVAC, CU230P-2_PN

F01000	Internal software error
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- evaluate fault buffer (r0945).
	- carry out a POWER ON (power off/on) for all components.
	- if required, check the data on the non-volatile memory (e.g. memory card).
	- upgrade firmware to later version.
	- contact the Hotline.
	- replace the Control Unit.

F01001	FloatingPoint exception
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An exception occurred during an operation with the FloatingPoint data type.
	The error may be caused by the basic system or an OA application (e.g., FBLOCKS, DCC).
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	Note:
	Refer to r9999 for further information about this fault.
	r9999[0]: Fault number.
	r9999[1]: Program counter at the time when the exception occurred.
	r9999[2]: Cause of the FloatingPoint exception.
	Bit 0 = 1: Operation invalid
	Bit 1 = 1: Division by zero
	Bit $2=1:$ Overflow
	Bit $3=1:$ Underflow
	Bit 4 = 1: Inaccurate result
	- carry out a POWER ON (power off/on) for all components.
	- check configuration and signals of the blocks in FBLOCKS.
	- check configuration and signals of DCC charts.
	- upgrade firmware to later version.
	- contact the Hotline.

F01002 Internal software error

Message class: Hardware / software error (1)
Reaction: OFF2
Acknowledge: IMMEDIATELY
Cause: An internal software error has occurred.
Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.
Remedy: - carry out a POWER ON (power off/on) for all components.

- upgrade firmware to later version.
- contact the Hotline.

F01003	Acknowledgement delay when accessing the memory
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A memory area was accessed that does not return a "READY".
	Fault value (r0949, interpret hexadecimal):
Only for internal Siemens troubleshooting.	

N01004 (F, A)	Internal software error
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal software error has occurred.
	Fault value (r0949, hexadecimal): Only for internal Siemens troubleshooting. Remedy:
	- read out diagnostics parameter (r9999).
	- contact the Hotline.
	See also: r9999 (Software error internal supplementary diagnostics)

F01005	File upload/download error
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The upload or download of EEPROM data was unsuccessful.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $\mathrm{y} y=$ component number, $\mathrm{xxxx}=$ fault cause
	xxxx $=000 \mathrm{Bhex}=11 \mathrm{dec}$:
	Power unit component has detected a checksum error.
	xxxx $=000 \mathrm{~F}$ hex $=15 \mathrm{dec}$:
	The selected power unit will not accept the content of the EEPROM file.
	xxxx $=0011$ hex $=17 \mathrm{dec}$:
	Power unit component has detected an internal access error.
	xxxx $=0012$ hex = 18 dec:
	After several communication attempts, no response from the power unit component.
	xxxx $=008 \mathrm{~B}$ hex $=140 \mathrm{dec}$:
	EEPROM file for the power unit component not available on the memory card.
	xxxx $=008 \mathrm{D}$ hex $=141 \mathrm{dec}$:
	An inconsistent length of the firmware file was signaled. It is possible that the download/upload has been interrupted.
	When checking the file that was loaded, the component detected a fault (checksum). It is possible that the file on the memory card is defective.
	xxxx $=0092$ hex = 146 dec :
	This SW or HW does not support the selected function.
	xxxx $=009 \mathrm{C}$ hex $=156 \mathrm{dec}$:
	Component with the specified component number is not available (p 7828).
	Only for internal Siemens troubleshooting.
Remedy:	Save a suitable firmware file or EEPROM file for upload or download in folder "/ee_sac/" on the memory card.

A01009 (N)	CU: Control module overtemperature
Message class:	Overtemperature of the electronic components (6)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:	- check the air intake for the Control Unit.
	- check the Control Unit fan.
	Note:
	The alarm automatically disappears after the limit value has been undershot.

F01010	Drive type unknown
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An unknown drive type was found.
Remedy:	- replace Power Module.
	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version.
	- contact the Hotline.
F01015	Internal software error
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.

A01016 (F)	Firmware changed
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device
	memory) with respect to the version when shipped from the factory.
	Alarm value (r2124, interpret decimal):
	0: Checksum of one file is incorrect.
	1: File missing.
	2: Too many files.
	3: Incorrect firmware version.
	4: Incorrect checksum of the back-up file.
Remedy:	For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition.
	Note:
	The file involved can be read out using parameter r9925.
	The status of the firmware check is displayed using r9926.
	See also: r9925 (Firmware file incorrect), r9926 (Firmware check status)

A01017	Component lists changed
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been
	illegally changed with respect to that supplied from the factory. No changes are permitted in this directory.

Alarm value (r2124, interpret decimal):
zyx dec: $x=$ Problem, $y=$ Directory, $z=$ File name
$x=1:$ File does not exist.
$x=2:$ Firmware version of the file does not match the software version.
$x=3:$ File checksum is incorrect.
$y=0:$ Directory /SIEMENS/SINAMICS/DATA/
$y=1:$ Directory /ADDON/SINAMICS/DATA/
$z=0:$ File MOTARM.ACX
$z=1:$ File MOTSRM.ACX
$z=2:$ File MOTSLM.ACX
$z=3:$ File ENCDATA.ACX
$z=4:$ File FILTDATA.ACX
$z=5:$ File BRKDATA.ACX
$z=6:$ File DAT_BEAR.ACX
$z=7:$ File CFG_BEAR.ACX
For the file on the memory card involved, restore the status originally supplied from the factory.

F01018	Booting has been interrupted several times
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	Module booting was interrupted several times. As a consequence, the module boots with the factory setting.
	Possible reasons for booting being interrupted:
	- power supply interrupted.
	- CPU crashed.
Remedy:	- parameterization invalid.
	- carry out a POWER ON (power off/on). After switching on, the module reboots from the valid parameterization (if
	available).
	- restore the valid parameterization.
	Examples:
	a) Carry out a first commissioning, save, carry out a POWER ON (switch-off/switch-on).
	b) Load another valid parameter backup (e.g. from the memory card), save, carry out a POWER ON (switch-
off/switch-on).	
	Note:
	If the fault situation is repeated, then this fault is again output after several interrupted boots.

A01019	Writing to the removable data medium unsuccessful
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The write access to the removable data medium was unsuccessful.
Remedy:	Remove and check the removable data medium. Then run the data backup again.

A01020	Writing to RAM disk unsuccessful
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the file size for the system logbook to the internal RAM disk (p9930).
	See also: p9930 (System logbook activation)

A01021	Removable data medium as USB data storage medium from the PC used
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The removable data medium is used as USB data storage medium from a PC
	As a consequence, the drive cannot access the removable data medium. When backing up, the configuration data
cannot be saved on the removable data medium.	
	Fault value (ro949, interpret decimal):
	1: The know-how protection as well as the copy protection for the removable data medium is active. Backup is
inhibited.	
	2: The configuration data are only backed up in the Control Unit.
	See also: r7760 (Write protection/know-how protection status), r9401 (Safely remove memory card status)
Remedy:	Deactivate the USB connection to the PC and back up the configuration data.
	Note:
	The alarm is automatically canceled when disconnecting the USB connection or when removing the removable data
	medium.
	See also: r9401 (Safely remove memory card status)

F01023	Software timeout (internal)
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting. Remedy: - carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

A01028 (F)	Configuration error
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameterization that was downloaded was generated with a different module type (Order No., MLFB).
Remedy:	Save parameters in a non-volatile fashion (p0971 = 1).

F01030 Sign-of-life failure for master control
Message class: Communication error to the higher-level control system (9)
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge: IMMEDIATELY
Cause: For active PC master control, no sign-of-life was received within the monitoring time.
The master control was returned to the active BICO interconnection.
Remedy: Set the monitoring time higher at the PC or, if required, completely disable the monitoring function.
For the commissioning software, the monitoring time is set as follows:
<Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the
monitoring time in milliseconds.
Notice:
The monitoring time should be set as short as possible. A long monitoring time means a late response when the
communication fails!

F01033	Units changeover: Reference parameter value invalid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing over the units to the referred representation type, it is not permissible for any of the required
reference parameters to be equal to 0.0	

\(\left.\begin{array}{ll} \& Fault value (r0949, parameter):

\& Reference parameter whose value is 0.0.

See also: p0505 (Selecting the system of units), p0595 (Technological unit selection)

Remedy: \& Set the value of the reference parameter to a number different than 0.0.

See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004\end{array}\right]\)| | Units changeover: Calculation parameter values after reference value change |
| :--- | :--- |
| F01034 | unsuccessful |
| Message class: | Error in the parameterization / configuration / commissioning procedure (18) |
| Reaction: | NONE |
| Acknowledge: | IMMEDIATELY |
| Cause: | The change of a reference parameter meant that for an involved parameter the selected value was not able to be re- |
| calculated in the per unit representation. The change was rejected and the original parameter value restored. | |
| Fault value (r0949, parameter): | |
| Remedy: | Parameter whose value was not able to be re-calculated. |
| See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004 | |

F01036 (A) ACX: Parameter back-up file missing

Message class: Hardware / software error (1)
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: When downloading the device parameterization, a parameter back-up file PSxxxyyy.ACX associated with a drive object cannot be found.
Fault value (r0949, interpret hexadecimal):
Byte 1: yyy in the file name PSxxxyyy.ACX
yyy = 000 --> consistency back-up file

4.2 List of faults and alarms

yyy = $001 \ldots 062$--> drive object number
yyy $=099$--> PROFIBUS parameter back-up file
Byte $2,3,4$:
Only for internal Siemens troubleshooting.
Remedy: \quad If you have saved the project data using the commissioning software, carry out a new download for your project.
Save using the function "Copy RAM to ROM" or with p0971 = 1
This means that the parameter files are again completely written into the non-volatile memory.
Note:
If the project data have not been backed up, then a new first commissioning is required.

F01038 (A)	ACX: Loading the parameter back-up file unsuccessful
Message class:	Hardware / software error (1)
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy $=000$--> consistency back-up file
	yyy $=001$... 062 --> drive object number
	yyy $=099$--> PROFIBUS parameter back-up file
	Byte 2:
	$255:$ Incorrect drive object type.
	$254:$ Topology comparison unsuccessful -> drive object type was not able to be identified.
	Reasons could be:
	- Incorrect component type in the actual topology
	- Component does not exist in the actual topology.
	- Component not active.
	Additional values:
	Only for internal Siemens troubleshooting.
	Byte 4, 3:
	Only for internal Siemens troubleshooting.
	- If you have saved the project data using the commissioning software, download the project again. Save using the
function "Copy RAM to ROM" or with p0971 = 1 so that all of the parameter files are again completely written to the	
nemedy:	nonatile memory.
	replace the memory card or Control Unit.

F01039 (A)	ACX: Writing to the parameter back-up file was unsuccessful
Message class:	Hardware / software error (1)
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful.
	- In the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten.
	- There is not sufficient free memory space available.
	- The non-volatile memory is defective and cannot be written to.
	Fault value (r0949, interpret hexadecimal):
	dcba hex
	$\mathrm{a}=$ yyy in the file names PSxxxyyy.***
	a = 000 --> consistency back-up file
	$a=001 \ldots 062$--> drive object number
	$a=099$--> PROFIBUS parameter back-up file
	$b=x x x$ in the file names PSxxxyyy.***
	$b=000-->$ data save started with $\mathrm{p} 0971=1$
	$b=010-->$ data save started with p0971 = 10
	$b=011$--> data save started with p0971 = 11
	$b=012$--> data save started with p0971 = 12

	d, c: Only for internal Siemens troubleshooting. Remedy: - check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable". - check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system. - replace the memory card or Control Unit.
F01040	Save parameter settings and carry out a POWVR ON
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	POWER ON Cause:
	A parameter has been changed that requires the parameters to be backed up and the Control Unit to be switched
Remedy:	OFF and ON again.

F01042	Parameter error during project download
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value).
	For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters.
	Fault value (r0949, interpret hexadecimal): ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	cc = fault cause
	0: Parameter number illegal.
	1: Parameter value cannot be changed.
	2: Lower or upper value limit exceeded.
	3: Sub-index incorrect.
	4: No array, no sub-index.
	5: Data type incorrect.
	6: Setting not permitted (only resetting).
	7: Descriptive element cannot be changed.
	9: Descriptive data not available.
	11: No master control.
	15: No text array available.
	17: Task cannot be executed due to operating state.
	20: Illegal value.
	21: Response too long.
	22: Parameter address illegal.
	23: Format illegal.
	24: Number of values not consistent.
	108: Unit unknown.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- enter the correct value in the specified parameter.
	- identify the parameter that restricts the limits of the specified parameter.

F01043	Fatal error at project download
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A fatal error was detected when downloading a project using the commissioning software.
	Fault value (r0949, interpret decimal):
	1: Device status cannot be changed to Device Download (drive object ON?).
	2: Incorrect drive object number.
	8: Maximum number of drive objects that can be generated exceeded.
	11: Error while generating a drive object (global component).
	12: Error while generating a drive object (drive component).
	13: Unknown drive object type.
	14: Drive status cannot be changed to "ready for operation" (r0947 and r0949).
	15: Drive status cannot be changed to drive download.
	16: Device status cannot be changed to "ready for operation".
	18: A new download is only possible if the factory settings are restored for the drive unit.
	20: The configuration is inconsistent.
	21: Error when accepting the download parameters.
	22: SW-internal download error.
	100: The download was canceled, because no write requests were received from the commissioning client (e.g. for communication error).
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- use the current version of the commissioning software.
	- modify the offline project and download again (e.g. compare the motor and Power Module in the offline project and on the drive).
	- change the drive state (is a drive rotating or is there a message/signal?).
	- carefully note any other messages/signals and remove their cause.
	- boot from previously saved files (switch-off/switch-on or p0970).
F01044	CU: Descriptive data error
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error was detected when loading the descriptive data saved in the non-volatile memory.
Remedy:	Replace the memory card or Control Unit.
A01045	Configuring data invalid
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- Check the parameters displayed in r9406 up to r9408, and correct these if required.
	- Restore the factory setting using (p0970 $=1$) and re-load the project into the drive unit.
	Then save the parameterization in STARTER using the "Copy RAM to ROM" function or with p0971 $=1$. This overwrites the incorrect parameter files in the non-volatile memory - and the alarm is withdrawn.

A01049	It is not possible to write to file
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted. Alarm value (r2124, interpret decimal):
Remedy:	Drive object number. Check whether the "write protected" attribute has been set for the files in the non-volatile memory under
	.../USER/SINAMICS/DATA/... When required, remove write protection and save again (e.g. set p0971 to 1).

F01054	CU: System limit exceeded
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one system overload has been identified.
	Fault value (r0949, interpret decimal):
	1: Computing time load too high (r9976[1]).
	5: Peak load too high (r9976[5]).
	Note:
	As long as this fault is present, it is not possible to save the parameters (p0971).
	Re fault value = 1, 5:
	- reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under 100 \%.
	- check the sampling times and adjust if necessary (p0115, p0799, p4099).
	- de-activate function modules.
	- de-activate drive objects.
	- remove drive objects from the target topology.
	- note the DRIVE-CLiQ topology rules and if required, change the DRIVE-CLiQ topology.
	When using the Drive Control Chart (DCC) or free function blocks (FBLOCKS), the following applies
	- the computing time load of the individual run-time groups on a drive object can be read out in r21005 (DCC) or
	r20005 (FBLOCKS).
	- if necessary, the assignment of the run-time group (p21000, p20000) can be changed in order to increase the
sampling time (r21001, r20001).	
- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).	

A01066	Buffer memory: 70\% fill level reached or exceeded
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile buffer memory for parameter changes is filled to at least 70\%. This can also occur if the buffer memory is active ($\mathrm{p} 0014=1$) and parameters are continually changed via a fieldbus system.
Remedy:	If required, de-activate and clear the buffer memory (p0014 = 0). If required, clear the buffer memory (p0014 = 2). In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared: $-p 0971=1$ - power down/power up the Control Unit See also: p0014 (Buffer memory mode)

A01067	Buffer memory: 100% fill level reached
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile buffer memory for parameter changes is filled to 100\%.
	All additional parameter changes will no longer be taken into account in the non-volatile buffer memory. However, parameter changes can still be made in the volatile memory (RAM).

4.2 List of faults and alarms

This can also occur if the buffer memory is active $(p 0014=1)$ and parameters are continually changed via a fieldbus system.
Remedy: If required, de-activate and clear the buffer memory (p0014=0). If required, clear the buffer memory (p0014 = 2).
In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared:

- p0971 = 1
- power down/power up the Control Unit

See also: p0014 (Buffer memory mode)

F01068

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: \quad The utilization for a data memory area is too large.
Fault value (r0949, interpret binary):
Bit $0=1$: High-speed data memory 1 overloaded
Bit 1 = 1: High-speed data memory 2 overloaded
Bit 2 = 1: High-speed data memory 3 overloaded
Bit 3 = 1: High-speed data memory 4 overloaded
Remedy: - de-activate the function module.

- de-activate drive object.
- remove the drive object from the target topology.

A01069	Parameter backup and device incompatible
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match.
	The module boots with the factory settings.
	Example:

Remedy: - insert a memory card with compatible parameter backup and carry out a POWER ON.

- insert a memory card without parameter backup and carry out a POWER ON.
- If required, withdraw the memory card and carry out POWER ON.
- save the parameters (p0971 = 1).

F01072	Memory card restored from the backup copy
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit was switched-off while writing to the memory card. This is why the visible partition became
	defective.
After switching on, the data from the non-visible partition (backup copy) were written to the visible partition.	
Remedy:	Check that the firmware and parameterization is up-to-date.

A01073 (N) POWER ON required for backup copy on memory card
Message class: General drive fault (19)
Reaction:
NONE
Acknowledge: NONE
Cause: The parameter assignment on the visible partition of the memory card has changed.
In order that the backup copy on the memory card is updated on the non-visible partition, it is necessary to carry out a POWER ON or hardware reset (p0972) of the Control Unit.
Note:
It is possible that a new POWER ON is requested via this alarm (e.g. after saving with p0971 = 1).

Remedy: - carry out a POWER ON (power off/on) for the Control Unit.
 - carry out a hardware reset (RESET button, p0972).

A01098	RTC: Date and time setting required
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power supply for the Control Unit was interrupted for an extended period. The date and time displayed on the real-time clock are no longer accurate. Note: This alarm is only output when p8405 = 1 (factory setting). See also: p8405 (Activate/de-activate RTC alarm A01098)
Remedy:	Set the date and time on the real-time clock. Note: RTC: Real-time clock See also: p8400 (RTC time), p8401 (RTC date)
F01105 (A)	CU: Insufficient memory
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many data sets are configured on this Control Unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- reduce the number of data sets.
F01107	Save to memory card unsuccessful
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save to the memory card was not able to be successfully carried out. - Memory card defective - Insufficient space on memory card. Fault value (r0949, interpret decimal): 1: The file on the RAM was not able to be opened. 2: The file on the RAM was not able to be read. 3: A new directory could not be created on the memory card. 4: A new file could not be created on the memory card. 5: A new file could not be written on the memory card.
Remedy:	- try to save again. - replace the memory card or Control Unit.
F01112	CU: Power unit not permissible
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The connected power unit cannot be used together with this Control Unit. Fault value (r0949, interpret decimal): 1: Power unit is not supported (e.g. PM340).
Remedy:	Replace the power unit that is not permissible by a component that is permissible.

F01120 (A)	Terminal initialization has failed
Message class:	Hardware / software error (1)
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error occurred while the terminal functions were being initialized. Fault value (r0949, interpret hexadecimal): Remedy: Only for internal Siemens troubleshooting. - carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline. - replace the Control Unit.

F01152	CU: Invalid constellation of drive object types
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	It is not possible to simultaneously operate drive object types SERVO, VECTOR and HLA. A maximum of 2 of these drive object types can be operated on a Control Unit.
Remedy:	- power down the unit. - restrict the use of drive object types SERVO, VECTOR, HLA to a maximum of 2. - re-commission the unit.

F01205	CU: Time slice overflow
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	Insufficient computation time.
	Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting. Remedy:

F01250	CU: CU-EEPROM incorrect read-only data
Message class:	Hardware / software error (1)
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Control Unit. Fault value (r0949, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON. - replace the Control Unit.

A01251	CU: CU-EEPROM incorrect read-write data
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Control Unit.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	For alarm value r2124 < 256, the following applies:
	- carry out a POWER ON.
	- replace the Control Unit.
	For alarm value r2124 >=256, the following applies:
	- clear the fault memory (p0952 = 0).
	- replace the Control Unit.

$\overline{\mathrm{F} 01257}$	CU: Firmware version out of date
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The Control Unit firmware is too old.
	Fault value (r0949, interpret hexadecimal):
	bbbbbbaa hex: aa = unsupported component
	$\mathrm{aa}=01 \mathrm{hex}=1 \mathrm{dec}$:
	The firmware being used does not support the Control Unit. aa $=02$ hex $=2 \mathrm{dec}$:
	The firmware being used does not support the Control Unit.
	$\mathrm{aa}=03 \mathrm{hex}=3 \mathrm{dec}$:
	The firmware being used does not support the Power Module.
	aa $=04$ hex $=4$ dec:
	The firmware being used does not support the Control Unit.
Remedy:	Re fault value $=1,2,4$:
	- Upgrade the firmware of the Control Unit.
	For fault value $=3$:
	- Upgrade the firmware of the Control Unit.
	- Replace the Power Module by a component that is supported.
F01340	Topology: Too many components on one line
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit.
	Fault value (r0949, interpret hexadecimal):
	xyy hex: $\mathrm{x}=$ fault cause, $\mathrm{y}=$ component number or connection number.
	1yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all read transfers.
	2 yy :
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all write transfers.
	3yy:
	Cyclic communication is fully utilized.
	$4 y y$:
	The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
	The conditions of operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ have not been maintained.
	$5 y y:$
	Internal buffer overflow for net data of a DRIVE-CLiQ connection.
	$6 y y$:
	Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
	7 yy :
	Internal buffer overflow for send data of a DRIVE-CLiQ connection.
	8yy:
	The component clock cycles cannot be combined with one another
	900:
	The lowest common multiple of the clock cycles in the system is too high to be determined.
	901:
	The lowest common multiple of the clock cycles in the system cannot be generated with the hardware.

Remedy: - check the DRIVE-CLiQ wiring.

- Reduce the number of components on the DRIVE-CLiQ line involved and distribute these to other DRIVE-CLiQ sockets of the Control Unit. This means that communication is uniformly distributed over several lines. Re fault value $=1 \mathrm{yy}-4 \mathrm{yy}$ in addition:
- increase the sampling times (p0112, p0115, p4099). If necessary, for DCC or FBLOCKS, change the assignment of the run-time group (p 21000 , p 20000) so that the sampling time ($\mathrm{r} 21001, \mathrm{r} 20001$) is increased.
- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).
- reduce the function modules (r0108).
- establish the conditions for operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ (at the DRIVE-CLiQ line, only operate Motor Modules and Sensor Modules with this sampling time and only use a permitted Sensor Module (e.g. SMC20, this means a 3 at the last position of the order number)).
- For an NX, the corresponding Sensor Module for a possibly existing second measuring system should be connected to a free DRIVE-CLiQ socket of the NX.
Re fault value $=8 y y$ in addition:
- check the clock cycles settings (p0112, p0115, p4099). Clock cycles on a DRIVE-CLiQ line must be perfect integer multiples of one another. As clock cycle on a line, all clock cycles of all drive objects in the previously mentioned parameters apply, which have components on the line involved.
Re fault value $=9 y y$ in addition:
- check the clock cycles settings (p0112, p0115, p4099). The lower the numerical value difference between two clock cycles, the higher the lowest common multiple. This behavior has a significantly stronger influence, the higher the numerical values of the clock cycles.

F01505 (A)	BICO: Interconnection cannot be established
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A PROFIdrive telegram has been set (p0922).
	An interconnection contained in the telegram was not able to be established.
	Fault value (r0949, interpret decimal):
	Parameter receiver that should be changed.
Remedy:	Establish another interconnection.

F01510	BICO: Signal source is not float type
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested connector output does not have the correct data type. This interconnection is not established.
	Fault value (r0949, interpret decimal):
	Parameter number to which an interconnection should be made (connector output).
Remedy:	Interconnect this connector input with a connector output having a float data type.
F01511 (A)	BICO: Interconnection with different scalings
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and
	BICO input using the reference values.
	- the BICO output has different normalized units than the BICO input.
	- message only for interconnections within a drive object.
	Example:
	The BICO output has, as normalized unit, voltage and the BICO input has current.
This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.	
Remedy:	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Fault value (r0949, interpret decimal):
	Parameter number of the BICO input (signal sink).
Not necessary.	

F01512	BICO: No scaling available
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An attempt was made to determine a conversion factor for a scaling that does not exist.
	Fault value (r0949, interpret decimal):
	Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy:	Apply scaling or check the transfer value.
F01513 (N, A)	BICO: Interconnection cross DO with different scalings
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
	An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different.
	Example 1:
	BICO output with voltage normalized unit, BICO input with current normalized unit, BICO output and BICO input lie in different drive objects. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.
	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Example 2:
	BICO output with voltage normalized unit in drive object 1 (DO1), BICO input with voltage normalized unit in drive object 2 (DO2). The reference values for voltage (p2001) of the two drive objects have different values. This means that the factor p2001(DO1)/p2001(DO2) is calculated between the BICO output and the BICO input.
	p2001: contains the reference value for voltage, drive objects 1, 2
	Fault value (r0949, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
A01514 (F)	BICO: Error when writing during a reconnect
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to.
	Example:
	When writing to BICO input with double word format (DWORD), in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting.
	Alarm value (r2124, interpret decimal):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.
F01515 (A)	BICO: Writing to parameter not permitted as the master control is active
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing the number of CDS or when copying from CDS, the master control is active.
Remedy:	If required, return the master control and repeat the operation.

A01590 (F)	Drive: Motor maintenance interval expired
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected service/maintenance interval for this motor was reached.
	Alarm value (r2124, interpret decimal): Motor data set number.
See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval)	
Remedy:	carry out service/maintenance and reset the service/maintenance interval (p0651).

F01662	Error internal communications
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on). - upgrade firmware to later version. - contact the Hotline.

A01900 (F)	PROFIBUS: Configuration telegram error
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFIBUS master attempts to establish a connection using an incorrect configuring telegram.
	Alarm value (r2124, interpret decimal):
	2: Too many PZD data words for input or output. The number of possible PZD is specified by the number of indices in
	r2050/p2051.
	3: Uneven number of bytes for input or output.
	211: Unknown parameterizing block.
	Additional values:
	Only for internal Siemens troubleshooting.
	Check the bus configuration on the master and the slave sides.
	Re alarm value $=2:$
	Check the number of data words for input and output.
	Re alarm value $=211:$
	Ensure offline version <= online version.

F01910 (N, A) Fieldbus interface setpoint timeout

Message class: Communication error to the higher-level control system (9)
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge: IMMEDIATELY
Cause: The reception of setpoints from the fieldbus interface has been interrupted.

- bus connection interrupted.
- communication partner switched off.

CU230P-2 DP:

- PROFIBUS master set into the STOP state.

See also: p2040 (Fieldbus interface monitoring time), p2047 (PROFIBUS additional monitoring time)
Remedy: Ensure bus connection has been established and switch on communication peer.
CU230P-2 BT, CU230P-2 HVAC:

- if required, adapt p2040.

CU230P-2 DP:

- set the PROFIBUS master to the RUN state
- slave redundancy: For operation on a Y link, it must be ensured that "DP alarm mode = DPV1" is set in the slave parameterization.

A01920 (F)	PROFIBUS: Interruption cyclic connection
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.
	Note:
	If there is no communication to a higher-level control system, then p2030 should be set = 0 to suppress this
	message.
	See also: p2030 (Field bus int protocol selection)

A01945	PROFIBUS: Connection to the Publisher failed
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed.
	Alarm value (r2124, interpret binary):
	Bit $0=1:$ Publisher with address in r2077[0], connection failed.
	\ldots
Remedy:	Bit $15=1:$ Publisher with address in r2077[15], connection failed.
	Check the PROFIBUS cables.
	See also: r2077 (PROFIBUS diagnostics peer-to-peer data transfer addresses)

F01946 (A)	PROFIBUS: Connection to the Publisher aborted
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted.
	Fault value (r0949, interpret binary):
	Bit 0 = 1: Publisher with address in r2077[0], connection aborted.
	...
Remedy:	Bit $15=1:$ Publisher with address in r2077[15], connection aborted.
	- check the PROFIBUS cables.

A02050	Trace: Start not possible
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace has already been started.
Remedy:	Stop the trace and, if necessary, start again.

A02051	Trace: recording not possible as a result of know-how protection
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	TRACE recording is not possible as at least one signal or trigger signal being used is under know-how protection. Alarm value (r2124, interpret decimal): 1: Recorder 0 2: Recorder 1 3: Recorders 0 and 1
Remedy:	- Temporarily activate or deactivate know-how protection (p7766). - Include the signal in the OEM exception list (p7763, p7764). - Where relevant do not record of the signal. See also: p7763 (KHP OEM exception list number of indices for p7764), p7764 (KHP OEM exception list)
A02055	Trace: Recording time too short
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace duration is too short.
	The minimum is twice the value of the trace clock cycle.
Remedy:	Check the selected recording time and, if necessary, adjust.

A02056	Trace: Recording cycle too short
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected recording clock cycle is lower than the basic clock cycle 500 $\mu \mathrm{s}$.
Remedy:	Increase the value for the trace cycle.

A02057	Trace: Time slice clock cycle invalid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time slice clock cycle selected does not match any of the existing time slices.
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)

A02058	Trace: Time slice clock cycle for endless trace not valid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the endless trace
Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=2$ ms for up to 4 recording channels or $>=4 \mathrm{~ms}$ from 5 recording channels per trace. The existing time slices can be read out via p7901. See also: r7901 (Sampling times)

A02059	Trace: Time slice clock cycle for $\mathbf{2} \mathbf{x} 8$ recording channels not valid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for more than 4 recording channels.
Remedy:	Enter the clock cycle of an existing time slice with a cycle time >= 4 ms or reduce the number of recording channels
	to 4 per trace.
	The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)

A02060	Trace: Signal to be traced missing
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE - a signal to be traced was not specified. - the specified signals are not valid. - specify the signal to be traced. - check whether the relevant signal can be traced.
Remedy:	Trace: Invalid signal
A02061	Error in the parameterization / configuration / commissioning procedure (18)
Message class:	NONE
Reaction:	NONE
Acknowledge:	- the specified signal does not exist.
Cause:	- the specified signal can no longer be traced (recorded).
Remedy:	- specify the signal to be traced.
	- check whether the relevant signal can be traced.

A02062	Trace: Invalid trigger signal
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a trigger signal was not specified. - the specified signal does not exist. - the specified signal is not a fixed-point signal. - the specified signal cannot be used as a trigger signal for the trace.
Remedy:	Specify a valid trigger signal.

A02063	Trace: Invalid data type
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified data type to select a signal using a physical address is invalid.
Remedy:	Use a valid data type.

A02070	Trace: Parameter cannot be changed
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace parameter settings cannot be changed when the trace is active.
Remedy:	- stop the trace before parameterization.
	- if required, start the trace.

A02075	Trace: Pretrigger time too long
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected pretrigger time must be shorter than the trace time.
Remedy:	Check the pretrigger time setting and change if necessary.
F02080	Trace: Parameterization deleted due to unit changeover
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference parameters.

4.2 List of faults and alarms

Remedy:	Restart trace.
A02095	MTrace 0: multiple trace cannot be activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 0):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
	- if required, deactivate the multiple trace (p4840[0] = 0).
- deactivate function or setting that is not permissible	

A02096

MTrace 0: cannot be saved

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: NONE

Acknowledge: NONE
Cause: It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 0).
A multiple trace is not started or is canceled.
Alarm value (r2124, interpret decimal):
1: Memory card cannot be accessed.

- card is not inserted or is blocked by a mounted USB drive.

3: data save operation to slow.

- a second trace has been completed before the measurement results of the first trace were able to be saved.
- writing the measurement result files to the card is blocked by the parameter save.

4: Data save operation canceled.

- for instance, the file required for the data save operation was not able to be found.

Remedy: - insert or remove the memory card.

- use a larger memory card.
- configure a longer trace time or use an endless trace.
- avoid saving parameters while a multiple trace is running.
- check whether other functions are presently accessing measurement result files.

A02097	MTrace 1: multiple trace cannot be activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace (trace recorder 1):
	- measuring function
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START)
Remedy:	- if required, deactivate the multiple trace (p4840[1] = 0). - deactivate function or setting that is not permissible

A02098	MTrace 1: cannot be saved
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to save the measurement results of a multiple trace on the memory card (trace recorder 1).
	A multiple trace is not started or is canceled.
	Alarm value (r2124, interpret decimal):
	1: Memory card cannot be accessed.
	- card is not inserted or is blocked by a mounted USB drive.

Remedy: - insert or remove the memory card.

- use a larger memory card.
- configure a longer trace time or use an endless trace.
- avoid saving parameters while a multiple trace is running.
- check whether other functions are presently accessing measurement result files.

A02099	Trace: Insufficient Control Unit memory
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy:	Reduce the memory required, e.g. as follows: - reduce the trace time. - increase the trace clock cycle. - reduce the number of signals to be traced.

A02150	OA: Application cannot be loaded
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The system was not able to load an OA application.
	Alarm value (r2124, interpret hexadecimal):
	16:
	The interface version in the DCB user library is not compatible to the DCC standard library that has been loaded.
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
	Re alarm value = 16:
	Load a compatible DCB user library (compatible to the interface of the DCC standard library).
	Note:
	OA: Open Architecture

F02151 (A)	OA: Internal software error
Message class:	Hardware / software error (1)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within an OA application.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
	- replace the Control Unit.
	Note:
	OA: Open Architecture

4.2 List of faults and alarms

F02152 (A)	OA: Insufficient memory
Message class:	Hardware / software error (1)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc).
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc).
	- use an additional Control Unit.
	Note:
	OA: Open Architecture
F03000	NVRAM fault on action
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault occurred during execution of action p7770 $=1$ or 2 for the NVRAM data.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: $\mathrm{yy}=$ fault cause, $\mathrm{xx}=$ application ID
	$y \mathrm{y}=1$:
	The action $\mathrm{p} 7770=1$ is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned.
	yy $=2$:
	The data length of the specified application is not the same in the NVRAM and the backup. $\mathrm{yy}=3$.
	The data checksum in p7774 is not correct.
	$\mathrm{yy}=4$:
	No data available to load.
Remedy:	- Perform the remedy according to the results of the troubleshooting.
	- If necessary, start the action again.
F03001	NVRAM checksum incorrect
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit.
	The NVRAM data affected was deleted.
Remedy:	Carry out a POWER ON (power off/on) for all components.
F03505 (N, A)	Analog input wire breakage
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The wire-break monitoring for an analog input has responded.
	The input current of the analog input has undershot the threshold value parameterized in $\mathrm{p} 0761[0 . . .3]$.
	p0756[0]: Analog input 0
	p0756[1]: Analog input 1
	p0756[2]: Analog input 2
	Fault value (r0949, interpret decimal):
	yxxx dec
	$y=\operatorname{analog}$ input ($0=$ analog input 0 (AI 0), $1=$ analog input 1 (AI 1), $2=$ analog input 2 (AI 2))
	xxx = component number (p0151)

	Note:
	For the following analog input type, the wire breakage monitoring is active:
	$\mathrm{p} 0756[0 \ldots 1]=1(2 \ldots 10 \mathrm{~V}$ with monitoring)
$\mathrm{p} 0756[0 \ldots 2]=3(4 \ldots 20 \mathrm{~mA}$ with monitoring $)$	
	Check the connection to the signal source for interruptions.
Check the magnitude of the injected current - it is possible that the infed signal is too low.	
Remedy:	The input current measured by the analog input can be read in r0752[x].
A03510 (F, N)	Calibration data not plausible
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	During booting, the calibration data for the analog inputs is read and checked with respect to plausibility.
At least one calibration data point was determined to be invalid.	
Remedy:	- power down/power up the power supply for the Control Unit.
	Note:
If it reoccurs, then replace the module.	
In principle, operation could continue.	

A03520 (F, N) Temperature sensor fault
Message class: External measured value / signal state outside the permissible range (16)
Reaction: NONE

Acknowledge: NONE
Cause: When evaluating the temperature sensor, an error occurred.
It is expected that an LG-Ni1000 temperature sensor ($00756[2 \ldots 3]=6$) or PT1000 $p 0756[2 \ldots 3]=7$ is connected via the analog input.

Alarm value (r2124, interpret decimal):
33: Analog input 2 (AI2) wire breakage or sensor not connected.
34: Analog input 2 (AI2) measured resistance too low (short circuit).
49: Analog input 3 (AI3) wire breakage or sensor not connected.
50: Analog input 3 (AI3) measured resistance too low (short circuit).
See also: p0756 (CU analog inputs type)
Remedy: - make sure that the sensor is connected correctly.

- check the sensor for correct function and if required, replace.
- change over the analog input to type "no sensor connected" (p0756 = 8).

A05000 (N)	Power unit: Overtemperature heat sink AC inverter
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using p0290. If the temperature of the heat sink increases by an additional 5 K, then fault F30004 is initiated. Remedy:
	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned?
	- has the cooling failed?

A05001 (N)	Power unit: Overtemperature depletion layer chip
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached. Note: - The response is set using p0290. - If the depletion layer temperature increases by an additional 15 K , then fault F30025 is triggered.
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the cooling failed? - pulse frequency too high? See also: r0037 (Power unit temperatures), p0290 (Power unit overload response)

A05002 (N)	Power unit: Air intake overtemperature
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For chassis power units, the following applies:

Cause: For chassis power units, the following applies:
The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is
$42{ }^{\circ} \mathrm{C}$ (hysteresis 2 K). The response is set using p0290.
If the air intake temperature increases by an additional 13 K , then fault F30035 is output.
Remedy: Check the following:
- is the ambient temperature within the defined limit values?
- has the fan failed? Check the direction of rotation.

A05003 (N)	Power unit: Internal overtemperature
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For chassis power units, the following applies:
	The alarm threshold for internal overtemperature has been reached.
	If the temperature inside the power unit increases by an additional 5 K, then fault F30036 is triggered. Remedy:
	Check the following:

 - is the ambient temperature within the defined limit values?
 - has the fan failed? Check the direction of rotation.
 | A05004 (N) | Power unit: Rectifier overtemperature |
| :--- | :--- |
| Message class: | Power electronics faulted (5) |
| Reaction: | NONE |
| Acknowledge: | NONE |
| Cause: | The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290. |
| If the temperature of the rectifier increases by an additional 5 K , then fault F30037 is triggered. | |
| Remedy: | Check the following:

 - is the ambient temperature within the defined limit values?

 - have the load conditions and the load duty cycle been appropriately dimensioned?

 - has the fan failed? Check the direction of rotation.

 - has a phase of the line supply failed?
 - is an arm of the supply (incoming) rectifier defective? |

A05006 (N)	Power unit: Overtemperature thermal model
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize
	power units only).
	Depending on p0290, an appropriate overload response is initiated.
	See also: r0037 (Power unit temperatures)
Remedy:	Not necessary.
	The alarm disappears automatically once the limit value is undershot.
	Note:
	If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024.
	See also: p0290 (Power unit overload response)

A05065 (F, N)	Voltage measured values not plausible
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage measurement does not supply any plausible values and is not used.
	Alarm value (r2124, interpret bitwise binary):
	Bit 1: Phase U
	Bit 2: Phase V
	Bit 3: Phase W
	The following parameterization must be made in order to deactivate the alarm:
Remedy:	- Deactivate voltage measurement (p0247.0 $=0$).
	- Deactivate flying restart with voltage measurement $(p 0247.5=0)$ and deactivate fast flying restart (p1780.11 = 0).

F06310 (A)	Supply voltage (p0210) incorrectly parameterized
Message class:	Network fault (2)
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The measured DC voltage lies outside the tolerance range after pre-charging has been completed.
	Permissible range: 1.16 * p0210 < r0070 < 1.6 * p0210
	Note:
	The fault can only be acknowledged when the drive is powered down.
	See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210).
	- check the line supply voltage.
	See also: p0210 (Drive unit line supply voltage)

A06921 (N)	Braking resistor phase unsymmetry
Message class:	Braking Module faulted (14)
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the three resistors of the braking chopper are not symmetrical.
	- DC link voltage oscillations caused by fluctuating loads of the connected drives.
Remedy:	- check the feeder cables to the braking resistors.
	- If required, increase the value for detecting dissymmetry (p1364).

4.2 List of faults and alarms

F06922	Braking resistor phase failure
Message class:	Braking Module faulted (14)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A phase failure for the brake resistor was detected.
	Fault value (r0949, interpret decimal):
	11: Phase U
	12: Phase V
	13: Phase W
	See also: p3235 (Phase failure signal motor monitoring time)
	Check the feeder cables to the braking resistors.

A07014 (N)	Drive: Motor temperature model configuration alarm
Message class:	Motor overload (8)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault has occurred in the configuration of the motor temperature model.
	Alarm value (r2124, interpret decimal):
	1:
	All motor temperature models: It is not possible to save the model temperature
	See also: p0610 (Motor overtemperature response)
Remedy:	- set the response for motor overtemperature to "Alarm and fault, no reduction of I_max" (p0610 = 2).
	See also: p0610 (Motor overtemperature response)

A07015	Drive: Motor temperature sensor alarm
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the temperature sensor set in p0601.
	With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is
output; however, at the earliest, 50 ms after alarm A07015.	
	Possible causes:
	- wire breakage or sensor not connected (KTY: $\mathrm{R}>2120$ Ohm).
- measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50$ Ohm).	
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0601).
	See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type)

F07016	Drive: Motor temperature sensor fault
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when evaluating the temperature sensor set in p0601.
	Possible causes:
	- wire breakage or sensor not connected (KTY: $\mathrm{R}>2120 \mathrm{Ohm}$).
	- measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50 \mathrm{Ohm}$).
	Note:
	If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expired, then fault
Remedy:	F07016 is output; however, at the earliest, 50 ms after alarm A07015.
	- make sure that the sensor is connected correctly.
	- check the parameterization (p0601).
	- induction motors: De-activate temperature sensor fault (p0607 = 0).
	See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type)

F07080 Drive: Incorrect control parameter

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: NONE

Acknowledge: IMMEDIATELY (POWER ON)
Cause: The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread = 0)
Fault value (r0949, interpret decimal):
The fault value includes the parameter number involved.
The following parameter numbers only occur as fault values for vector drives:
p0310, for synchronous motors: p0341, p0344, p0350, p0357
The following parameter numbers do not occur as fault values for synchronous motors:
p0354, p0358, p0360
See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0357, p0358, p0360, p0640, p1082, p1300

4.2 List of faults and alarms

Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit >0). See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0640, p1082
F07082	Macro: Execution not possible
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The macro cannot be executed.
	Fault value (r0949, interpret hexadecimal): ccccbbaa hex:
	$\mathrm{cccc}=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause
	Fault causes for the trigger parameter itself:
	19: Called file is not valid for the trigger parameter.
	20: Called file is not valid for parameter 15.
	21: Called file is not valid for parameter 700.
	22: Called file is not valid for parameter 1000.
	23: Called file is not valid for parameter 1500.
	24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16).
	Fault causes for the parameters to be set:
	25: Error level has an undefined value.
	26: Mode has an undefined value.
	27: A value was entered as string in the tag value that is not "DEFAULT".
	31: Entered drive object type unknown.
	32: A device was not able to be found for the determined drive object number.
	34: A trigger parameter was recursively called.
	35: It is not permissible to write to the parameter via macro.
	36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
	37: Source parameter for a BICO interconnection was not able to be determined.
	38: An index was set for a non-indexed (or CDS-dependent) parameter.
	39: No index was set for an indexed parameter.
	41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
	42: A value not equal to 0 or 1 was set for a BitOperation.
	43: Reading the parameter to be changed by the BitOperation was unsuccessful.
	51: Factory setting for DEVICE may only be executed on the DEVICE.
	61: The setting of a value was unsuccessful.
Remedy:	- check the parameter involved.
	- check the macro file and BICO interconnection.
	See also: p0015, p1000
F07083	Macro: ACX file not found
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory.
	Fault value (r0949, interpret decimal):
	Parameter number with which the execution was started.
	See also: p0015, p1000
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.

F07084	Macro: Condition for WaitUntil not fulfilled
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
	Fault value (r0949, interpret decimal): Parameter number for which the condition was set. Check and correct the conditions for the WaitUntil loop.
Remedy:	Units changeover: Parameter limit violation due to reference value change
F07086	Error in the parameterization / configuration / commissioning procedure (18)

A07200	Drive: Master control ON command present
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The ON/OFF1 command is present (no 0 signal).
	The command is either influenced via binector input p0840 (current CDS) or control word bit 0 via the master control.
Remedy:	Switch the signal via binector input p0840 (current CDS) or control word bit 0 via the master control to 0 .
F07220 (N, A)	Drive: Master control by PLC missing
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The "master control by PLC" signal was missing in operation.
	- interconnection of the binector input for "master control by PLC" is incorrect (p0854).
	- the higher-level control has withdrawn the "master control by PLC" signal.
	- data transfer via the fieldbus (master/drive) was interrupted.
Remedy:	- check the interconnection of the binector input for "master control by PLC" (p0854).
	- check the "master control by PLC" signal and, if required, switch in.
	- check the data transfer via the fieldbus (master/drive).
	Note:
	If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.

F07300 (A)	Drive: Line contactor feedback signal missing
Message class:	Auxiliary unit faulted (20)
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	- the line contactor was not able to be closed within the time in p0861.
	- the line contactor was not able to be opened within the time in p0861.
	- the line contactor dropped out during operation
	- the line contactor has closed although the drive converter is powered down.
- check the setting of p0860.	
Remedy:	- check the feedback circuit from the line contactor. - increase the monitoring time in p0861.
	See also: p0860 (Line contactor feedback signal), p0861 (Line contactor monitoring time)

F07311 Bypass motor switch

Message class: Application / technological function faulted (17)
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: Fault value (r0949, interpret bitwise binary):
Bit 1: Switch "Closed" feedback signal missing.
Bit 2: Switch "Open" feedback signal missing.
Bit 3: Switch feedback signal too slow.
After switching, the system waits for the positive feedback signal. If the feedback signal is received later than the specified time, then a fault trip (shutdown) is issued.
Bit 6: Drive switch feedback signal not consistent with the bypass state.
The drive switch is closed when switching-on or when switching-in the motor.
See also: p1260 (Bypass configuration), r1261 (Bypass control/status word), p1266 (Bypass control command), p1267 (Bypass changeover source configuration), p1269 (Bypass switch feedback signal), p1274 (Bypass switch monitoring time)
Remedy: - check the transfer of the feedback signals.

- check the switch.

4.2 List of faults and alarms

Remedy:	Not necessary. The alarm disappears when the motor is restarted automatically or when the motor is manually switched off.
F07330	Flying restart: Measured search current too low
Message class:	Application / technological function faulted (17)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	During a flying restart, it was identified that the search current reached is too low. It is possible that the motor is not connected.
Remedy:	Check the motor feeder cables.

F07331	Flying restart: Function not supported
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	It is not possible to power up with the motor rotating (no flying restart). In the following cases, the "flying restart" function is not supported: Perm.-magnet synch. motors (PEM): operation with U/f char. and sensorless vector control. Remedy:
	De-activate the "flying restart" function (p1200 = 0).

A07353 Drive: DC quantity control deactivated
Message class: Motor overload (8)
Reaction: NONE
Acknowledge: NONE
Cause: \quad The DC quantity control has deactivated itself.
The manipulated variable of the DC quantity control was at its limit.
Remedy: Optimize the DC quantity controller (Kp, Tn, bandwidth, PT2 filter).
Note:
After changing the corresponding parameters, the DC quantity control is re-enabled and the alarm is automatically
withdrawn.
See also: p3857 (DC quantity controller P gain), p3858 (DC quantity controller integral time)

A07400 (N)	Drive: DC link voltage maximum controller active
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242, r1282).
	The ramp-down times are automatically increased in order to maintain the DC link voltage (r 0070) within the permissible limits. There is a system deviation between the setpoint and actual speeds.
	When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller configuration (vector control)), p1280 (Vdc controller configuration (U/f))
Remedy:	If the controller is not to intervene:
	- increase the ramp-down times.
	- switch-off the Vdc_max controller (p1240 = 0 for vector control, p1280 = 0 for U/f control).
	If the ramp-down times are not to be changed:
	- use a chopper or regenerative feedback unit.

A07401 (N)	Drive: DC link voltage maximum controller de-activated
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and
	was therefore switched out (disabled).
	- the line supply voltage is permanently higher than specified for the power unit.
- the motor is permanently in the regenerative mode as a result of a load that is driving the motor.	
Remedy:	- check whether the input voltage is within the permissible range (if required, increase the value in p0210).
	- check whether the load duty cycle and load limits are within the permissible limits.

A07402 (N)	Drive: DC link voltage minimum controller active
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246,
	r1286).
	The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller configuration (vector control)), p1280 (Vdc controller configuration (U/f))
Remedy:	The alarm disappears when power supply returns.

F07405 (N, A)	Drive: Kinetic buffering minimum speed not reached
Message class:	Application / technological function faulted (17)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with U/f control) and the line supply did not return.
Remedy:	Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297).
	See also: p1257 (Vdc_min controller speed threshold), p1297 (Vdc_min controller speed threshold (U/f))

F07406 (N, A) Drive: Kinetic buffering maximum time exceeded
Message class: Application / technological function faulted (17)
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge: IMMEDIATELY
Cause: The maximum buffer time (p1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply having returned.
Remedy: \quad Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295).
See also: p1255 (Vdc_min controller time threshold), p1295 (Vdc_min controller time threshold (U/f))

A07409	Drive: U/f control, current limiting controller active
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the U/f control was activated because the current limit was exceeded.
Remedy:	The alarm automatically disappears after one of the following measures:
	- increase current limit (p0640).
	- reduce the load.
	- slow down the ramp up to the setpoint speed.

4.2 List of faults and alarms

F07410	Drive: Current controller output limited
Message class:	Application / technological function faulted (17)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following:
	- motor not connected or motor contactor open.
	- motor data and motor configuration (star-delta) do not match.
	- no DC link voltage present.
	- power unit defective.
	- the "flying restart" function is not activated.
	- connect the motor or check the motor contactor.
- check the motor parameterization and the connection type (star-delta).	
	- check the DC link voltage (r0070).
	- check the power unit.

A07416	Drive: Flux controller configuration
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of the flux control (p1401) is contradictory.
	Alarm value (r2124, interpret hexadecimal):
	ccbbaaaa hex
	aaaa = Parameter
	bb = Index
	cc = fault cause
	1: Quick magnetizing (p1401.6) for soft starting (p1401.0).
	2: Quick magnetizing for flux build-up control (p1401.2).
	3: Quick magnetizing (p1401.6) for Rs identification after restart (p0621 = 2).
	Re fault cause $=1:$
	- Shut down soft start (p1401.0 $=0)$.

Re fault cause $=2$:

- De-energize flux build-up control (p1401.2 = 0).
- Shut down quick magnetizing (p1401.6 = 0).

Re fault cause $=3$:

- Re-parameterize Rs identification (p0621 = 0, 1)
- Shut down quick magnetizing (p1401.6 = 0).

F07426 (A)	Technology controller actual value limited
Message class:	Application / technological function faulted (17)
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the technology controller, interconnected via connector input p2264, has reached a limit. Fault value (r0949, interpret decimal): 1: upper limit reached. 2: lower limit reached.
Remedy:	- adapt the limits to the signal level (p2267, p2268). - Check the actual value normalization (p0595, p0596). - Deactivate evaluation of the limits (p2252 bit 3)
	See also: p0595 (Technological unit selection), p0596 (Technological unit reference quantity), p2264 (Technology controller actual value), p2267 (Technology controller upper limit actual value), p2268 (Technology controller lower limit actual value)

A07427	Motor switch-in alarm
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm value (r2124, interpret decimal):
	1:
	The technology controller is not active or is not being used to control the main setpoint (see p2251).
	2:
	The operating time limits have been exceeded in at least one external motor.
	Re alarm value $=1:$
Remedy:	- enable technology controller (p2200).
	- set technology controller mode p2251 $=0$ (main setpoint).
	Re alarm value $=2:$
	- increase p2381, p2382 or set p2380 $=0$.

A07428 (N)	Technology controller parameterizing error
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The technology controller has a parameterizing error.
	Alarm value (r2124, interpret decimal):
	1:
	The upper output limit in p2291 is set lower than the lower output limit in p2292.
Remedy:	Re alarm value = 1:
	Set the output limit in p2291 higher than in p2292.
	See also: p2291 (Technology controller maximum limiting), p2292 (Technology controller minimum limiting)

F07435 (N)	Drive: Setting the ramp-function generator for sensorless vector control
Message class:	Application / technological function faulted (17)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped (p1141). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen.

Remedy: \quad - de-activate the holding command for the ramp-function generator (p 1141). \quad\begin{tabular}{l}

- suppress the fault ($\mathrm{p} 2101, \mathrm{p} 2119$). This is necessary if the ramp-function generator is held using jogging and the

speed setpoint is simultaneously inhibited (r0898.6).
\end{tabular}

F07436 (A)	Free tec_ctrl $\mathbf{0}$ actual value limited
Message class:	Application / technological function faulted (17)
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the free technology controller 0 has reached the limit.
	The signal source for the actual value is set via connector input p11064.
	Fault value (r0949, interpret decimal):
	1: The actual value has reached the upper limit.
2: The actual value has reached the lower limit.	
	- adapt the limit settings to the actual value signal (p11067, p11068).
	- check the scaling of the actual value signal.
	- check the signal source setting for the actual value (p11064).
See also: p11064 (Free tec_ctrl 0 actual value signal source), p11067 (Free tec_ctrl 0 actual value upper limit),	
p11068 (Free tec_ctrl 0 actual value lower limit)	

F07437 (A)	Free tec_ctrl 1 actual value limited
Message class:	Application / technological function faulted (17)
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the free technology controller 1 has reached the limit.
	The signal source for the actual value is set via connector input p11164.
	Fault value (r0949, interpret decimal):
	1: The actual value has reached the upper limit.
2: The actual value has reached the lower limit.	
	- adapt the limit settings to the actual value signal (p11167, p11168).
	- check the scaling of the actual value signal.
	- check the signal source setting for the actual value (p11164).
	See also: p11164 (Free tec_ctrl 1 actual value signal source), p11167 (Free tec_ctrl 1 actual value upper limit),
	p11168 (Free tec_ctrl 1 actual value lower limit)

F07438 (A) Free tec_ctrl 2 actual value limited

Message class: Application / technological function faulted (17)
Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: The actual value for the free technology controller 2 has reached the limit.

The signal source for the actual value is set via connector input p11264. Fault value (r0949, interpret decimal):
1: The actual value has reached the upper limit.
2: The actual value has reached the lower limit.
Remedy: - adapt the limit settings to the actual value signal (p11267, p11268).

- check the scaling of the actual value signal.
- check the signal source setting for the actual value (p 11264).

See also: p11264 (Free tec_ctrl 2 actual value signal source), p11267 (Free tec_ctrl 2 actual value upper limit), p11268 (Free tec_ctrl 2 actual value lower limit)

A07530

Drive: Drive Data Set DDS not present

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: NONE

Acknowledge: NONE
Cause: \quad The selected drive data set is not available ($\mathrm{p} 0837>\mathrm{p} 0180$). The drive data set was not changed over.
See also: p0180 (Number of Drive Data Sets (DDS)), p0820 (Drive Data Set selection DDS bit 0), p0821 (Drive Data Set selection DDS bit 1), r0837 (Drive Data Set DDS selected)

Remedy:	- select the existing drive data set. - set up additional drive data sets.
A07531	Drive: Command Data Set CDS not present
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected command data set is not available ($\mathrm{p} 0836>\mathrm{p} 0170$). The command data set was not changed over. See also: p0810 (Command data set selection CDS bit 0), p0811 (Command data set selection CDS bit 1), r0836 (Command Data Set CDS selected)
Remedy:	- select the existing command data set. - set up additional command data sets.
F07800	Drive: No power unit present
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The power unit parameters cannot be read or no parameters are stored in the power unit.
	Note:
	This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization is then downloaded to the Control Unit.
	See also: r0200 (Power unit code number actual)
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- Check the power unit and replace if necessary.
	- check the Control Unit, and if required replace it.
	- after correcting the topology, the parameters must be again downloaded using the commissioning software.

F07801	Drive: Motor overcurrent
Message class:	Motor overload (8)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The permissible motor limit current was exceeded.
	- effective current limit set too low.
	- current controller not correctly set.
	- U/f operation: Up ramp was set too short or the load is too high.
	- U/f operation: Short-circuit in the motor cable or ground fault.
	- U/f operation: Motor current does not match current of power unit.
	- Switch to rotating motor without flying restart function (p1200).
	Note:
	Limit current $=2 \times$ minimum ($\mathrm{p} 0640,4 \times \mathrm{p} 0305 \times \mathrm{p} 0306$) >= $2 \times \mathrm{p} 0305 \times \mathrm{p} 0306$
Remedy:	- check the current limits (p0640).
	- vector control: Check the current controller (p1715, p1717).
	- U/f control: Check the current limiting controller (p1340 ... p1346).
	- increase the up ramp (p1120) or reduce the load.
	- check the motor and motor cables for short-circuit and ground fault.
	- check the motor for the star-delta configuration and rating plate parameterization.
	- Choose "flying restart" function (p1200) if switched to rotating motor.

F07802	Drive: Infeed or power unit not ready
Message class:	Infeed faulted (13)
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	After an internal power-on command, the infeed or drive does not signal ready.
	- monitoring time is too short.
	- DC link voltage is not present.

4.2 List of faults and alarms

Remedy:	- associated infeed or drive of the signaling component is defective.
- supply voltage incorrectly set.	
- increase the monitoring time (p0857).	
- ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed.	
- replace the associated infeed or drive of the signaling component.	
- check the line supply voltage setting (p0210).	
See also: p0857 (Power unit monitoring time)	

A07805 (N)	Drive: Power unit overload 12t
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for I2t overload (p0294) of the power unit exceeded. The response parameterized in p0290 becomes active. See also: p0290 (Power unit overload response)
Remedy:	- reduce the continuous load. - adapt the load duty cycle. - check the assignment of the motor and power unit rated currents.

F07806	Drive: Regenerative power limit exceeded (F3E)
Message class:	Power electronics faulted (5)
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY
Cause:	For blocksize power units, types PM250 and PM260, the regenerative rated power r0206[2] was exceeded for more than 10 s .
	See also: r0206 (Rated power unit power), p1531 (Power limit regenerative)
Remedy:	- increase the down ramp.
	- reduce the driving load.
	- use a power unit with a higher regenerative feedback capability.
	- for vector control, the regenerative power limit in p1531 can be reduced so that the fault is no longer triggered.

F07807

Message class:
Reaction:
Acknowledge:
Cause:

Drive: Short-circuit/ground fault detected

Ground fault / inter-phase short-circuit detected (7)
OFF2 (NONE)
IMMEDIATELY
A phase-phase short-circuit or ground fault was detected at the motor-side output terminals of the converter.
Fault value (r0949, interpret decimal):
1: Short-circuit, phases U-V
2: Short-circuit, phases U-W
3: Short-circuit, phases V-W
4: Ground fault with overcurrent
1xxxx: Ground fault with current in phase U detected ($x x x x=$ component of the current in phase V in per mille)
$2 x x x x$: Ground fault with current in phase V detected ($x x x x=$ component of the current in phase U in per mille) Note:
Also when interchanging the line and motor cables is identified as a motor-side short circuit.
Connecting to a motor that is either not de-energized or partially de-energized is possibly detected as ground fault.
Remedy:

- check the motor-side converter connection for a phase-phase short-circuit.
- rule-out interchanged line and motor cables.
- check for a ground fault.

For a ground fault:

- do not enable the pulses when connecting to a rotating motor without the "Flying restart" function activated (p1200).
- increase the de-energization time (p0347).
- If required, deactivate the monitoring (p1901).

F07810	Drive: Power unit EEPROM without rated data
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	No rated data are stored in the power unit EEPROM.
	See also: p0205 (Power unit application), r0206 (Rated power unit power), r0207 (Rated power unit current), r0208 (Rated power unit line supply voltage), r0209 (Power unit maximum current)
Remedy:	Replace the power unit or inform Siemens Customer Service.
A07850 (F)	External alarm 1
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 1" is satisfied.
	Note:
	The "External alarm 1" is initiated by a 1/0 edge via binector input p2112.
	See also: p2112 (External alarm 1)
Remedy:	Eliminate the causes of this alarm.
A07851 (F)	External alarm 2
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 2" is satisfied.
	Note:
	The "External alarm 2" is initiated by a 1/0 edge via binector input p2116.
	See also: p2116 (External alarm 2)
Remedy:	Eliminate the causes of this alarm.
A07852 (F)	External alarm 3
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The condition for "External alarm 3" is satisfied.
	Note:
	The "External alarm 3" is initiated by a 1/0 edge via binector input p2117.
	See also: p2117 (External alarm 3)
Remedy:	Eliminate the causes of this alarm.
F07860 (A)	External fault 1
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 1 " is satisfied.
	Note:
	The "External fault 1 " is initiated by a 1/0 edge via binector input p2106.
	See also: p2106 (External fault 1)
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.

F07861 (A)	External fault 2
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 2" is satisfied.
	Note:
	The "External fault 2" is initiated by a 1/0 edge via binector input p2107. Semedy:
	- eliminate the causes of fais fault. - acknowledge fault.

F07862 (A)	External fault 3
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The condition for "External fault 3" is satisfied.
	Note:
	The "External fault 3" is initiated by a 1/0 edge via the following parameters.
	- AND logic operation, binector input p2108, p3111, p3112.
	- switch-on delay p3110.
	See also: p2108 (External fault 3), p3110 (External fault 3 power-up delay), p3111 (External fault 3 enable), p3112 (External fault 3 enable negated)
Remedy:	- eliminate the causes of this fault.
	- acknowledge fault.

F07900 (N, A)	Drive: Motor blocked
Message class:	Application / technological function faulted (17)
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold in p2175.
	This signal can also be triggered if the speed is oscillating and the speed controller output repeatedly goes to its limit.
	It may also be the case that thermal monitoring of the power unit reduces the current limit (see p0290), thereby
	causing the motor to decelerate.
	See also: p2175 (Motor blocked speed threshold), p2177 (Motor blocked delay time)
- check that the motor can freely move.	
Remedy:	- check the effective torque limit (r1538, r1539).
	- check the parameter, message "Motor blocked" and if required, correct (p2175, p2177).
	- check the direction of rotation enable signals for a flying restart of the motor (p1110, p1111).
	- for U/f control: check the current limits and acceleration times (p0640, p1120).

F07901 Drive: Motor overspeed

Message class: Application / technological function faulted (17)
Reaction: OFF2 (IASC/DCBRK)
Acknowledge: IMMEDIATELY

Cause: The maximum permissible speed was either positively or negatively exceeded.
The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162
Remedy:
The following applies for a positive direction of rotation:

- check r1084 and if required, correct p1082, CI:p1085 and p2162.

The following applies for a negative direction of rotation:

- check r1087 and if required, correct p1082, CI:p1088 and p2162.

Activate pre-control of the speed limiting controller (p1401.7 = 1).
Increase the hysteresis for the overspeed signal p2162. This upper limit is dependent upon the maximum motor speed p0322 and the maximum speed p1082 of the setpoint channel.

F07902 (N, A)	Drive: Motor stalled
Message class:	Application / technological function faulted (17)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The system has identified that the motor has stalled for a time longer than is set in p2178.
	Fault value (r0949, interpret decimal):
	1: Reserved.
2: Stall detection using r1408.12 (p1745) or via (r0084 ... r0083).	
Remedy:	See also: p2178 (Motor stalled delay time) Steps should always be taken to ensure that both motor data identification and the rotating measurement were carried out (see p1900, r3925).
	- check whether the drive stalls solely due to the load in controlled mode or when the speed setpoint is still zero. If
yes, then increase the current setpoint using p1610.	
- if the motor excitation time (p0346) was significantly reduced and the drive stalls when it is switched on and run	
immediately, p0346 should be increased again.	
- check whether a line phase failure is affecting power unit PM230, PM250, PM260.	

A07903	Drive: Motor speed deviation
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute value of the speed difference from the setpoint (p2151) and the speed actual value (r2169) exceeds the
	tolerance threshold (p2163) longer than tolerated (p2164, p2166).
	The alarm is only enabled for p2149.0 = 1.
	Possible causes:
	- the load torque is greater than the torque setpoint.
	- when accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the
	drive has been dimensioned too small.
	- for closed-loop torque control, the speed setpoint does not track the speed actual value.
	- for active Vdc controller.
Femedy:	For Control, the overload condition is detected as the I_max controller is active.
	See also: p2149 (Monitoring configuration)
	- increase p2163 and/or p2166.
	- increase the torque/current/power limits.
	- for closed-loop torque control: The speed setpoint should track the speed actual value.
	- de-activate alarm with p2149.0 $=0$.

A07910 (N)	Drive: Motor overtemperature
Message class:	Motor overload (8)
Reaction:	NONE
Acknowledge:	NONE
Cause:	KTY or no sensor:

The measured motor temperature or the temperature of the motor temperature model 2 has exceeded the alarm threshold (p0604). The response parameterized in p0610 becomes active.
PTC or bimetallic NC contact:
The response threshold of 1650 Ohm was exceeded or the NC contact opened
Alarm value (r2124, interpret decimal):
11: No output current reduction.
12: Output current reduction active.
See also: p0604 (Mot_temp_mod 2/KTY alarm threshold), p0610 (Motor overtemperature response)

4.2 List of faults and alarms

Remedy: \quad - check the motor load. \quad - check the motor ambient temperature. \quad - check KTY84.

A07920	Drive: Torque/speed too low
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too low).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too low).
	See also: p2181 (Load monitoring response)
	- check the connection between the motor and load.
Remedy:	- adapt the parameterization corresponding to the load.

A07921	Drive: Torque/speed too high
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too high).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high).
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.

A07922	Drive: Torque/speed out of tolerance
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2:
The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169).	
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.

F07923	Drive: Torque/speed too low
Message class:	Application / technological function faulted (17)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too low).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too low). - check the connection between the motor and load. Remedy:
	- adapt the parameterization corresponding to the load.

F07924	Drive: Torque/speed too high
Message class:	Application / technological function faulted (17)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too high).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high).
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.

F07925	Drive: Torque/speed out of tolerance
Message class:	Application / technological function faulted (17)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2:
The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169).	
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.

A07927	DC braking active
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor is braked with DC current. DC braking is active.

 1)
 A message with response DCBRK is active. The motor is braked with the braking current set in p1232 for the
 duration set in in p1233. If the standstill threshold p1226 is undershot, then braking is prematurely canceled.
 2)
 DC braking has been activated at binector input p1230 with the DC braking set (p1230 \(=4\)). Braking current p1232 is
 injected until this binector input becomes inactive.
 Remedy: Not necessary.
The alarm automatically disappears once DC braking has been executed.

A07929 (F)	Drive: No motor detected
Message class:	Application / technological function faulted (17)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute current value is so small after enabling the inverter pulses that no motor is detected.
	Note:
	In the case of vector control and an induction motor, this alarm is followed by the fault F07902.
	See also: p2179 (Output load identification current limit)
Remedy:	- check the motor feeder cables.
	- reduce the threshold value (p2179), e.g. for synchronous motors.
	- check the voltage boost of the U/f control (p1310).
- carry out a standstill measurement to set the stator resistance (p0350).	

F07936	Drive: load failure
Message class:	Application / technological function faulted (17)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The load monitoring has detected a load failure.

4.2 List of faults and alarms

Remedy:	- check the sensor. - if necessary, de-activate the load monitoring (p2193). See also: p2193 (Load monitoring configuration), p3232 (Load monitoring failure detection)
F07950 (A)	Motor parameter incorrect
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The motor parameters were incorrectly entered while commissioning (e.g. p0300 $=0$, no motor)
	Fault value (r0949, interpret decimal):
	Parameter number involved.
	See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0316, p0320, p0322, p0323
Remedy:	Compare the motor data with the rating plate data and if required, correct.

F07967 Drive: Incorrect pole position identification

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: OFF2 (NONE, OFF1)
Acknowledge: IMMEDIATELY

Cause:	A fault has occurred during the pole position identification routine.
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON.

F07968	Drive: Lq-Ld measurement incorrect
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement.
	Fault value (r0949, interpret decimal):
	10: Stage 1: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
	For fault value $=$ 10:
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	De-activate technique (p1909).
	For fault value $=12:$
	Check whether motor data have been correctly entered.
	De-activate technique (p1909).
	For fault value $=16:$
	De-activate technique (p1909).
	For fault value $=17:$
	Repeat technique.

F07969	Drive: Incorrect pole position identification
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Fault value (r0949, interpret decimal):
	1: Current controller limited
	2: Motor shaft locked.
	10: Stage 1: The ratio between the measured current and zero current is too low.
	11: Stage 2: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.

```
13: Stage 2: The maximum current was exceeded.
14: Current difference to determine the \(+d\) axis too low.
15: Second harmonic too low.
16: Drive converter too small for the measuring technique.
17: Abort due to pulse inhibit.
18: First harmonic too low.
20: Pole position identification requested with the motor shaft rotating and activated "flying restart" function.
Remedy:
For fault value \(=1\) :
Check whether the motor is correctly connected.
Check whether motor data have been correctly entered.
Replace the power unit involved.
For fault value \(=2\) :
Bring the motor into a no-load condition.
For fault value \(=10\) :
When selecting p1980 = 4: Increase the value for p0325.
When selecting p1980 = 1: Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value \(=11\) :
Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value \(=12\) :
When selecting p1980 = 4: Reduce the value for p 0325.
When selecting p1980 = 1: Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value = 13:
Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value \(=14\) :
Increase the value for p0329.
For fault value \(=15\) :
Increase the value for p0325.
Motor not sufficiently anisotropic, change the technique (p1980 = 1 or 10).
For fault value \(=16\) :
Change the technique ( p 1980 ).
For fault value = 17:
Repeat technique.
For fault value \(=18\) :
Increase the value for p 0329 .
Saturation not sufficient, change the technique (p1980 = 10).
For fault value \(=20\) :
Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).
```

A07976	Drive: Fine encoder calibration activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm indicates the phases of the fine encoder calibration using the alarm value.
	Alarm value (interpret decimal):
	1: Fine encoder calibration active.
	2: Rotating measurement started (set the setpoint speed > 40 \% rated motor speed).
	3: Rotating measurement lies within the speed and torque range.
	4: Rotating measurement successful: pulse inhibit can be initiated to accept the values.

	5: Fine encoder calibration is calculated.
	10: Speed too low, rotating measurement interrupted.
	12: Torque too high, rotating measurement interrupted.
Remedy:	Re alarm value $=10$:
	Increase the speed.
	Re alarm value $=12$:
	Bring the drive into a no-load condition.
A07980	Drive: Rotating measurement activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated.
	The rotating measurement is carried out at the next power-on command.
	Note:
	During the rotating measurement it is not possible to save the parameters (p0971).
	See also: p1960 (Rotating measurement selection)
Remedy:	Not necessary.
	The alarm disappears automatically after the speed controller optimization has been successfully completed or for the setting p1900 $=0$.

A07981	Drive: Enable signals for the rotating measurement missing
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement cannot be started due to missing enable signals. For p1959.13 = 1, the following applies: - enable signals for the ramp-function generator missing (see p1140 ... p1142). - enable signals for the speed controller integrator missing (see p1476, p1477).
Remedy:	- acknowledge faults that are present. - establish missing enable signals. See also: r0002 (Drive operating display), r0046 (Missing enable sig)

F07983 Drive: Rotating measurement saturation characteristic

Message class: Error in the parameterization / configuration / commissioning procedure (18)
Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY

Cause: A fault has occurred while determining the saturation characteristic.
Fault value (r0949, interpret decimal):
1: The speed did not reach a steady-state condition.
2: The rotor flux did not reach a steady-state condition.
3: The adaptation circuit did not reach a steady-state condition.
4: The adaptation circuit was not enabled.
5: Field weakening active.
6: The speed setpoint was not able to be approached as the minimum limiting is active.
7: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
8: The speed setpoint was not able to be approached as the maximum limiting is active.
9: Several values of the determined saturation characteristic are not plausible.
10: Saturation characteristic could not be sensibly determined because load torque too high.
Remedy:
For fault value $=1$:

- the total drive moment of inertia is far higher than that of the motor (p0341, p0342).

De-select rotating measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340
$=4$ and repeat the measurement.
Re fault value $=1 \ldots 2$:

- increase the measuring speed (p 1961) and repeat the measurement.

Re fault value = $1 \ldots 4$:

- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 .
- carry out a motor data identification routine (p1910).
- if required, reduce the dynamic factor (p1967 < 25%).

For fault value $=5$:

- the speed setpoint (p1961) is too high. Reduce the speed.

For fault value $=6$:

- adapt the speed setpoint (p1961) or minimum limiting (p1080).

For fault value $=7$:

- adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101).

For fault value $=8$:

- adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086).

Re fault value $=9,10$:

- the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements.
Note:
The saturation characteristic identification routine can be disabled using p1959.1.
See also: p1959 (Rotating measurement configuration)

F07984	Drive: Speed controller optimization, moment of inertia
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while identifying the moment of inertia.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4. The speed setpoint was not able to be approached as the maximum limiting is active.
	5 : It is not possible to increase the speed by 10% as the minimum limiting is active.
	6: It is not possible to increase the speed by 10% as the suppression (skip) bandwidth is active.
	7: It is not possible to increase the speed by 10% as the maximum limiting is active.
	8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia.
	9: Too few data to be able to reliably identify the moment of inertia.
	10: After the setpoint step, the speed either changed too little or in the incorrect direction.
	11: The identified moment of inertia is not plausible.
Remedy:	For fault value = 1 :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 .
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967<25\%).
	Re fault value $=2,5$:
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	Re fault value $=3,6$:
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	Re fault value $=4,7$:
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value = 8:
	- the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement.
	For fault value = 9:
	- check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340 = 3 or 4).

For fault value $=10$:

- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.

Note:
The moment of inertia identification routine can be disabled using p1959.2.
See also: p1959 (Rotating measurement configuration)

F07985	Drive: Speed controller optimization (oscillation test)
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the vibration test.
	Fault value (r0949, interpret decimal):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4: The speed setpoint was not able to be approached as the maximum limiting is active.
	5: Torque limits too low for a torque step.
	6: No suitable speed controller setting was found.
Remedy:	For fault value = 1 :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967 < 25%).
	For fault value $=2$:
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	For fault value = 3:
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ..p1094, p1101).
	For fault value = 4:
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value = 5:
	- increase the torque limits (e.g. p1520, p1521).
	For fault value $=6$:
	- reduce the dynamic factor (p1967).
	- disable the vibration test (p1959.4 = 0) and repeat the rotating measurement.
	See also: p1959 (Rotating measurement configuration)
F07986	Drive: Rotating measurement ramp-function generator
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	During the rotating measurements, problems with the ramp-function generator occurred.
	Fault value (r0949, interpret decimal):
	1: The positive and negative directions are inhibited.
Remedy:	For fault value = 1:
	Enable the direction (p1110 or p1111).
F07988	Drive: Rotating measurement, no configuration selected
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	When configuring the rotating measurement (p1959), no function was selected.
Remedy:	Select at least one function for automatic optimization of the speed controller (p1959).
	See also: p1959 (Rotating measurement configuration)

F07990	Drive: Incorrect motor data identification
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the identification routine.
	Fault value (r0949, interpret decimal):
	1: Current limit value reached.
	2: Identified stator resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
	3: Identified rotor resistance lies outside the expected range $0.1 \ldots 100 \%$ of Zn .
	4: Identified stator reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
	5: Identified magnetizing reactance lies outside the expected range $50 \ldots 500 \%$ of Zn .
	6: Identified rotor time constant lies outside the expected range $10 \mathrm{~ms} . . .5 \mathrm{~s}$.
	7: Identified total leakage reactance lies outside the expected range $4 \ldots 50 \%$ of Zn .
	8: Identified stator leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
	9: Identified rotor leakage reactance lies outside the expected range $2 \ldots 50 \%$ of Zn .
	10: Motor has been incorrectly connected.
	11: Motor shaft rotates.
	12: Ground fault detected.
	15: Pulse inhibit occurred during motor data identification
	20: Identified threshold voltage of the semiconductor devices lies outside the expected range 0 ... 10 V .
	30: Current controller in voltage limiting.
	40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
	60: Incorrect power stack data for the converter output voltage calibration
	61: Incorrect measured values for the converter output voltage calibration
	Note:
	Percentage values are referred to the rated motor impedance:
	$\mathrm{Zn}=$ Vmot.nom / sqrt(3) / Imot,nom
Remedy:	Re fault value $=1 . . .40$:
	- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
	- is there an appropriate relationship between the motor power rating and that of the power unit? The ratio of the power unit to the rated motor current should not be less than 0.5 and not be greater than 4 .
	- check connection type (star-delta).
	Re fault value $=4,7$:
	- check whether the inductance in p0233 is correctly set.
	- check whether motor has been correctly connected (star-delta).
	Re fault value $=11$ in addition:
	- Deactivate oscillation monitoring (p1909.7 = 1).
	For fault value = 12:
	- check the power cable connections.
	- check the motor.
	- check the CT.
A07991 (N)	Drive: Motor data identification activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification routine is activated.
	The motor data identification routine is carried out at the next power-on command.
	If rotating measurement is selected (see p1900, p1960), it will not be possible to save the parameter assignment. Once motor data identification has been completed or de-activated, the option to save the parameter assignment will be made available again.
	See also: p1910 (Motor data identification selection)
Remedy:	Not necessary.
	The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 $=0$.

A07994 (F, N)	Drive: motor data identification not performed
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "vector control" mode has been selected and a motor data identification has still not been performed.
	The alarm is initiated when changing the drive data set (see r0051) in the following cases:
	- vector control is parameterized in the actual drive data set (p1300 >= 20).
	and
	- motor data identification has still not been performed in the actual drive data set (see r3925).
	Note:
	For SINAMICS G120, a check is made and an alarm is output also when exiting commissioning and when the system
	powers up.
Remedy:	- Perform motor data identification (see p1900).
	- If required, parameterize "U/f control" (p1300 < 20).
	- switch over to a drive data set, in which the conditions do not apply.

F08010 (N, A)	CU: Analog-to-digital converter
Message class:	Hardware / software error (1)
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The analog-to-digital converter on the Control Unit has not supplied any converted data.
Remedy:	- check the power supply.
	- replace Control Unit.

F08501 (N, A) PROFINET: Setpoint timeout

Message class: Communication error to the higher-level control system (9)
Reaction: OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge: IMMEDIATELY
Cause: The reception of setpoints from PROFINET has been interrupted.

- bus connection interrupted.
- controller switched off. - controller set into the STOP state.

Remedy: - Restore the bus connection and set the controller to RUN. - check the set monitoring time if the error persists (p2040).
F08502 (A) PROFINET: Monitoring time sign-of-life expired

Message class: Communication error to the higher-level control system (9)
Reaction: OFF1 (OFF2, OFF3)
Acknowledge: IMMEDIATELY

Cause: The monitoring time for the sign-of-life counter has expired. The connection to the PROFINET interface was interrupted.
Remedy: - carry out a POWER ON (power off/on). - contact the Hotline.

A08511 (F)	PROFINET: Receive configuration data invalid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data.
	Alarm value (r2124, interpret decimal):
	Return value of the receive configuration data check.
	2: Too many PZD data words for output or input. Maximum of 12 words are possible.
	3: Uneven number of bytes for input or output.

Remedy: \quad| Check the receive configuration data. | |
| :--- | :--- |
| | Re alarm value $=2$: |
| | - Check the number of data words for output and input. |

A08526 (F)	PROFINET: No cyclic connection
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no connection to a PROFINET controller.
Remedy:	Establish the cyclic connection and activate the controller with cyclic operation.
	Check the parameters "Name of Station" and "IP of Station" (r61000, r61001).

A08565	PROFINET: Consistency error affecting adjustable parameters
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration (p8925) for the PROFINET interface. The
	currently set configuration has not been activated.
	Alarm value (r2124, interpret decimal):
	0: general consistency error
	1: error in the IP configuration (IP address, subnet mask or standard gateway)
	2: Error in the station names.
	3: DHCP was not able to be activated, as a cyclic PROFINET connection already exists.
	4: a cyclic PROFINET connection is not possible as DHCP is activated.
	See also: p8920 (PN Name of Station), p8921 (PN IP address of station), p8922 (PN Default Gateway of Station),
p8923 (PN Subnet Mask of Station)	
Remedy:	- Check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925).
	or
	- Reconfigure the station via the "Edit Ethernet node" screen form (e.g. with STARTER commissioning software).
	See also: p8925 (PN interface configuration)

F08700 (A) CAN: Communications error
Message class: Communication error to the higher-level control system (9)
Reaction: OFF3 (NONE, OFF1, OFF2)
Acknowledge: IMMEDIATELY
Cause: A CAN communications error has occurred.
Fault value (r0949, interpret decimal):
1: The error counter for the send telegrams has exceeded the BUS OFF value 255. The bus disables the CAN controller.

- bus cable short circuit.
- incorrect baud rate.
- incorrect bit timing.

2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]).

- bus cable interrupted.
- bus cable not connected.
- incorrect baud rate.
- incorrect bit timing.
- master fault.

Note:
The fault response can be set as required using p8641
See also: p8604 (CAN life guarding), p8641 (CAN Abort Connection Option Code)
Remedy:

- check the bus cable
- check the baud rate (p8622).
- check the bit timing (p8623).
- check the master.

The CAN controller must be manually restarted with p8608 = 1 after the cause of the fault has been resolved! See also: p8608 (CAN Clear Bus Off Error), p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)

F08701	CAN: NMT state change
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped".
	Fault value (r0949, interpret decimal):
	1: CANopen NMT state transition from "operational" to "pre-operational".
	2: CANopen NMT state transition from "operational" to "stopped".
	Note:
	In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred.
Remedy:	Not necessary.
	Acknowledge the fault and continue operation.
F08702 (A)	CAN: RPDO Timeout
Message class:	Communication error to the higher-level control system (9)
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time of the CANopen RPDO telegram has expired because the bus connection was either interrupted or the CANopen Master was switched-off.
	See also: p8699 (CAN: RPDO monitoring time)
Remedy:	- check the bus cable
	- check the master.
	- If required, increase the monitoring time (p8699).

A08751 (N)	CAN: Telegram loss
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CAN controller has lost a receive message (telegram).
Remedy:	Reduce the cycle times of the receive messages.

A08752 CAN: Error counter for error passive exceeded

Message class: Communication error to the higher-level control system (9)
Reaction: NONE

Acknowledge: NONE
Cause: The error counter for the send or receive telegrams has exceeded the value 127.
Remedy: - check the bus cable

- set a higher baud rate (p8622).
- check the bit timing and if required optimize (p8623).

See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)

A08753	CAN: Message buffer overflow
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A message buffer overflow.
	Alarm value (r2124, interpret decimal):
	1: Non-cyclic send buffer (SDO response buffer) overflow.
	2: Non-cyclic receive buffer (SDO receive buffer) overflow.
	3: Cyclic send buffer (PDO send buffer) overflow.

Remedy:	- check the bus cable.
	- set a higher baud rate (p8622).
	- check the bit timing and if required optimize (p8623).
	Re alarm value $=2:$
	- reduce the cycle times of the SDO receive messages.
	- SDO request from master only after SDO feedback for previous SDO request.
	See also: p8622 (CAN bit rate), p8623 (CAN Bit Timing selection)

A08755	CAN: Obj cannot be mapped
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CANopen object is not provided for the Process Data Object (PDO) Mapping.
Remedy:	Use CANopen object intended for the PDO mapping or enter 0.
	The following objects can be mapped in the Receive Process Data Object (RPDO) or Transmit Process Data Object
	(TPDO):
	- RPDO: 6040 hex, 6060 hex, 60 FF hex, 6071 hex; 5800 hex - 580F hex; 5820 hex -5827 hex
	- TPDO: 6041 hex, 6061 hex, 6063 hex, 6069 hex, $606 B$ hex, 606 C hex, 6074 hex; 5810 hex - 581 F hex; 5830 hex -
	5837 hex
	Only sub-index 0 of the specified objects can be mapped.
	Note:
	As long as A08755 is present, the COB-ID cannot be set to valid.

A08756	CAN: Number of mapped bytes exceeded
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The number of bytes of the mapped objects exceeds the telegram size for net data. A max. of 8 bytes is permissible.
Remedy:	Map fewer objects or objects with a smaller data type. See also: p8710, p8711, p8712, p8713, p8714, p8715, p8716, p8717, p8730, p8731, p8732, p8733, p8734, p8735, p8736, p8737

A08757	CAN: Set COB-ID invalid
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	For online operation, the appropriate COB-ID must be set invalid before mapping. Example:
	Mapping for RPDO 1 should be changed (p8710[0]).
	--> set p8700[0] = C00006E0 hex (invalid COB-ID)
	--> set p8710[0] as required.
	--> p8700[0] enter a valid COB-ID
Remedy:	Set the COB-ID to invalid.

A08759
Message class Reaction:
Acknowledge:
Cause:

CAN: PDO COB-ID already available

Error in the parameterization / configuration / commissioning procedure (18) NONE
NONE
An existing PDO COB-ID was allocated.

4.2 List of faults and alarms

Remedy: Select another PDO COB-ID.

A08760	CAN: maximum size of the IF PZD exceeded
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum size of the IF PZD was exceeded.
	Alarm value (r2124, interpret decimal):
	1: error for IF PZD receive.
	2: error for IF PZD send.
	Note:
Remedy:	IF: interface
	Map fewer process data in PDO.
	Apply one of the following options to delete the alarm:
	- POWER ON (off/on).
	- carry out a warm restart (p0009 = 30, p0976 = 2).
	- execute CANopen NMT command reset node.
	- change CANopen NMT state.
	- delete alarm buffer [0...7] (p2111 = 0).

A08800	PROFlenergy energy-saving mode active
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFlenergy energy-saving mode is active
	Alarm value (r2124, interpret decimal):
	Mode ID of the active PROFlenergy energy-saving mode.
	See also: r5600 (Pe energy saving mode ID)
Remedy:	The alarm automatically disappears when the energy-saving mode is exited.
	Note:
	After receiving the PROFlenergy command "End_Pause" via PROFINET, the energy-saving mode is exited.

A08802	PROFlenergy not possible to switch off incremental encoder supply
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The incremental encoder is used for the closed-loop position control. This means that its power supply cannot be
	switched off during the PROFlenergy energy-saving mode, otherwise it would lose its position actual value.
	Alarm value (r2124, interpret decimal):
	Encoder number
Remedy:	The alarm automatically disappears when the energy-saving mode is exited.
	Note:
	After receiving the PROFlenergy command "End_Pause" via PROFINET, the energy-saving mode is exited.

F13009	Licensing OA application not licensed
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one OA application which is under license does not have a license.
	Note:
	Refer to r4955 and p4955 for information about the installed OA applications.
	- enter and activate the license key for OA applications under license (p9920, p9921).
Remedy:	- if necessary, de-activate unlicensed OA applications (p4956).

F13100	Know-how protection: Copy protection error
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The know-how protection with copy protection for the memory card is active.
	An error has occurred when checking the memory card.
	Fault value (r0949, interpret decimal):
	0 : A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
	2: An invalid memory card is inserted.
	3: The memory card is being used in another Control Unit.
	12: An invalid memory card is inserted (OEM input incorrect, p7769).
	13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).
	See also: p7765 (KHP configuration)
Remedy:	Re fault value $=0,1$:
	- Insert the correct memory card and carry out POWER ON.
	Re fault value $=2,3,12,13$:
	- contact the responsible OEM.
	- Deactivate copy protection (p7765) and acknowledge the fault (p3981).
	- Deactivate know-how protection (p7766 ... p7768) and acknowledge the fault (p3981).
	Note:
	In general, the copy protection can only be changed when know-how protection is deactivated.
	KHP: Know-How Protection
	See also: p3981 (Faults acknowledge drive object), p7765 (KHP configuration)
F13101	Know-how protection: Copy protection cannot be activated
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error occurred when attempting to activate the copy protection for the memory card.
	Fault value (r0949, interpret decimal):
	0 : A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
	Note:
	KHP: Know-How Protection
Remedy:	- Insert a valid memory card.
	- Try to activate copy protection again (p7765).
	See also: p7765 (KHP configuration)
F13102	Know-how protection: Consistency error of the protected data
Message class:	Error in the parameterization / configuration / commissioning procedure (18)
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy = object number, $x x x x=$ fault cause
	$x x x x=1:$
	A file has a checksum error.
	$x \mathrm{xxx}=2$:
	The files are not consistent with one another.
	The project files, which were loaded into the file system via load (download from the memory card), are inconsistent.
	Note:
	KHP: Know-How Protection

4.2 List of faults and alarms

Remedy: - Replace the project on the memory card or replace project files for download from the memory card.

- Restore the factory setting and download again.

F30001	Power unit: Overcurrent
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- High discharge and post-charging current for line supply voltage interruptions.
	- High post-charging currents for overload when motoring and DC link voltage dip.
	- Short-circuit currents at power-on due to the missing line reactor.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	- line phase interrupted.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	Bit 3: Overcurrent in the DC link.
	Note:
	Fault value $=0$ means that the phase with overcurrent is not recognized.
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star/delta).
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the line supply quality.
	- Reduce motor load.
	- Correct connection of line reactor.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
	- check the line supply phases.
F30002	Power unit: DC link voltage overvoltage
Message class:	DC link overvoltage (4)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overvoltage condition in the DC link.
	- motor regenerates too much energy.
	- line supply voltage too high.
	- line phase interrupted.
	- DC-link voltage control switched off.
	- dynamic response of DC-link voltage controller excessive or insufficient.
	Fault value (r0949, interpret decimal):
	DC link voltage at the time of trip [0.1 V].
Remedy:	-increase the ramp-down time (p1121).
	- set the rounding times ($\mathrm{p} 1130, \mathrm{p} 1136$). This is particularly recommended in U/f operation to relieve the DC link voltage controller with rapid ramp-down times of the ramp-function generator.
	- Activate the DC link voltage controller (p1240, p1280).

- adapt the dynamic response of the DC-link voltage controller (p1243, p1247, p1283, p1287).
- check the line supply voltage and setting in p0210.
- check and correct the phase assignment at the power unit.
- check the line supply phases.

See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller configuration (vector control))

F30003	Power unit: DC link voltage undervoltage
Message class:	Infeed faulted (13)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an undervoltage condition in the DC link.
	- line supply failure
	- line supply voltage below the permissible value.
	- line phase interrupted.
	Note:
	The monitoring threshold for the DC link undervoltage is the minimum of the following values:
Remedy:	- for a calculation, refer to p0210.
	- check the line supply voltage
	- check the line supply phases.
See also: p0210 (Drive unit line supply voltage)	
F30004	Power unit: Overtemperature heat sink AC inverter
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY Cause: The temperature of the power unit heat sink has exceeded the permissible limit value.
- insufficient cooling, fan failure.	
Remedy:	- overload.
- ambient temperature too high.	

F30005	Power unit: Overload I2t
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 = 100 \%).
	- the permissible rated power unit current was exceeded for an inadmissibly long time.
	- the permissible load duty cycle was not maintained.
	Fault value (r0949, interpret decimal):
	I2t [100 \% = 16384].
Remedy:	- reduce the continuous load.
	- adapt the load duty cycle.
	- check the motor and power unit rated currents.
	- reduce the current limit (p0640).
	- during operation with U/f characteristic: reduce the integral time of the current limiting controller (p1341).

See also: r0036 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)

F30011	Power unit: Line phase failure in main circuit
Message class:	Network fault (2)
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	At the power unit, the DC link voltage ripple has exceeded the permissible limit value.
	Possible causes:
	- A line phase has failed.
	- The 3 line phases are inadmissibly unsymmetrical.
	- The capacitance of the DC link capacitor forms a resonance frequency with the line inductance and the reactor integrated in the power unit.
	- the fuse of a phase of a main circuit has ruptured.
	- A motor phase has failed.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- check the main circuit fuses.
	- Check whether a single-phase load is distorting the line voltages.
	- Detune the resonant frequency with the line inductance by using an upstream line reactor.
	- Dampen the resonant frequency with the line inductance by switching over the DC link voltage compensation in the software (see p1810) - or increase the smoothing (see p1806). However, this can have a negative impact on the torque ripple at the motor output.
	- check the motor feeder cables.
F30012	Power unit: Temperature sensor heat sink wire breakage
Message class:	Power electronics faulted (5)
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The connection to a heat sink temperature sensor in the power unit is interrupted.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1
	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6
	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
F30013	Power unit: Temperature sensor heat sink short-circuit
Message class:	Power electronics faulted (5)
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The heat sink temperature sensor in the power unit is short-circuited.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1
	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6

	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
$\overline{\mathrm{F} 30015 \text { (N, A) }}$	Power unit: Phase failure motor cable
Message class:	Application / technological function faulted (17)
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A phase failure in the motor feeder cable was detected.
	The signal can also be output in the following cases:
	- The motor is correctly connected, but the drive has stalled in U/f control. In this case, a current of 0 A is possibly measured in one phase due to asymmetry of the currents.
	- the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated.
	Note:
	Chassis power units do not feature phase failure monitoring.
Remedy:	- check the motor feeder cables.
	- increase the ramp-up or ramp-down time (p1120) if the drive has stalled in U/f control.
	- check the speed controller settings.
A30016 (N)	Power unit: Load supply switched out
Message class:	Network fault (2)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage is too low.
	Alarm value (r2124, interpret decimal):
	DC link voltage at the time of trip [0.1 V].
Remedy:	Under certain circumstances, the AC line supply is not switched on.
F30017	Power unit: Hardware current limit has responded too often
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Fault value (r0949, interpret binary):
	Bit 0: Phase U
	Bit 1: Phase V
	Bit 2: Phase W
Remedy:	- check the motor data.
	- check the motor circuit configuration (star-delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.

4.2 List of faults and alarms

F30021	Power unit: Ground fault
Message class:	Ground fault / inter-phase short-circuit detected (7)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The Power unit has detected a ground fault.
	Possible causes:
	- ground fault in the power cables.
	- Ground fault at the motor.
	- CT defective.
	- when the brake closes, this causes the hardware DC current monitoring to respond.
	- short-circuit at the braking resistor.
	Fault value (r0949, interpret decimal):
	0:
	- the hardware DC current monitoring has responded.
	- short-circuit at the braking resistor.
	> 0:
	Absolute value, summation current [32767 = 271 \% rated current].
	- check the power cable connections.
	- check the motor.
	- check the CT.
	- check the cables and contacts of the brake connection (a wire is possibly broken).
	- check the braking resistor.
Remedy:	See also: p0287 (Ground fault monitoring thresholds)

	- ambient temperature too high. - pulse frequency too high.
Remedy:	See also: r0037 (Power unit temperatures) - adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. - if DC braking is active: reduce braking current (p1232).
F30025	Power unit: Chip overtemperature
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The chip temperature of the semiconductor has exceeded the permissible limit value. - the permissible load duty cycle was not maintained. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high. Fault value (r0949, interpret decimal): Temperature difference between the heat sink and chip [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.
Remedy:	- adapt the load duty cycle. - check whether the fan is running. - check the fan elements. - check whether the ambient temperature is in the permissible range. - check the motor load. - reduce the pulse frequency if this is higher than the rated pulse frequency. Notice: This fault can only be acknowledged after this alarm threshold for alarm A05001 has been undershot. See also: r0037 (Power unit temperatures)
F30027	Power unit: Precharging DC link time monitoring
Message class:	
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit DC link was not able to be pre-charged within the expected time. 1) There is no line supply voltage connected. 2) The line contactor/line side switch has not been closed. 3) The line supply voltage is too low. 4) Line supply voltage incorrectly set (p0210). 5) The pre-charging resistors are overheated as there were too many pre-charging operations per time unit. 6) The pre-charging resistors are overheated as the DC link capacitance is too high. 7) The DC link has either a ground fault or a short-circuit. 8) Pre-charging circuit may be defective. Fault value (r0949, interpret binary): yyyyxxxx hex: yyyy = power unit state 0 : Fault status (wait for OFF and fault acknowledgement). 1: Restart inhibit (wait for OFF). 2: Overvoltage condition detected -> change into the fault state. 3: Undervoltage condition detected -> change into the fault state. 4: Wait for bridging contactor to open -> change into the fault state. 5: Wait for bridging contactor to open -> change into restart inhibit.

4.2 List of faults and alarms

6: Commissioning.
7: Ready for pre-charging.
8: Pre-charging started, DC link voltage less than the minimum switch-on voltage.
9: Pre-charging, DC link voltage end of pre-charging still not detected.
10: Wait for the end of the de-bounce time of the main contactor after pre-charging has been completed.
11: Pre-charging completed, ready for pulse enable.
12: Reserved.
xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
Bit 0: Power supply of the IGBT gating shut down.
Bit 1: Ground fault detected.
Bit 2: Peak current intervention.
Bit 3: I2t exceeded.
Bit 4. Thermal model overtemperature calculated.
Bit 5: (heat sink, gating module, power unit) overtemperature measured.
Bit 6: Reserved.
Bit 7: Overvoltage detected.
Bit 8: Power unit has completed pre-charging, ready for pulse enable.
Bit 9: Reserved.
Bit 10: Overcurrent detected.
Bit 11: Reserved.
Bit 12: Reserved.
Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
Bit 14: Undervoltage detected.
See also: p0210 (Drive unit line supply voltage)
Remedy: In general:

- check the line supply voltage at the input terminals.
- check the line supply voltage setting (p0210).
- wait until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
Re 5):
- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).

Re 6):

- check the capacitance of the DC link and, if necessary, reduce it in accordance with the maximum permissible DC link capacitance (see relevant Equipment Manual).
Re 7):
- check the DC link for a ground fault or short circuit.

See also: p0210 (Drive unit line supply voltage)

A30030	Power unit: Internal overtemperature alarm
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	- possibly use an additional fan.
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.

A30031	Power unit: Hardware current limiting in phase U
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
	- check the motor data and if required, recalculate the control parameters (p0340 = 3). As an alternative, run a motor
data identification (p1910 = 1, p1960 = 1).	
	- check the motor circuit configuration (star/delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
- check the length of the power cables.	

A30032	Power unit: Hardware current limiting in phase V
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.

Note:

Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy: \quad Check the motor data and if required, recalculate the control parameters $(\mathrm{p} 0340=3)$. As an alternative, run a motor data identification (p1910 = 1, p1960 = 1).

- check the motor circuit configuration (star/delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

A30033	Power unit: Hardware current limiting in phase W
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.
	Note:
	Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.

4.2 List of faults and alarms

Remedy: \quad - check the motor data and if required, recalculate the control parameters $(\mathrm{p} 0340=3)$. As an alternative, run a motor data identification (p1910 = 1, p1960 = 1).

- check the motor circuit configuration (star/delta).
- check the motor load.
- check the power cable connections.
- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

A30034	Power unit: Internal overtemperature
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached.
	If the temperature inside the unit continues to increase, fault F30036 may be triggered.
	- ambient temperature might be too high.
	- insufficient cooling, fan failure.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting.
- check the ambient temperature.	
Remedy:	check the fan for the inside of the unit.

F30035
 Power unit: Air intake overtemperature

Message class: \quad Power electronics faulted (5)
Reaction: OFF1 (OFF2)
Acknowledge: IMMEDIATELY
Cause: The air intake in the power unit has exceeded the permissible temperature limit.
For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$.

- ambient temperature too high.
- insufficient cooling, fan failure.

Fault value (r0949, interpret decimal):
Temperature [$0.01^{\circ} \mathrm{C}$].
Remedy: - check whether the fan is running.

- check the fan elements.
- check whether the ambient temperature is in the permissible range.

Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05002 has been undershot.

F30036 Power unit: Internal overtemperature

Message class: Power electronics faulted (5)
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: The temperature inside the drive converter has exceeded the permissible temperature limit.

- insufficient cooling, fan failure.
- overload.
- ambient temperature too high.

Fault value (r0949, interpret decimal):
Only for internal Siemens troubleshooting.
Remedy: - check whether the fan is running.

- check the fan elements.
- check whether the ambient temperature is in the permissible range.

Notice:

This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.

F30037	Power unit: Rectifier overtemperature
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- line supply phase failure.
	Fault value (r0949, interpret decimal):
Remedy:	Temperature [0.01 $\left.{ }^{\circ} \mathrm{C}\right]$.
	- check whether the fan is running.
	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	- check the motor load.
	- check the line supply phases.
	Notice:
	This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot.

A30042	Power unit: Fan has reached the maximum operating hours
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum operating time of at least one fan will soon be reached, or has already been exceeded.
	Fault value (r0949, interpret binary):
	Bit 0: heat sink fan will reach the maximum operating time in 500 hours.
	Bit 1: heat sink fan has exceeded the maximum operating time.
	Bit 8: internal device fan will reach the maximum operating time in 500 hours.
	Bit 9: internal device fan has exceeded the maximum operating time.
	Note:
	The maximum operating time of the heat sink fan in the power unit is displayed in p0252.
Remedy:	The maximum operating time of the internal device fan in the power unit is internally specified and is fixed.
	For the fan involved, carry out the following:
	- replace the fan.
	- reset the operating hours counter (p0251, p0254).

A30049	Power unit: Internal fan faulty
Message class:	Auxiliary unit faulted (20)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal fan has failed.
Remedy:	Check the internal fan and replace if necessary.

F30051	Power unit: Motor holding brake short circuit detected
Message class:	External measured value / signal state outside the permissible range (16)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A short-circuit at the motor holding brake terminals has been detected.
	Fault value (r0949, interpret decimal):
	Only for internal Siemens troubleshooting. Remedy:
	- check the motor holding brake for a short-circuit.

F30052	EEPROM data error
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	EEPROM data error of the power unit module.
	Fault value (ro949, interpret decimal):
	$0,2,3,4:$
	The EEPROM data read in from the power unit module is inconsistent.
	$1:$
	EEPROM data is not compatible to the firmware of the Control Unit.
	Remedy:

F30055 Power unit: Braking chopper overcurrent

Message class: Braking Module faulted (14)
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: An overcurrent condition has occurred in the braking chopper.
Remedy: - check whether the braking resistor has a short circuit.

- for an external braking resistor, check whether the resistor may have been dimensioned too small.

Note:
The braking chopper is only enabled again at pulse enable after the fault has been acknowledged.

A30057	Power unit: Line asymmetry
Message class:	Network fault (2)
Reaction:	NONE
Acknowledge:	NONE
Cause:	Frequencies have been detected on the DC link voltage that would suggest line asymmetry or failure of a line phase.
	It is also possible that a motor phase has failed.
	Fault F30011 is output if the alarm is present and at the latest after 5 minutes.
	The precise duration depends on the power unit type and the particular frequencies. For booksize and chassis power
units, the duration also depends on how long the alarm has been active.	
	Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting.
Remedy:	- check the line phase connection.
	- check the motor feeder cable connections.
If there is no phase failure of the line or motor, then line asymmetry is involved.	
- reduce the power in order to avoid fault F30011.	

F30059	Power unit: Internal fan faulty
Message class:	Auxiliary unit faulted (20)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal power unit fan has failed and is possibly defective.
Remedy:	Check the internal fan and replace if necessary.

A30065 (F, N)	Voltage measured values not plausible
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage measurement supplies values that are not plausible
	Bit01: Phase U.
	Bit02: Phase V.
	Bit03: Phase W.
	- Deactivate voltage measurement (p247.0 $=0)$.
Remedy:	- Deactivate flying restart with voltage measurement $(p 247.5=0)$ and deactivate fast flying restart $(p 1780.11=0)$.

F30071	No new actual values received from the Power Module
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one actual value telegram from the power unit module has failed.
Remedy:	Check the interface (adjustment and locking) to the power unit module.
F30072	Setpoints can no longer be transferred to the Power Module
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one setpoint telegram was not able to be transferred to the power unit module.
Remedy:	Check the interface (adjustment and locking) to the power unit module.
F30074 (A)	Communication error between the Control Unit and Power Module
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The CU may have been withdrawn or is incorrectly inserted.
	Fault value (r0949, interpret hexadecimal):
	0 hex:
	- a Control Unit with external 24 V supply was withdrawn from the Power Module during operation. - with the Power Module switched off, the external 24 V supply for the Control unit was interrupted for some time. 1 hex:
	The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation, communications to the Power Module no longer possible.
	20A hex:
	The Control Unit was inserted on a Power Module, which has another code number.
	20B hex:
	The Control Unit was inserted on a Power Module, which although it has the same code number, has a different serial number. The Control Unit executes an automatic warm restart to accept the new calibration data.
Remedy:	For fault value $=0$ and 20A hex:
	Insert the Control Unit on an appropriate Power Module and continue operation. If required, carry out a POWER ON of the Control Unit.
	For fault value $=1$ hex:
	Carry out a POWER ON of the Control Unit.
F30075	Configuration of the power unit unsuccessful
Message class:	Internal (DRIVE-CLiQ) communication error (12)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A communication error has occurred while configuring the power unit using the Control Unit. The cause is not clear.
	Fault value (r0949, interpret decimal):
	0 :
	The output filter initialization was unsuccessful.
	1 :
	Activation/deactivation of the regenerative feedback functionality was unsuccessful.
Remedy:	- acknowledge the fault and continue operation.
	- if the fault reoccurs, carry out a POWER ON (switch off/on).
	- if required, replace the power unit.

F30080	Power unit: Current increasing too quickly
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an excessive rate of rise in the overvoltage range.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	Fault value (ro949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star-delta)
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.

F30105	PU: Actual value sensing fault
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA).
	The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy:	Evaluate the diagnostic parameters.
	If the actual value channel is incorrect, check the components and if required, replace.
A30502	Power unit: DC link overvoltage
Message class:	DC link overvoltage (4)
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected overvoltage in the DC link on a pulse inhibit.
	- device connection voltage too high.
	- line reactor incorrectly dimensioned.
	Alarm value (r0949, interpret decimal):
	DC link voltage [1 bit $=100 \mathrm{mV}$].
	See also: r0070 (Actual DC link voltage)
Remedy:	- check the device supply voltage (p0210).
	- check the dimensioning of the line reactor.
	See also: p0210 (Drive unit line supply voltage)
F30662	Error in internal communications
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version.
	- contact the Hotline.
F30664	Error while booting
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An error has occurred during booting.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version.
	- contact the Hotline.
N30800 (F)	Power unit: Group signal
Message class:	Power electronics faulted (5)
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The power unit has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.

F30802	Power unit: Time slice overflow
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred. Fault value (r0949, interpret decimal): Remedy: - carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

F30804 (N, A)	Power unit: CRC
Message class:	Hardware / software error (1)
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A CRC error has occurred for the power unit.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

F30805	Power unit: EEPROM checksum error
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (ro949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	Replace the module.

F30809	Power unit: Switching information not valid
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For 3P gating unit, the following applies: The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found. Remedy:
	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

A30810 (F)	Power unit: Watchdog timer
Message class:	Hardware / software error (1)
Reaction:	NONE
Acknowledge:	NONE
Cause:	When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.

F30850	Power unit: Internal software error
Message class:	Hardware / software error (1)
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the power unit. Fault value (r0949, interpret decimal): Remedy: Only for internal Siemens troubleshooting. - replace power unit. - if required, upgrade the firmware in the power unit. - contact the Hotline.

F30903	Power unit: I2C bus error occurred
Message class:	Hardware / software error (1)
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Communications error with an EEPROM or A/D converter.
	Fault value (r0949, interpret hexadecimal):
	80000000 hex:
	- internal software error.
	00000001 hex ... 0000FFFF hex:
	- module fault.
Remedy:	Re fault value $=80000000$ hex:
	- upgrade firmware to later version.
	Re fault value $=00000001$ hex.. .0000 FFFF hex:
	- replace the module.

A30920 (F)	Temperature sensor fault
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected (KTY: R >2120 Ohm).
	2: Measured resistance too low (PTC: <20 Ohm, KTY: $\ll 50$ Ohm).
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.

F30950	Power unit: Internal software error
Message class:	Hardware / software error (1)
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal): Information about the fault source.
	Only for internal Siemens troubleshooting. - If necessary, upgrade the firmware in the power unit to a later version. Remedy:
	- contact the Hotline.

A30999 (F, N)	Power unit: Unknown alarm
Message class:	Power electronics faulted (5)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.

4.2 List of faults and alarms

Alarm value (r2124, interpret decimal):
Alarm number.
Note:
If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
Remedy: \quad - replace the firmware on the power unit by an older firmware version (r0128).

- upgrade the firmware on the Control Unit (r0018).

F35950	TM: Internal software error
Message class:	Hardware / software error (1)
Reaction:	OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret decimal):
	Information about the fault source. Only for internal Siemens troubleshooting. Remedy:
	- If necessary, upgrade the firmware in the Terminal Module to a later version.
	- contact the Hotline.

A50010 (F)	PROFINET Name of Station invalid
Message class:	Communication error to the higher-level control system (9)
Reaction:	NONE
Acknowledge:	NONE
Cause:	PROFINET Name of Station is invalid.
Remedy:	Correct the name of the station (p8920) and activate (p8925 = 2).
	See also: p8920 (PN Name of Station)

F50510 FBLOCKS: Logon of the run-time group rejected

Message class:	General drive fault (19)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When the run-time groups of the free function blocks attempted to log on with the sampling time management, the logon of at least one run-time group was rejected.
	Too many different hardware sampling times may have been assigned to the free function blocks.
Remedy:	- Check number of available hardware sampling times (T_sample < 8 ms$)(r 7903)$.

F50511	FBLOCKS: Memory no longer available for free function blocks
Message class:	General drive fault (19)
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When the free function blocks were activated, more memory was requested than was available on the Control Unit.
Remedy:	Not necessary.

A50513 (F)	FBLOCKS: Run sequence value already assigned
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to assign a run sequence value already assigned to a function block on this drive object to another additional function block on the same drive object. A run sequence value can only be precisely assigned to one function block on one drive object. Set another value that is still available on this drive object for the run sequence.
Remedy:	

A50517	FBLOCKS: Int. meas. active
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Siemens internal measurement has been activated.

4.2 List of faults and alarms

Remedy: Carry out a POWER ON (power off/on) for the Control Unit involved.

F50518	FBLOCKS: Sampling time of free run-time group differs at download
Message class:	General drive fault (19)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	In the STARTER/SCOUT project that was downloaded, the hardware sampling time of a free run-time group ($1<=$ p20000[i] <= 256) was set to a value that was either too low or too high.
	The sampling time must be between 1 ms and the value r20003-r20002.
	If the sampling time of the selected free run-time group is $<1 \mathrm{~ms}$, the equivalent value of 1 ms is used.
	If the value $>=\mathrm{r} 20003$, then the sampling time is set to the next higher or the same software sampling time $>=$ r21003.
	Fault value (r0949, interpret decimal):
	Number of the p20000 index of the run-time group where the sampling time is incorrectly set.
	Number of the run-time group $=$ fault value +1
Remedy:	- correctly set the sampling time of the run-time group.
	- if required, take all of the blocks from the run-time group.
	Note:
	Fault F50518 only detects an incorrectly parameterized run-time group. If, after correcting p20000[i] in the project, this error occurs again at download, then the run-time group involved should be identified using the fault value (r0949) and the sampling time correctly set.

4 Faults and alarms
4.2 List of faults and alarms

Appendix

Content

A. 1 ASCII table (characters that can be displayed) 742
A. 2 Motor code list 745
A. 3 List of abbreviations 746

A. 1 ASCII table (characters that can be displayed)

The following table includes the decimal and hexadecimal notation of ASCII characters that can be displayed (printable).

Table A-1 ASCII table (characters that can be displayed)

Character	Decimal	Hexadecimal	Meaning
	32	20	Space
!	33	21	Exclamation mark
"	34	22	Quotation mark
\#	35	23	Number sign
\$	36	24	Dollar
\%	37	25	Percent
\&	38	26	Ampersand
,	39	27	Apostrophe, closing single quotation mark
$($	40	28	Opening parenthesis
)	41	29	Closing parenthesis
*	42	2A	Asterisk
+	43	2B	Plus
,	44	2 C	Comma
-	45	2D	Hyphen, minus
.	46	2E	Period, decimal point
1	47	2 F	Slash, slant
0	48	30	Digit 0
1	49	31	Digit 1
2	50	32	Digit 2
3	51	33	Digit 3
4	52	34	Digit 4
5	53	35	Digit 5
6	54	36	Digit 6
7	55	37	Digit 7
8	56	38	Digit 8
9	57	39	Digit 9
:	58	3A	Colon
;	59	3B	Semicolon
<	60	3C	Less than
=	61	3D	Equals
>	62	3E	Greater than
?	63	3F	Question mark
@	64	40	Commercial At

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
A	65	41	Capital letter A
B	66	42	Capital letter B
C	67	43	Capital letter C
D	68	44	Capital letter D
E	69	45	Capital letter E
F	70	46	Capital letter F
G	71	47	Capital letter G
H	72	48	Capital letter H
I	73	49	Capital letter I
J	74	4A	Capital letter J
K	75	4B	Capital letter K
L	76	4 C	Capital letter L
M	77	4D	Capital letter M
N	78	4E	Capital letter N
0	79	4F	Capital letter O
P	80	50	Capital letter P
Q	81	51	Capital letter Q
R	82	52	Capital letter R
S	83	53	Capital letter S
T	84	54	Capital letter T
U	85	55	Capital letter U
V	86	56	Capital letter V
W	87	57	Capital letter W
X	88	58	Capital letter X
Y	89	59	Capital letter Y
Z	90	5A	Capital letter Z
[91	5B	Opening bracket
1	92	5C	Backslash
]	93	5D	Closing bracket
\wedge	94	5E	Circumflex
-	95	5F	Underline
	96	60	Opening single quotation mark
a	97	61	Small letter a
b	98	62	Small letter b
c	99	63	Small letter c
d	100	64	Small letter d

A. 1 ASCII table (characters that can be displayed)

Table A-1 ASCII table (characters that can be displayed), continued

Character	Decimal	Hexadecimal	Meaning
e	101	65	Small letter e
f	102	66	Small letter f
g	103	67	Small letter g
h	104	68	Small letter h
i	105	69	Small letter i
j	106	6A	Small letter j
k	107	6B	Small letter k
1	108	6C	Small letter I
m	109	6D	Small letter m
n	110	6E	Small letter n
-	111	6 F	Small letter o
p	112	70	Small letter p
q	113	71	Small letter q
r	114	72	Small letter r
s	115	73	Small letter s
t	116	74	Small letter t
u	117	75	Small letter u
v	118	76	Small letter v
w	119	77	Small letter w
x	120	78	Small letter x
y	121	79	Small letter y
z	122	7A	Small letter z
\{	123	7B	Opening brace
\|	124	7C	Vertical line
\}	125	7D	Closing brace
\sim	126	7E	Tilde

A. 2 Motor code list

Table A-2 Motor code for synchronous motors

Order number	Motor type (p0300)	Motor code (p0301)
1LE400x-1ABxx-xxxx	204	20401
1LE400x-1BBxx-xxxx	204	20402

A. 3 List of abbreviations

Note

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS family of drives.

Abbreviation	Source of abbreviation	Meaning
A		
A...	Alarm	Alarm
AC	Alternating Current	Alternating current
ADC	Analog Digital Converter	Analog-digital converter
AI	Analog Input	Analog input
AIM	Active Interface Module	Active Interface Module
ALM	Active Line Module	Active Line Module
AO	Analog Output	Analog output
AOP	Advanced Operator Panel	Advanced Operator Panel
APC	Advanced Positioning Control	Advanced Positioning Control
AR	Automatic Restart	Automatic restart
ASC	Armature Short-Circuit	Armature short-circuit
ASCII	American Standard Code for Information Interchange	American standard code for information interchange
AS-i	AS-Interface (Actuator Sensor Interface)	AS-interface (open bus system in automation technology)
ASM	Asynchronmotor	Induction motor
B		
BB	Betriebsbedingung	Operating condition
BERO	-	Proximity switch
BI	Binector Input	Binector input
BIA	Berufsgenossenschaftliches Institut für Arbeitssicherheit	BG-Institute for Occupational Safety and Health
BICO	Binector Connector Technology	Binector connector technology
BLM	Basic Line Module	Basic Line Module
BO	Binector Output	Binector output
BOP	Basic Operator Panel	Basic Operator Panel
C		
C	Capacitance	Capacitance
C...	-	Safety message
CAN	Controller Area Network	Serial bus system
CBC	Communication Board CAN	Communication Board CAN
CBE	Communication Board Ethernet	Communication Board PROFINET (Ethernet)
CD	Compact Disk	Compact disk
CDS	Command Data Set	Command data set
CF card	CompactFlash card	CompactFlash card
Cl	Connector Input	Connector input

Abbreviation	Source of abbreviation	Meaning
CLC	Clearance Control	Clearance control
CNC	Computer Numerical Control	Computer-supported numerical control
CO	Connector Output	Connector output
CO/BO	Connector Output / Binector Output	Connector/binector output
COB ID	CAN Object Identification	CAN object identification
CoL	Certificate of License	Certificate of License
COM	Common contact of a changeover relay	Center contact on a changeover contact
COMM	Commissioning	Commissioning
CP	Communications Processor	Communications processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC MASTER	Control Unit DC MASTER
D		
DAC	Digital Analog Converter	Digital-analog converter
DC	Direct Current	Direct current
DCB	Drive Control Block	Drive Control Block
DCBRK	DC Brake	DC braking
DCC	Drive Control Chart	Drive Control Chart
DCN	Direct Current Negative	Direct current negative
DCP	Direct Current Positive	Direct current positive
DDS	Drive Data Set	Drive data set
DI	Digital Input	Digital input
DI/DO	Digital Input / Digital Output	Bidirectional digital input/output
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DMM	Double Motor Module	Double Motor Module
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Decentralized Peripherals	Distributed peripherals
DPRAM	Dual Ported Random Access Memory	Dual-port random access memory
DQ	DRIVE-CLiQ	DRIVE-CLiQ
DRAM	Dynamic Random Access Memory	Dynamic random access memory
DRIVE-CLiQ	Drive Component Link with IQ	Drive Component Link with IQ
DSC	Dynamic Servo Control	Dynamic Servo Control
DTC	Digital Time Clock	Timer
E		
EASC	External Armature Short-Circuit	External armature short-circuit
EDS	Encoder data set	Encoder data set
EEPROM	Electrically Erasable Programmable Read-Only Memory	Electrically Erasable Programmable Read-Only-Memory

Abbreviation	Source of abbreviation	Meaning
EGB	Elektrostatisch gefährdete Baugruppen	Electrostatic sensitive devices
ELCB	Earth Leakage Circuit-Breaker	Residual current operated circuit breaker
ELP	Earth Leakage Protection	Ground-fault monitoring
EMC	Electromagnetic Compatibility	Electromagnetic compatibility
EMF	Electromotive Force	Electromotive force
EMK	Elektromotorische Kraft	Electromotive force
EMV	Elektromagnetische Verträglichkeit	Electromagnetic compatibility
EN	Europäische Norm	European standard
EnDat	Encoder-Data-Interface	Encoder interface
EP	Enable Pulses	Enable pulses
EPOS	Einfachpositionierer	Basic positioner
ES	Engineering System	Engineering system
ESB	Ersatzschaltbild	Equivalent circuit diagram
ESD	Electrostatic Sensitive Devices	Electrostatic sensitive devices
ESM	Essential Service Mode	Essential service mode
ESR	Extended Stop and Retract	Extended stop and retract
F		
F...	Fault	Fault
FAQ	Frequently Asked Questions	Frequently asked questions
FBLOCKS	Free Blocks	Free function blocks
FCC	Function Control Chart	Function control chart
FCC	Flux Current Control	Flux current control
FD	Function Diagram	Function diagram
F-DI	Fail-safe Digital Input	Fail-safe digital input
F-DO	Fail-safe Digital Output	Fail-safe digital output
FEM	Fremderregter Synchronmotor	Separately excited synchronous motor
FEPROM	Flash EPROM	Non-volatile write and read memory
FG	Function Generator	Function generator
FI	-	Residual current
FOC	Fiber-Optic Cable	Fiber-optic cable
FP	Funktionsplan	Function diagram
FPGA	Field Programmable Gate Array	Field programmable gate array
FW	Firmware	Firmware
G		
GB	Gigabyte	Gigabyte
GC	Global Control	Global control telegram (broadcast telegram)
GND	Ground	Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as M)
GSD	Generic Station Description	Generic Station Description: Describes the features of a PROFIBUS slave
GSV	Gate Supply Voltage	Gate supply voltage
GUID	Globally Unique Identifier	Globally unique identifier

Abbreviation	Source of abbreviation	Meaning
H		
HF	High Frequency	High frequency
HFD	Hochfrequenzdrossel	High-frequency reactor
HLA	Hydraulic Linear Actuator	Hydraulic linear drive
HLG	Hochlaufgeber	Ramp-function generator
HM	Hydraulic Module	Hydraulic Module
HMI	Human Machine Interface	Human machine interface
HTL	High-Threshold Logic	Logic with high fault threshold
HW	Hardware	Hardware
I		
i. V.	In Vorbereitung	Under development: This property is currently not available
I/O	Input/Output	Input/output
I2C	Inter-Integrated Circuit	Internal serial data bus
IASC	Internal Armature Short-Circuit	Internal armature short-circuit
IBN	Inbetriebnahme	Commissioning
ID	Identifier	Identification
IE	Industrial Ethernet	Industrial Ethernet
IEC	International Electrotechnical Commission	International Electrotechnical Commission
IF	Interface	Interface
IGBT	Insulated Gate Bipolar Transistor	Bipolar transistor with insulated control electrode
IGCT	Integrated Gate-Controlled Thyristor	Semiconductor power switch with integrated control electrode
IL	Impulslöschung	Pulse suppression
IP	Internet Protocol	Internet protocol
IPO	Interpolator	Interpolator
IT	Isolé Terre	Non-grounded three-phase line supply
IVP	Internal Voltage Protection	Internal voltage protection
J		
JOG	Jogging	Jogging
K		
KDV	Kreuzweiser Datenvergleich	Data cross-check
KHP	Know-How Protection	Know-how protection
KIP	Kinetische Pufferung	Kinetic buffering
Kp	-	Proportional gain
KTY	-	Special temperature sensor
L		
L	-	Symbol for inductance
LED	Light Emitting Diode	Light-emitting diode
LIN	Linear motor	Linear motor
LR	Lageregler	Position controller
LSB	Least Significant Bit	Least significant bit
LSC	Line-Side Converter	Line-side converter

Abbreviation	Source of abbreviation	Meaning
LSS	Line-Side Switch	Line-side switch
LU	Length Unit	Length unit
LWL	Lichtwellenleiter	Fiber-optic cables
M		
M	-	Symbol for torque
M	Mass	Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as GND)
MB	Megabyte	Megabyte
MCC	Motion Control Chart	Motion Control Chart
MDI	Manual Data Input	Manual data input
MDS	Motor Data Set	Motor data set
MLFB	Maschinenlesbare Fabrikatebezeichnung	Machine-readable product code
MM	Motor Module	Motor Module
MMC	Man-Machine Communication	Man-machine communication
MMC	Micro Memory Card	Micro memory card
MSB	Most Significant Bit	Most significant bit
MSC	Motor-Side Converter	Motor-side converter
MSCY_C1	Master Slave Cycle Class 1	Cyclic communication between master (class 1) and slave
MSR	Motorstromrichter	Motor-side converter
MT	Messtaster	Probe
N		
N. C.	Not Connected	Not connected
N...	No Report	No report or internal message
NAMUR	Normenarbeitsgemeinschaft für Mess- und Regeltechnik in der chemischen Industrie	Standardization association for measurement and control in chemical industries
NC	Normally Closed (contact)	NC contact
NC	Numerical Control	Numerical control
NEMA	National Electrical Manufacturers Association	Standardization body in the US
NM	Nullmarke	Zero mark
NO	Normally Open (contact)	NO contact
NSR	Netzstromrichter	Line-side converter
NVRAM	Non-Volatile Random Access Memory	Non-volatile read/write memory
0		
OA	Open Architecture	Software component (technology package) which provides additional functions for the SINAMICS drive system
OAIF	Open Architecture Interface	Version of the SINAMICS firmware from which the OA-application can be used
OASP	Open Architecture Support Package	Expands the STARTER commissioning tool by the corresponding OA-application
OC	Operating Condition	Operating condition
OEM	Original Equipment Manufacturer	Original equipment manufacturer

Abbreviation	Source of abbreviation	Meaning
OLP	Optical Link Plug	Bus connector for fiber-optic cable
OMI	Option Module Interface	Option Module Interface
P		
p...	-	Setting parameters
P1	Processor 1	CPU 1
P2	Processor 2	CPU 2
PB	PROFIBUS	PROFIBUS
PcCtrl	PC Control	Master control
PD	PROFIdrive	PROFIdrive
PDS	Power unit Data Set	Power unit data set
PE	Protective Earth	Protective ground
PELV	Protective Extra-Low Voltage	Safety extra-low voltage
PEM	Permanenterregter Synchronmotor	Permanent-magnet synchronous motor
PG	Programmiergerät	Programming device
PI	Proportional Integral	Proportional integral
PID	Proportional Integral Differential	Proportional integral differential
PLC	Programmable Logic Controller	Programmable logic controller
PLL	Phase-Locked Loop	Phase-locked loop
PM	Power Module	Power Module
PN	PROFINET	PROFINET
PNO	PROFIBUS Nutzerorganisation	PROFIBUS user organization
PPI	Point-to-Point Interface	Point-to-point interface
PRBS	Pseudo Random Binary Signal	White noise
PROFIBUS	Process Field Bus	Serial data bus
PS	Power Supply	Power supply
PSA	Power Stack Adapter	Power Stack Adapter
PTC	Positive Temperature Coefficient	Positive temperature coefficient
PTP	Point-To-Point	Point-to-point
PWM	Pulse Width Modulation	Pulse width modulation
PZD	Prozessdaten	Process data
Q		
R		
r...	-	Display parameters (read only)
RAM	Random Access Memory	Read/write memory
RCCB	Residual Current Circuit Breaker	Residual current operated circuit breaker
RCD	Residual Current Device	Residual current operated circuit breaker
RCM	Residual Current Monitor	Residual current monitor
RFG	Ramp-Function Generator	Ramp-function generator
RJ45	Registered Jack 45	Term for an 8-pin socket system for data transmission with shielded or non-shielded multiwire copper cables
RKA	Rückkühlanlage	Cooling unit
RLM	Renewable Line Module	Renewable Line Module

Abbreviation	Source of abbreviation	Meaning
RO	Read Only	Read only
ROM	Read-Only Memory	Read-only memory
RPDO	Receive Process Data Object	Receive process data object
RS 232	Recommended Standard 232	Interface standard for cable-connected serial data transmission between a sender and receiver (also known as EIA232)
RS485	Recommended Standard 485	Interface standard for a cable-connected differential, parallel, and/or serial bus system (data transmission between a number of senders and receivers, also known as EIA485)
RTC	Real-Time Clock	Real-time clock
RZA	Raumzeigerapproximation	Space vector approximation
S		
S1	-	Continuous duty
S3	-	Intermittent duty
SAM	Safe Acceleration Monitor	Safe acceleration monitoring
SBC	Safe Brake Control	Safe brake control
SBH	Sicherer Betriebshalt	Safe operating stop
SBR	Safe Brake Ramp	Safe brake ramp monitoring
SBT	Safe Brake Test	Safe brake test
SCA	Safe Cam	Safe cam
SD Card	SecureDigital Card	Secure digital memory card
SDI	Safe Direction	Safe motion direction
SE	Sicherer Software-Endschalter	Safe software limit switches
SG	Sicher reduzierte Geschwindigkeit	Safely-limited speed
SGA	Sicherheitsgerichteter Ausgang	Safety-related output
SGE	Sicherheitsgerichteter Eingang	Safety-related input
SH	Sicherer Halt	Safe standstill
SI	Safety Integrated	Safety Integrated
SIL	Safety Integrity Level	Safety integrity level
SLM	Smart Line Module	Smart Line Module
SLP	Safely-Limited Position	Safely limited position
SLS	Safely-Limited Speed	Safely-limited speed
SLVC	Sensorless Vector Control	Vector control without encoder
SM	Sensor Module	Sensor Module
SMC	Sensor Module Cabinet	Sensor Module Cabinet
SME	Sensor Module External	Sensor Module External
SMI	Sensor Module Integrated	SINAMICS Sensor Module Integrated
SMM	Single Motor Module	Single Motor Module
SN	Sicherer Software-Nocken	Safe software cam
SOS	Safe Operating Stop	Safe operating stop
SP	Service Pack	Service pack
SP	Safe Position	Safe position
SPC	Setpoint Channel	Setpoint channel

Abbreviation	Source of abbreviation
SPI	Serial Peripheral Interface
SPS	Speicherprogrammierbare Steuerung
SS1	Safe Stop 1
SS2	Safe Stop 2
SSI	Synchronous Serial Interface
SSM	Safe Speed Monitor
SSP	SINAMICS Support Package
STO	Safe Torque Off
STW	Steuerwort
T	
TB	Terminal Board
TIA	Totally Integrated Automation
TM	Terminal Module
TN	Terre Neutre
Tn	-
TPDO	Transmit Process Data Object
TT	Terre Terre
TTL	Transistor-Transistor Logic
Tv	-
U	
UL	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply
USV	Unterbrechungsfreie Stromversorgung
UTC	Universal Time Coordinated
V	
VC	Vector Control
Vdc	-
VdcN	-
VdcP	-
VDE	Verband Deutscher Elektrotechniker
VDI	Verein Deutscher Ingenieure
VPM	Voltage Protection Module
Vpp	Volt peak to peak
VSM	Voltage Sensing Module
W	
WEA	Wiedereinschaltautomatik
WZM	Werkzeugmaschine
X	
XML	Extensible Markup Language

Meaning

Serial peripheral interface
Programmable Logic Controller
Safe stop 1
(monitored for time and ramp)
Safe stop 2
Synchronous serial interface
Safe feedback from speed monitor
SINAMICS support package
Safe torque off
Control word

Terminal Board
Totally Integrated Automation
Terminal Module
Grounded three-phase line supply Integral-action time
Transmit process data object
Grounded three-phase line supply
Transistor-transistor logic
Derivative action time

Underwriters Laboratories Inc.
Uninterruptible power supply
Uninterruptible power supply
Universal time coordinated

Vector control

DC-link voltage
Partial DC-link voltage, negative
Partial DC-link voltage, positive
Association of German Electrical Engineers
Association of German Engineers
Voltage Protection Module
Volt peak-to-peak
Voltage Sensing Module

Automatic restart
Machine tool

Extensible Markup Language (standard language for Web publishing and document management)

Abbreviation	Source of abbreviation	Meaning
\mathbf{Y}		
\mathbf{Z}		
ZK	Zwischenkreis	DC link
ZM	Zero Mark	Zero mark
SW	Zustandswort	Status word

Index

Numbers

1020
Explanation of the symbols (part 1), 500 1021

Explanation of the symbols (part 2), 501
1022
Explanation of the symbols (part 3), 502 1030

Handling BICO technology, 503 2201

Connection overview, 505
2221
Digital inputs, electrically isolated (DI $0 \ldots$ DI 5), 506 2242

Digital outputs (DO $0 \ldots$ DO 2), 507 2251

Analog inputs $0 \ldots 1$ (AI $0 \ldots$ AI 1), 508 2252

Analog input 2 (AI 2), 509
2256
Digital inputs (DI $11 \ldots$ DI 12), 510 2261

Analog outputs $0 \ldots 1$ (AO $0 \ldots$ AO 1), 511
2270
Temperature evaluation LG-Ni1000/PT1000 (AI3), 512
2272
Two-wire control, 513
2273
Three-wire control, 514
2275
PM330 - digital inputs (DI $0 \ldots$ DI 4), digital outputs (DO $0 \ldots$ DO 1), 515
2381
Control commands and interrogation commands, 517
2382
States, 518
2401
PROFIdrive / PROFIBUS overview, 520
2410
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 521
2420
Telegrams and process data (PZD), 522
2440
PZD receive signals interconnection, 523

2441
STW1 control word interconnection (p2038 = 2), 524
2442
STW1 control word interconnection (p2038 = 0), 525
2446
STW3 control word interconnection, 526
2450
PZD send signals interconnection, 527
2451
ZSW1 status word interconnection (p2038 = 2), 528
2452
ZSW1 status word interconnection (p2038 = 0), 529
2456
ZSW3 status word interconnection, 530 2468

Receive telegram, free interconnection via BICO $($ p0922 = 999), 531
2470
Send telegram, free interconnection via BICO (p0922 = 999), 532
2472
Status words, free interconnection, 533
2501
Control word, sequence control, 549
2503
Status word, sequence control, 550
2505
Control word, setpoint channel, 551
2510
Status word 1 (r0052), 552
2511
Status word 2 (r0053), 553
2512
Control word 1 (r0054), 554
2513
Control word 2 (r0055), 555
2522
Status word, speed controller, 556
2526
Status word, closed-loop control, 557
2530
Status word, closed-loop current control, 558
2534
Status word, monitoring functions 1, 559
2536
Status word, monitoring functions 2, 560

2537
Status word, monitoring functions 3,561
2546
Control word, faults/alarms, 562
2548
Status word, faults/alarms 1 and 2, 563
2610
Sequence control - Sequencer, 564
2634
Sequence control - Missing enable signals, 565 3001

Overview of setpoint channel, 567
3010
Fixed speed setpoints, binary selection (p1016 = 2), 568
3011
Fixed speed setpoints, direct selection, 569
3020
Motorized potentiometer, 570
3030
Main/supplementary setpoint, setpoint scaling, jogging, 571
3040
Direction limitation and direction reversal, 572
3050
Skip frequency bands and speed limitations, 573
3070
Extended ramp-function generator, 574
3080
Ramp-function generator selection, -status word, -tracking, 575
6020
Speed control and generation of the torque limits, overview, 577
6030
Speed setpoint, droop, 578
6031
Pre-control balancing, acceleration model, 579
6040
Speed controller with/without encoder, 580
6050
Kp_n-/Tn_n adaptation, 581
6060
Torque setpoint, 582
6220
Vdc_max controller and Vdc_min controller (vector
control, PM230/PM240/PM330), 583
6300
U/f control, overview, 584
6301
U/f characteristic and voltage boost, 585
6310
Resonance damping and slip compensation (U/f), 586

6320
Vdc_max controller and Vdc_min controller (PM230/PM240/PM330), (U/f), 587
6490
Speed control configuration, 588
6491
Flux controller configuration, 589
6630
Upper/lower torque limit, 590
6640
Current/power/torque limits
, 591
6700
Current control, overview, 592
6710
Current setpoint filter, 593
6714
Iq and Id controllers, 594
6722
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 595
6723
Field weakening controller, flux controller (ASM, p0300 = 1), 596
6730
Interface to the Power Module (ASM, p0300 = 1), 597
6797
Closed-loop DC quantity control, 598
6799
Display signals, 599
7017
DC brake (p0300 = 1), 601
7030
Free technology controller 0, 1, 2, 602
7032
Multi-zone control, 603
7033
Essential service mode (ESM), 604
7035
Bypass, 605
7036
Cascade control, 606
7038
Energy-saving mode, 607
7200
Sampling times of the runtime groups, 609
7210
AND (AND function blocks with 4 inputs), 610
7212
OR (OR function blocks with 4 inputs), 611
7214
XOR (XOR function blocks with 4 inputs), 612
7216
NOT (inverter), 613

7220

ADD (adder with 4 inputs),
SUB (subtracter), 614
7222
MUL (multiplier),
DIV (divider), 615
7224
AVA (absolute value generator), 616
7225
NCM (numeric comparator), 617
7226
PLI (polyline scaling), 618
7230
MFP (pulse generator), PCL (pulse contractor), 619
7232
PDE (ON delay), 620
7233
PDF (OFF delay), 621
7234
PST (pulse stretcher), 622
7240
RSR (RS flip-flop),
DFR (D flip-flop), 623
7250
BSW (binary change-over switch), NSW (numeric change-over switch), 624
7260
LIM (limiter), 625
7262
PT1 (smoothing element), 626
7264
INT (integrator), DIF (derivative-action element), 627
7270
LVM (double-sided limit monitor with hysteresis), 628
7950
Fixed value selection binary (p2216 = 2), 630
7951
Fixed value selection direct (p2216 = 1), 631
7954
Motorized potentiometer, 632
7958
Control, 633
8005
Overview, signals and monitoring functions, 635
8010
Speed signals 1, 636
8011
Speed signals 2, 637
8012
Torque signals, motor blocked/stalled, 638
8013
Load monitoring, 639

8014
Thermal monitoring, power unit, 640
8016
Thermal monitoring, motor, 641
8017
Thermal motor models, 642
8020
Monitoring functions 1, 643
8050
Diagnostics overview, 645
8060
Fault buffer, 646
8065
Alarm buffer, 647
8070
Faults/alarms trigger word (r2129), 648
8075
Faults/alarms configuration, 649
8560
Command Data Sets
(CDS), 651
8565
Drive Data Sets
(DDS), 652
9204
Receive telegram, free PDO mapping, 535
9206
Receive telegram, Predefined Connection Set (p8744 = 1), 536
9208
Send telegram, free PDO mapping (p8744 = 2), 537
9210
Send telegram, Predefined Connection Set (p8744 = 1), 538
9220
Control word, CANopen, 539
9226
Status word, CANopen, 540
9310
Configuration, addresses and diagnostics, 542
9342
STW1 control word interconnection, 543
9352
ZSW1 status word interconnection, 544
9360
Receive telegram, free interconnection via BICO
(p0922 = 999), 545
9370
Send telegram, free interconnection via BICO (p0922 = 999), 546
9372
Status words, free interconnection, 547

A

Acknowledgement
Adjustable, 662
Default, 662
IMMEDIATELY, 657
POWER ON, 657
PULSE INHIBIT, 657
Adjustable parameters, 13
Alarm
Cause, 662
Display, 654
Explanation of list, 658
Fault location, 659
General information, 654
How to distinguish an alarm from a fault, 654
List of all alarms, 666
Message class, 659
Message value, 659
Name, 659
Number, 658
Number range, 664
Remedy, 663
Alarm buffer, 644
Alarm value, 662
Analog inputs, 504
Analog outputs, 504
ASCII table, 742
Axxxx, 658

B

BI, Binector Input, 14
BICO technology, 503
Binector
Input (BI), 14
Output (BO), 14
Bit field (parameter), 22
BO, Binector Output, 14
Bypass, 605

C

Calculated, 16
Can be changed (parameters), 18
CANopen, 534, 541
Cascade control, 606
CDS, (Command Data Set), 19, 650, 651
Cl, Connector Input, 14
Closed-loop DC quantity control, 598
CO, Connector Output, 14
CO/BO, Connector/Binector Output, 14
Command data sets, 650
Connector
Input (CI), 14
Output (CO), 14

Control
Technology controller, 633
Vector, 576
Control words, 516, 519
Converter
Binector/connector, 533
Connector/binector, 531
Cxxxxx, 658
D
Data Set, 650
Command data set, CDS, 19
Drive Data Set, DDS, 19
Motor Data Set, MDS, 19
Power unit Data Set, PDS, 19
Data set, 650
Command data set, 19
Drive data set, 19
Motor data set, 19
Power unit data set, 19
Data type (parameters), 16
DC brake (p0300 = 1), 601
DCBRK, 656
DDS, (Drive Data Set), 650, 652
DDS, drive data set, 19
Dependency (parameter), 22
Description (parameter), 21
Digital inputs, 504
Digital outputs, 504
Direction limitation, 566
Direction reversal, 566
Directory
ASCII table, 742
Complete table of contents, 5
Index, 755
List of abbreviations, 746
Table of contents, function diagrams, 494
Display
Alarms, 654
Faults, 654
Display parameters, 13
Drive data sets, 650
Dynamic index (parameters), 19

E

ENCODER, 656
Energy-saving mode, 607
Essential service mode (ESM), 604

F

Factory setting, 21
Fault
Acknowledgement, 657, 662
Cause, 662
Display, 654

Explanation of list, 658
Fault location, 659
Fault reaction, 655, 662
General information, 654
How to distinguish a fault from an alarm, 654
List of all faults, 666
Message class, 659
Message value, 659
Name, 659
Number, 658
Number range, 664
Remedy, 663
Fault buffer, 644
Configuration, 646
Fault value, 662
Faults/alarms configuration, 644
Faults/alarms triggering (r2129), 644
Fixed speed setpoints, 566
Fixed values, 630, 631
Free function blocks, 608
Free interconnection, status words, 533
Free technology controller 0, 1, 2, 602
Function diagram (parameters), 21
Function diagrams, CANopen
Control word, CANopen, 539
Receive telegram, free PDO mapping, 535
Receive telegram, Predefined Connection Set (p8744 = 1), 536
Send telegram, free PDO mapping (p8744 = 2), 537
Send telegram, Predefined Connection Set (p8744 = 1), 538
Status word, CANopen, 540
Function diagrams, data sets
Command Data Sets (CDS), 651
Drive Data Sets (DDS), 652
Function diagrams, diagnostics
Alarm buffer, 647
Fault buffer, 646
Faults/alarms configuration, 649
Faults/alarms trigger word (r2129), 648
Overview, 645
Function diagrams, fieldbus interface
Configuration, addresses and diagnostics, 542
Receive telegram, free interconnection via BICO (p0922 = 999), 545
Send telegram, free interconnection via BICO (p0922 = 999), 546
Status words, free interconnection, 547
STW1 control word interconnection, 543
ZSW1 status word interconnection, 544
Function diagrams, free function blocks
ADD (adder with 4 inputs), 614
AND, 610

AVA (absolute value generator), 616
BSW (binary switch), 624
DFR (D flip-flop), 623
DIF (derivative action element), 627
DIV (divider), 615
INT (integrator), 627
LIM (limiter), 625
LVM (double-sided limit monitor with hysteresis), 628
MFP (pulse generator), 619
MUL (multiplier), 615
NCM (numeric comparator), 617
NOT (inverter), 613
NSW (numeric change-over switch), 624
OR, 611
PCL (pulse contractor), 619
PDE (ON delay), 620
PDF (OFF delay), 621
PLI (polyline scaling), 618
PST (pulse stretcher), 622
PT1 (smoothing element), 626
RSR (RS flip-flop), 623
Sampling times of the runtime groups, 609
SUB (subtracter), 614
XOR (exclusive OR), 612
Function diagrams, general information
Explanation of the symbols (part 1), 500
Explanation of the symbols (part 2), 501
Explanation of the symbols (part 3), 502
Handling BICO technology, 503
Function diagrams, input/output terminals
Connection overview, 505
Digital inputs (DI 11 ... DI 12), 510
Digital inputs, electrically isolated (DI 0 ... DI5), 506
Digital outputs (DO $0 \ldots$ DO 2), 507
Three-wire control, 514
Two-wire control, 513
Function diagrams, internal control/status words
Control word 1 (r0054), 554
Control word 2 (r0055), 555
Control word, faults/alarms, 562
Control word, sequence control, 549
Control word, setpoint channel, 551
Sequence control - Missing enable signals, 565
Sequence control - Sequencer, 564
Status word 1 (r0052), 552
Status word 2 (r0053), 553
Status word, closed-loop control, 557
Status word, closed-loop current control, 558
Status word, faults/alarms 1 and 2, 563
Status word, monitoring functions 1,559
Status word, monitoring functions 2,560
Status word, monitoring functions 3,561
Status word, sequence control, 550
Status word, speed controller, 556

Function diagrams, PROFIdrive
Overview, 520
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 521
PZD receive signals interconnection, 523
PZD send signals interconnection, 527
Receive telegram, free interconnection via BICO (p0922 = 999), 531
Send telegram, free interconnection via BICO (p0922 = 999), 532
Status words, free interconnection, 533
STW1 control word interconnection (p2038 = 0), 525
STW1 control word interconnection (p2038 = 2), 524
STW3 control word interconnection, 526
Telegrams and process data (PZD), 522
ZSW1 status word interconnection (p2038 = 0), 529
ZSW1 status word interconnection (p2038 = 2), 528
ZSW3 status word interconnection, 530
Function diagrams, PROFlenergy
Control commands and interrogation commands, 517
States, 518
Function diagrams, setpoint channel
Direction limitation and direction reversal, 572
Fixed speed setpoints, binary selection (p1016 = 2), 568
Fixed speed setpoints, direct selection, 569
Main/supplementary setpoint, setpoint scaling, jogging, 571
Motorized potentiometer, 570
Overview, 567
Ramp-function generator (extended), 574
Ramp-function generator selection, -status word, -tracking, 575
Skip frequency bands and speed limitations, 573
Function diagrams, signals and monitoring functions
Load monitoring, 639
Monitoring functions 1, 643
Overview, 635
Speed signals 1, 636
Speed signals 2, 637
Thermal monitoring, motor, 641
Thermal monitoring, power unit, 640
Thermal motor models, 642
Torque signals, motor blocked/stalled, 638
Function diagrams, technology controller
Control, 633
Fixed value selection binary (p2216 = 2), 630
Fixed value selection direct (p2216 = 1), 631
Motorized potentiometer, 632
Function diagrams, technology functions
Bypass, 605
Cascade control, 606
DC brake ($\mathrm{p} 0300=1$), 601
Energy-saving mode, 607

Essential service mode (ESM), 604
Free technology controller 0, 1, 2, 602
Multi-zone control, 603
Function diagrams, vector control
Closed-loop DC quantity control, 598
Current control, overview, 592
Current setpoint filter, 593
Current/power/torque limits , 591
Display signals, 599
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 595
Field weakening controller, flux controller (ASM, p0300 = 1), 596
Flux controller configuration, 589
Interface to the Power Module (ASM, p0300 = 1), 597
Iq and Id controllers, 594
Kp_n-/Tn_n adaptation, 581
Pre-control balancing, acceleration model, 579
Resonance damping and slip compensation (U/f), 586
Speed control and generation of the torque limits, overview, 577
Speed control configuration, 588
Speed controller with/without encoder, 580
Speed setpoint, droop, 578
Torque setpoint, 582
U/f characteristic and voltage boost, 585
U/f control, overview, 584
Upper/lower torque limit, 590
Vdc_max controller and Vdc_min controller (PM230/PM240/PM330), (U/f), 587
Vdc_max controller and Vdc_min controller (vector control, PM230/PM240/PM330), 583
Fxxxx, 658

G

General information
about parameters, 12
on faults and alarms, 654
on function diagrams, 499

I

IASC, 656
Index
Parameters, 13
Index (parameters), 21
Industrial security, 9
Input/output terminals, 504
Analog input 2 (Al 2), 509
Analog inputs, 504
Analog inputs $0 \ldots 1$ (AI $0 \ldots \mathrm{Al} 1$), 508
Analog outputs $0 \ldots 1$ (AO $0 \ldots$ AO 1), 511
Digital inputs, 504

PM330-digital inputs (DI $0 \ldots$ DI 4), digital outputs (DO 0 ... DO 1), 515
Temperature evaluation LG-Ni1000/PT1000 (AI3), 512
Internal control words, 548
Internal control/status words, 548

J

Jogging, 566, 571

L

Linked parameters, 13
List
Abbreviations, 746
ASCII table, 742
Binector inputs (BI parameters), 477
Binector outputs (BO parameters), 481
Command data sets, 468
Connector inputs (CI parameters), 479
Connector outputs (CO parameters), 482
Connector/binector outputs (CO/BO parameters), 486
Drive data sets, 469
Faults and alarms, 666
Message ranges, 664
Motor data sets, 474
Parameter ranges, 24
Parameters for quick commissioning, 490
Parameters for write protection and know-how protection, 488
Parameters, all, 27
Power unit data sets, 476
List of abbreviations, 746
Load monitoring, 634

M

Manufacturer-specific telegrams, 522
MDS, Motor Data Set, 19
Message buffer, 644
Message class, 659
Message value, 659
Monitoring functions, 634
Motorized potentiometer, 566, 632
Multi-zone control, 603

N

Name
Alarm, 659
Fault, 659
Number
Alarm, 658
Fault, 658
Parameters, 13
Number range
Alarms, 664

Faults, 664
Parameters, 24
Number ranges of faults and alarms, 664

0

OFF1, 655
OFF1_DELAYED, 655
OFF2, 655
OFF3, 656

P

Parameters
Access level, 15
Bit field, 22
Calculated, 16
Can be changed, 18
Command data sets, 468
CU/PM variants, 14
Data type, 16
Dependency, 22
Description, 21
Drive data sets, 469
Dynamic index, 19
Full name, 14
Function diagram, 21
Index, 13, 21
Linked parameters, 13
List for quick commissioning, 490
List of all parameters, 27
List of the binector inputs, 477
List of the binector outputs, 481
List of the connector inputs, 479
List of the connector outputs, 482
List of the connector/binector outputs, 486
Motor data sets, 474
Number, 13
Number range, 24
Parameter values, 21
Power unit data sets, 476
Recommendation, 21
Safety guidelines, 22
Scaling, 18
Short name, 14
Unit group, 19
Unit selection, 19
Values, 21
Password for access level 4, 15
PDS, (Power unit Data Set), 19
Process data, 516, 519
PROFIBUS, 516, 519
PROFIdrive, 516, 519
PROFlenergy, 516
PROFINET, 516, 519
pxxxx, 13

Q

Quick commissioning (parameters), 490

R

Ramp-function generator, 566
Reaction to faults, 655
Resetting faults, 662
rxxxx, 13

S

Safety instructions
Fundamental, 7
General, 8
Industrial security, 9
Safety instructions (parameter), 22
Scaling, 18
Setpoint channel, 566
Signals, 634
Skip frequency bands, 566
Speed control
Vector, 576
Speed signals, 634
Standard telegrams, 522
Status words
Free interconnection via BICO, 516, 519
Internal, 548
STOP2, 656

T

Technology controller, 629
Technology functions, 600
Telegrams, 516, 519
Temperature evaluation, 504
Thermal monitoring, 634
Torque signals, 634

U

Unit (parameter), 19
US, 520

V

Values (parameter), 21
Vector control
Current setpoint filter, 593
Droop, 578
Iq and Id controllers, 594
Kp_n-/Tn_n adaptation, 581
Speed control configuration, 588
Speed controller with/without encoder, 580
Table of contents, 576
Torque setpoint, 582
Version
List of all parameters, 27
List of faults and alarms, 666

Find out more on
SINAMICS G120P
by scanning the
QR code.

[^0]: Description: Sets the signal source for the command "enable operation/inhibit operation". For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).

[^1]: Description: Sets the configuration for the closed-loop speed control.

[^2]: Adequate parameterization must be ensured (p1610, p1611).

[^3]:
 sweлБе!р ио!ұフип」 ε

[^4]:
 sue»бе!р uо!эип」 $\mathcal{\varepsilon}$

