Product data sheet Characteristics # ATV71HC40Y # variable speed drive ATV71 - 400kW - 690V #### Main | Commercial Status | Commercialised | |------------------------------------|--| | Range of product | Altivar 71 | | Product or component type | Variable speed drive | | Product specific application | Complex, high-power machines | | Component name | ATV71 | | Motor power kW | 400 kW at 690 V 3 phases
315 kW at 500 V 3 phases | | Motor power hp | 450 hp at 575 V 3 phases | | Motor cable length | | | Power supply voltage | 500690 V (- 1510 %) | | Network number of phases | 3 phases | | Line current | 439 A for 500 V 3 phases 315 kW
409 A for 690 V 3 phases 400 kW
401 A for 600 V 3 phases / 500 hp | | EMC filter | Integrated | | Assembly style | With heat sink | | Variant | Reinforced version | | Prospective line Isc | <= 35 kA, 3 phases | | Nominal output current | 462 A at 2.5 kHz 500 V 3 phases 315 kW
420 A at 2.5 kHz 690 V 3 phases 400 kW
412 A at 2.5 kHz 575 V 3 phases / 500 hp | | Maximum transient cur-
rent | 762.3 A for 2 s 3 phases 400 kW
762.3 A for 2 s 3 phases / 500 hp
693 A for 60 s 3 phases 315 kW | | Speed drive output frequency | 0.1500 Hz | | Nominal switching frequency | 2.5 kHz | | Switching frequency | 2.54.9 kHz with derating factor 2.54.9 kHz adjustable | | Asynchronous motor control profile | ENA (Energy adaptation) system for unbalanced loads Flux vector control (FVC) with sensor (current vector) Sensorless flux vector control (SFVC) (voltage or current vector) Voltage/Frequency ratio (2 or 5 points) | | Type of polarization | No impedance for Modbus | | | | ## Complementary | Product destination | Asynchronous motors Synchronous motors | | | | |-------------------------------|--|--|--|--| | Power supply voltage limits | 425759 V | | | | | Power supply frequency | 5060 Hz (- 55 %) | | | | | Power supply frequency limits | 47.563 Hz | | | | | Speed range | 150 for synchronous motor in open-loop mode, without speed feedback 11000 for asynchronous motor in closed-loop mode with encoder feedback 1100 for asynchronous motor in open-loop mode, without speed feedback | | | | | Speed accuracy | +/- 10 % of nominal slip for 0.2 Tn to Tn torque variation without speed feedback +/- 0.01 % of nominal speed for 0.2 Tn to Tn torque variation in closed-loop mode with encoder feedback | |--|---| | Torque accuracy | +/- 5 % in closed-loop mode with encoder feedback
+/- 15 % in open-loop mode, without speed feedback | | Transient overtorque | 220 % of nominal motor torque +/- 10 % for 2 s 170 % of nominal motor torque +/- 10 % for 60 s every 10 minutes | | Braking torque | 30 % without braking resistor < 150 % with braking or hoist resistor | | Synchronous motor control profile | Vector control without speed feedback | | Regulation loop | Adjustable PI regulator | | Motor slip compensation | Adjustable Automatic whatever the load Not available in voltage/frequency ratio (2 or 5 points) Suppressable | | Diagnostic | 1 LED red presence of drive voltage | | Output voltage | <= power supply voltage | | Insulation | Electrical between power and control | | Type of cable for mounting in an enclosure | Without mounting kit: 1-strand IEC cable at 45 °C, copper 90 °C XLPE/EPR Without mounting kit: 1-strand IEC cable at 45 °C, copper 70 °C PVC With an IP21 or an IP31 kit: 3-strand IEC cable at 40 °C, copper 70 °C PVC With a NEMA Type1 kit: 3-strand UL 508 cable at 40 °C, copper 75 °C PVC | | Electrical connection | U/T1, V/T2, W/T3 terminal 6 x 185 mm ² R/L1.1, S/L2.1, T/L3.1, R/L1.2, S/L2.2, T/L3.2 terminal 2 x 4 x 185 mm ² PC/-, PA/+ terminal 8 x 185 mm ² Al1-/Al1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1LI6, PWR terminal 2.5 mm ² / AWG 14 | | Tightening torque | U/T1, V/T2, W/T3 41 N.m / 360 lb.in
R/L1.1, S/L2.1, T/L3.1, R/L1.2, S/L2.2, T/L3.2 41 N.m / 360 lb.in
PC/-, PA/+ 41 N.m / 360 lb.in
Al1-/Al1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, Ll1Ll6, PWR 0.6 N.m | | Supply | Internal supply, 24 V DC, voltage limits 2127 V, <= 200 mA for overload and short-circuit protection Internal supply for reference potentiometer (1 to 10 kOhm), 10.5 V DC +/- 5 %, <= 10 mA for overload and short-circuit protection | | Analogue input number | 2 | | Analogue input type | Al2 software-configurable voltage 010 V DC, input voltage 24 V max, impedance 30000 Ohm, resolution 11 bits Al2 software-configurable current 020 mA, impedance 242 Ohm, resolution 11 bits Al1-/Al1+ bipolar differential voltage +/- 10 V DC, input voltage 24 V max, resolution 11 bits + sign | | Input sampling time | LI6 (if configured as logic input) 2 ms, +/- 0.5 ms for discrete input(s) LI1LI5 2 ms, +/- 0.5 ms for discrete input(s) AI2 2 ms, +/- 0.5 ms for analog input(s) AI1-/AI1+ 2 ms, +/- 0.5 ms for analog input(s) | | Response time | R2A, R2B 7 ms, tolerance +/- 0.5 ms for discrete output(s) R1A, R1B, R1C 7 ms, tolerance +/- 0.5 ms for discrete output(s) AO1 2 ms, tolerance +/- 0.5 ms for analog output(s) <= 100 ms in STO (Safe Torque Off) | | Absolute accuracy precision | AO1 +/- 1 % for a temperature variation 60 °C AI2 +/- 0.6 % for a temperature variation 60 °C AI1-/AI1+ +/- 0.6 % for a temperature variation 60 °C | | Linearity error | AO1 +/- 0.2 %
AI1-/AI1+, AI2 +/- 0.15 % of maximum value | | Analogue output number | 1 | | Analogue output type | AO1 software-configurable voltage 010 V DC, impedance 470 Ohm, resolution 10 bits AO1 software-configurable current 020 mA, impedance 500 Ohm, resolution 10 bits AO1 software-configurable logic output 10 V <= 20 mA | | Discrete output number | 2 | | Discrete output type | R2A, R2B configurable relay logic NO, electrical durability 100000 cycles R1A, R1B, R1C configurable relay logic NO/NC, electrical durability 100000 cycles | | Minimum switching current | Configurable relay logic 3 mA at 24 V DC | | R1, R2 on resistive load, 5 A at 30 V DC, cos phi = 1,
R1, R2 on resistive load, 5 A at 250 V AC, cos phi = 1,
R1, R2 on inductive load, 2 A at 30 V DC, cos phi = 0.4,
R1, R2 on inductive load, 2 A at 250 V AC, cos phi = 0.4, | |--| | 7 | | PWR: safety input 24 V DC, impedance: 1500 Ohm conforming to ISO 13849-1 level d LI6: switch-configurable PTC probe 06, impedance: 1500 Ohm LI6: switch-configurable 24 V DC with level 1 PLC, impedance: 3500 Ohm LI1LI5: programmable 24 V DC with level 1 PLC, impedance: 3500 Ohm | | LI6 (if configured as logic input) positive logic (source), < 5 V (state 0), > 11 V (state 0) LI6 (if configured as logic input) negative logic (sink), > 16 V (state 0), < 10 V (state 0) LI1LI5 positive logic (source), < 5 V (state 0), > 11 V (state 0) LI1LI5 negative logic (sink), > 16 V (state 0), < 10 V (state 0) | | Automatic adaptation of ramp if braking capacity exceeded, by using resistor Linear adjustable separately from 0.01 to 9000 s S, U or customized | | By DC injection | | Motor thermal protection Motor power removal Motor motor phase break Drive thermal protection Drive short-circuit between motor phases Drive overvoltages on the DC bus Drive overheating protection Drive overcurrent between output phases and earth Drive line supply undervoltage Drive line supply overvoltage Drive input phase breaks Drive break on the control circuit Drive against input phase loss Drive against exceeding limit speed | | > 1 mOhm at 500 V DC for 1 minute to earth | | Display unit 0.1 Hz
Analog input 0.024/50 Hz | | CANopen
Modbus | | Male SUB-D 9 on RJ45 for CANopen 1 RJ45 for Modbus on terminal 1 RJ45 for Modbus on front face | | 2-wire RS 485 for Modbus | | RTU for Modbus | | 9600 bps, 19200 bps for Modbus on front face
4800 bps, 9600 bps, 19200 bps, 38.4 Kbps for Modbus on terminal
20 kbps, 50 kbps, 125 kbps, 250 kbps, 500 kbps, 1 Mbps for CANopen | | 8 bits, odd even or no configurable parity for Modbus on terminal 8 bits, 1 stop, even parity for Modbus on front face | | 1247 for Modbus
1127 for CANopen | | Slave for CANopen | | CE | | Vertical +/- 10 degree | | 1390 mm | | 377 mm | | 1120 mm | | | | Product weight | 435 kg | | |----------------|--------------------------------------|--| | Option card | Profibus DP V1 communication card | | | | Profibus DP communication card | | | | Overhead crane card | | | | Modbus/Uni-Telway communication card | | | | Modbus TCP communication card | | | | Modbus Plus communication card | | | | Interface card for encoder | | | | Interbus-S communication card | | | | I/O extension card | | | | Fipio communication card | | | | Ethernet/IP communication card | | | | DeviceNet communication card | | | | Controller inside programmable card | | | | CC-Link communication card | | ## Environment | Noise level | 77 dB conforming to 86/188/EEC | |---------------------------------------|--| | Dielectric strength | 5345 V DC between control and power terminals
3110 V DC between earth and power terminals | | Electromagnetic compatibility | Voltage dips and interruptions immunity test conforming to IEC 61000-4-11 Radiated radio-frequency electromagnetic field immunity test conforming to IEC 61000-4-3 level 3 Electrostatic discharge immunity test conforming to IEC 61000-4-2 level 3 Electrical fast transient/burst immunity test conforming to IEC 61000-4-4 level 4 Conducted radio-frequency immunity test conforming to IEC 61000-4-6 level 3 1.2/50 µs - 8/20 µs surge immunity test conforming to IEC 61000-4-5 level 3 | | Standards | EN 55011 class A group 2 EN 61800-3 environments 1 category C3 EN 61800-3 environments 2 category C3 EN/IEC 61800-3 EN/IEC 61800-5-1 IEC 60721-3-3 class 3C2 UL Type 1 | | Product certifications | CSA
C-Tick
GOST
NOM 117
UL | | Pollution degree | 3 conforming to UL 840
2 conforming to EN/IEC 61800-5-1 | | IP degree of protection | IP54 on lower part conforming to EN/IEC 61800-5-1 IP54 on lower part conforming to EN/IEC 60529 IP41 on upper part conforming to EN/IEC 61800-5-1 IP41 on upper part conforming to EN/IEC 60529 IP30 on the front panel conforming to EN/IEC 61800-5-1 IP30 on the front panel conforming to EN/IEC 60529 IP30 on side parts conforming to EN/IEC 61800-5-1 IP30 on side parts conforming to EN/IEC 60529 IP00 conforming to EN/IEC 61800-5-1 IP00 conforming to EN/IEC 60529 | | Vibration resistance | 1.5 mm peak to peak (f = 310 Hz) conforming to EN/IEC 60068-2-6
0.6 gn (f = 10200 Hz) conforming to EN/IEC 60068-2-6 | | Shock resistance | 4 gn for 11 ms conforming to EN/IEC 60068-2-27 | | Relative humidity | 595 % without dripping water conforming to IEC 60068-2-3 595 % without condensation conforming to IEC 60068-2-3 | | Ambient air temperature for operation | -1050 °C without derating | | Ambient air temperature for storage | -2570 °C | | Operating altitude | 10002260 m with current derating 1 % per 100 m <= 1000 m without derating | ## Offer Sustainability | Sustainable offer status | Green Premium product | |----------------------------------|--| | RoHS | Compliant - since 1002 - Schneider Electric declaration of conformity | | REACh | Reference contains SVHC above the threshold - 🗗 go to CaP for more details | | Product environmental profile | Available Download Product Environmental | | Product end of life instructions | Available Download End Of Life Manual | ## UL Type 1/IP 20 Drives ## Dimensions with or without 1 Option Card (1) #### Dimensions in mm | а | b | С | G | J | J1 | Н | K | K1 | K2 | Ø | |------|------|-----|-------|----|-----|------|-----|----|----|------| | 1120 | 1390 | 377 | 532.5 | 75 | 495 | 1120 | 150 | 75 | 30 | 11.5 | #### Dimensions in in. | а | b | С | G | J | J1 | Н | K | K1 | K2 | Ø | |-------|-------|-------|-------|------|-------|-------|------|------|------|------| | 44.09 | 54.72 | 14.84 | 20.96 | 2.95 | 19.49 | 44.09 | 5.90 | 2.95 | 1.18 | 0.45 | ⁽¹⁾ Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card. ## Dimensions with 2 Option Cards (1) #### Dimensions in mm | а | c1 | G | J | J1 | Н | K | K1 | K2 | Ø | |------|-----|-------|----|-----|------|-----|----|----|------| | 1120 | 392 | 532.5 | 75 | 495 | 1120 | 150 | 75 | 30 | 11.5 | #### Dimensions in in. | а | c1 | G | J | J1 | Н | K | K1 | K2 | Ø | |-------|-------|-------|------|-------|-------|------|------|------|------| | 44.09 | 15.43 | 20.96 | 2.95 | 19.49 | 44.09 | 5.90 | 2.95 | 1.18 | 0.45 | ⁽¹⁾ Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card. ## Mounting Recommendations #### Clearance | X1 in mm | X2 in mm | X1 in in. | X2 in in. | |----------|----------|-----------|-----------| | 250 | 400 | 9.84 | 15.75 | These drives can be mounted side by side, observing the following mounting recommendations: ## Specific Recommendations for Mounting the Drive in an Enclosure #### Ventilation To ensure proper air circulation in the drive: - Fit ventilation grilles. - Ensure that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (refer to the product characteristics). - Use special filters with IP 54 protection. - Remove the blanking cover from the top of the drive. ## Dust and Damp Proof Metal Enclosure (IP 54) The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc. This enables the drive to be used in an enclosure where the maximum internal temperature reaches 50°C. Wiring Diagram Conforming to Standards EN 954-1 Category 1, IEC/EN 61508 Capacity SIL1, in Stopping Category 0 According to IEC/EN 60204-1 Three-Phase Power Supply with Upstream Breaking via Contactor - A1 ATV71 drive - KM1 Contactor - L1 DC choke - Q1 Circuit-breaker - Q2 GV2 L rated at twice the nominal primary current of T1 - Q3 GB2CB05 - S1, XB4 B or XB5 A pushbuttons - S2 - T1 100 VA transformer 220 V secondary - (1) Line choke (three-phase); mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)). - (2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram. - (3) Fault relay contacts. Used for remote signalling of the drive status. - (4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide). - (5) There is no PO terminal on ATV71HC11Y...HC63Y drives. - (6) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. - (7) Software-configurable current (0...20 mA) or voltage (0...10 V) analog input. - (8) Reference potentiometer. All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc. Wiring Diagram Conforming to Standards EN 954-1 Category 1, IEC/EN 61508 Capacity SIL1, in Stopping Category 0 According to IEC/EN 60204-1 ## Three-Phase Power Supply with Downstream Breaking via Switch Disconnector - A1 ATV71 drive - L1 DC choke - Q1 Circuit-breaker - Q2 Switch disconnector (Vario) - (1) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)). - (2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram. - (3) Fault relay contacts. Used for remote signalling of the drive status. - (4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide). - (5) There is no PO terminal on ATV71HC11Y...HC63Y drives. - (6) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. - (7) Software-configurable current (0...20 mA) or voltage (0...10 V) analog input. - (8) Reference potentiometer. All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc. Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 0 According to IEC/EN 60204-1 ## Three-Phase Power Supply, Low Inertia Machine, Vertical Movement - A1 ATV71 drive - A2 Preventa XPS AC safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal" function for several drives on the same machine. In this case, each drive must connect its PWR terminal to its + 24 V via the safety contacts on the XPS AC module. These contacts are independent for each drive. - F1 Fuse - L1 DC choke - Q1 Circuit-breaker - S1 Emergency stop button with 2 contacts - S2 XB4 B or XB5 A pushbutton - (1) Power supply: 24 Vdc or Vac, 48 Vac, 115 Vac, 230 Vac. - (2) S2: resets XPS AC module on power-up or after an emergency stop. ESC can be used to set external starting conditions. - (3) Requests freewheel stopping of the movement and activates the "Power Removal" safety function. - (4) Line choke (three-phase), mandatory for and ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)). - (5) The logic output can be used to signal that the machine is in a safe stop state. - (6) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram. - (7) Fault relay contacts. Used for remote signalling of the drive status. - (8) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide). - (9) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter 2.54 mm /0.09 in., maximum length 15 m / 49.21 ft. The cable shielding must be earthed. - (10) There is no PO terminal on ATV71HC11Y...HC63Y drives. - (11) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. - (12) Software-configurable current (0...20 mA) or voltage (0...10 V) analog input. - (13) Reference potentiometer. All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc. Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 1 According to IEC/EN 60204-1 ## Three-Phase Power Supply, High Inertia Machine - A1 ATV71 drive - A2 Preventa XPS ATE safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal" - (5) safety function for several drives on the same machine. In this case the time delay must be adjusted on the drive controlling the motor that requires the longest stopping time. In addition, each drive must connect its PWR terminal to its + 24 V via the safety contacts on the XPS ATE module. These contacts are independent for each drive. - F1 Fuse - L1 DC choke - Q1 Circuit-breaker - S1 Emergency stop button with 2 N/C contacts - S2 Run button - (1) Power supply: 24 Vdc or Vac, 115 Vac, 230 Vac. - (2) Requests controlled stopping of the movement and activates the "Power Removal" safety function. - (3) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)). - (4) S2: resets XPS ATE module on power-up or after an emergency stop. ESC can be used to set external starting conditions. - (5) For stopping times requiring more than 30 seconds in category 1, use a Preventa XPS AV safety module which can provide a maximum time delay of 300 seconds. - (6) The logic output can be used to signal that the machine is in a safe state. - (7) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections diagram. - (8) Fault relay contacts. Used for remote signalling of the drive status. - (9) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supply switched to the "source" position (for other connection types, refer to the user guide). - (10) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter 2.54 mm/0.09 in., maximum length 15 m/49.21 ft. The cable shielding must be earthed. - (11) Logic inputs LI1 and LI2 must be assigned to the direction of rotation: LI1 in the forward direction and LI2 in the reverse direction. - (12) There is no PO terminal on ATV71HC11Y...HC63Y drives. - (13) Optional DC choke for ATV71H••••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of the strap between the PO and PA/+ terminals. For ATV71HD55M3X, HD75M3X, ATV71HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. - (14) Software-configurable current (0...20 mA) or voltage (0...10 V) analog input. - (15) Reference potentiometer. All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc. Power Terminal Connections for the Drive Combined with a 400 kW Motor - (1) (2) (3) (4) (5) Line chokes, these are mandatory for ATV71HC40Y...HC63Y drives, to be ordered separately. DC chokes supplied as standard with ATV71HC40N4, HC50N4 drives. Not available for ATV71HC40Y...HC63Y. - To DC bus -To DC bus + ## **Derating Curves** The derating curves for the drive nominal current (In) depend on the temperature and the switching frequency. For intermediate temperatures (e.g. 55°C), interpolate between 2 curves. X Switching frequency