FR-A700

Inverter
\section*{Programming Manual}

PLC Function

CONTENTS

11.1 Function Block Diagram 2
1.2 PLC Function Specifications 3
1.3 System Configuration 4
1.4 Wiring of the Inverter and Personal Computer Using GX Developer for RS-485 Communication 5
1.5 Prior to Sequence Program Creation 6
1.5.1 Precautions for sequence program creation 6
1.5.2 Usable main GX Developer functions 6
1.5.3 Sequence program execution key. 7
1.5.4 Sequence program write 8
1.5.5 Setting list of built-in PLC function parameter 9
1.6 Device Map 10
1.6.1 I/O device map 10
1.6.2 Internal relay (M) device map 12
1.6.3 Data register (D) device map 12
1.6.4 Special relays 12
1.6.5 Special registers 14
1.7 Inverter Status Monitoring, Special Registers for Control 20
1.7.1 Data that can be read at all times 20
1.7.2 Data that are read by controlling (OFF to ON) the read command 23
1.7.3 How to write data by controlling (OFF to ON) the write command 25
1.7.4 Inverter operation status control 31
1.7.5 Inverter parameter access error (D9150) 33
1.7.6 Inverter status (D9151). 33
1.8 Inverter Parameter Read/Write Method 34
1.8.1 Reading the inverter parameters. 34
1.8.2 Writing the inverter parameters 36
1.9 User Area Read/Write Method 38
1.9.1 User parameter read/write method 38
1.10 Analog I/O function 39
1.10.1 Analog input 39
1.10.2 Analog output 39
1.11 Paluse train input function 40
1.12 PID control 41
1.13 Inverter Operation Lock Mode Setting 43
2.1 System Configuration 46
2.1.1 System configuration example 46
2.1.2 Function block diagram 47
2.2 CC-Link Parameters 49
2.2.1 CC-Link Extended Setting (Pr. 544) 49
2.3 CC-Link I/O Specifications 50
2.4 Buffer Memory 57
2.4.1 Remote output signals (Master module to inverter(FR-A7NC)) 57
2.4.2 Remote input signals Pr.544=100 (Inverter(FR-A7NC) to master module) 58
2.4.3 Remote registers Pr.544=100 (Master module to inverter(FR-A7NC)) 59
2.4.4 Remote registers Pr.544=100 (Inverter(FR-A7NC) to master module) 60
3. SEQUENCE PROGRAMMING 61
3.1 Overview 62
3.1.1 Outline of Operation Processings 62
3.2 RUN and STOP Operation Processings 64
3.3 Program Makeup 64
3.4 Programming Languages 65
3.4.1 Relay symbolic language (Ladder mode) 65
3.4.2 Logic symbolic language (List mode) 67
3.5 Operation Processing Method of PLC Function 68
3.6 I/O Processing Method 69
3.6.1 What is refresh system? 69
3.6.2 Response delay in refresh system 70
3.7 Scan Time 71
3.8 Numerical Values Usable in Sequence Program 72
3.8.1 BIN (Binary Code) 73
3.8.2 HEX (HEX Decimal) 74
3.9 Description of devices 75
3.9.1 Device List 75
3.9.2 Inputs, Outputs X, Y 76
3.9.3 Internal Relays M 79
3.9.4 Timers T 80
3.9.5 100 ms , 10 ms and 100 ms retentive timers 80
3.9.6 Timer processing method and accuracy 81
3.10 Counters C 83
3.10.1 Count processing in refresh system 84
3.10.2 Maximum counting speed of counter 85
3.11 Data Registers D 86
3.12 Special Relays, Special Registers 87
3.13 Function List 89
3.14 How to RUN/STOP the Built-in PLC Function from Outside (Re- mote RUN/STOP) 90
3.15 Watchdog Timer (Operation clog up monitor timer) 92
3.16 Self-diagnostic Function 93
3.16.1 Error-time operation mode 94
3.17 Keyword Registration 95
3.18 Setting of Output (Y) Status at Switching from STOP Status to RUN Status 96
3.19 Instruction Format 97
3.20 Bit Device Processing Method 99
3.20.1 1-bit processing 99
3.20.2 Digit designation processing 99
3.21 Handling of Numerical Value. 101
3.22 Operation Error. 102
3.23 Instructions List 103
3.23.1 How to use the instruction list. 103
3.23.2 Sequence instruction 105
3.23.3 Basic instructions 107
3.23.4 Application instructions. 109
3.24 Description of the Instructions 110
3.25 Sequence Instructions 111
3.25.1 Contact Instructions :
Operation start, series connection, parallel connection LD, LDI, AND, ANI,
OR, ORI. 111
3.25.2 Contact Instructions : Ladder block series connection, parallel connection ANB, ORB 113
3.25.3 Connection Instructions
Ladder block series connection, parallel connection ... ANB, ORB 117
3.25.4 Connection Instructions
Operation result, push, read, pop ... MPS, MRD, MPP 120
3.25.5 Output Instructions : Bit device, timer, counter ... OUT 123
3.25.6 Output Instructions : Device set, reset ... SET, RST 126
3.25.7 Output Instructions : Leading edge, trailing edge differential outputs PLS,
PLF 129
3.25.8 Shift Instructions : Bit device shift ... SFT, SFTP 131
3.25.9 Master Control Instructions : Master control set, reset ... MC, MCR 133
3.25.10End Instruction : Sequence program end ... END 137
3.25.11 Other Instructions : No operation ... NOP 138
3.26 Basic Instructions 140
3.26.1 Comparison Operation Instructions 140
3.26.2 Comparison Operation Instructions: 16-bit data comparison ... =, <>, >, <=, <, >=. 142
3.26.3 Arithmetic Operation Instructions 144
3.26.4 Arithmetic Operation Instructions: BIN 16-bit addition, subtraction ... +, +P, -, -P 145
3.26.5 Arithmetic Operation Instructions:
BIN 16-bit multiplication, division ... *, *P, /, /P 149
3.26.6 Data Transfer Instructions 153
3.26.7 Data Transfer Instructions : 16-bit data transfer ... MOV, MOVP 153
3.27 Application instructions 155
3.27.1 Logical Operation Instructions 155
3.27.2 Logical Operation Instructions :
16-bit Logical Product ... WAND, WANDP 156
3.27.3 Logical Operation Instructions: 16-bit Logical Add ... WOR, WORP 159
3.27.4 Logical Operation Instructions:
16-bit Exclusive Logical Add ... WXOR, WXORP 162
3.27.5 Logical Operation Instructions:
16-bit NOT Exclusive Logical Add ... WXNR, WXNRP 165
3.27.6 Logical Operation Instructions:
BIN 16-bit 2's complement ... NEG, NEGP 168
4. ERROR CODE LIST 171
4.1 How to Read the Error Code 172
APPENDIX 175
Appendix1Instruction Processing Time 176

1. PLC FUNCTION

This manual describes the functions and devices necessary for programming.
1.1 Function Block Diagram 2
1.2 PLC Function Specifications 3
1.3 System Configuration 4
1.4 Wiring of the Inverter and Personal Computer Using GX Developer for RS-485 Communication 5
1.5 Prior to Sequence Program Creation 6
1.6 Device Map 10
1.7 Inverter Status Monitoring, Special Registers for Control 20
1.8 Inverter Parameter Read/Write Method 34
1.9 User Area Read/Write Method 38
1.10 Analog I/O function 39
1.11 Paluse train input function 40
1.12 PID control 41
1.13 Inverter Operation Lock Mode Setting 43

1.1 Function Block Diagram

How I/O data are transferred to/from the inverter by the built-in PLC function is explained using function blocks.
(1) I/O data read, write, etc. can be performed by accessing the inverter in the predetermined method using special relays, special registers, etc.
(2) Operation, parameter read/write, etc. can be performed in accordance with the created sequence programs (built in the inverter) using input data from the control input terminals.
With the output signals, output data can be output to outside the inverter from the control output terminals as not only the inverter's status signals but also pilot lamp on/off, interlock and other control signals set freely by the user.

1.2 PLC Function Specifications

The following table indicates the program capacity and devices of the PLC function.

*1 These signals use the same terminals as used by the input and output signals given in the common specifications of the inverter.
One point is always necessary for a sequence start (RUN/STOP).
*2 As inverter control is also performed actually, the scan time is approximately 40 ms at 500 steps.

1.3 System Configuration

The following shows the system configuration for use of the PLC function.

<System configuration example>

Communication specifications

Set the following setting in communication parameters of the inverter.

Inverter Parameter	GX Developer Setting	Inverter initial setting
Pr. 118 PU communication speed	96 (9600bps)	192 (19200bps)
Pr. 119 PU communication stop bit length	0 (data length: 8 bits, stop bit: 1 bit)	1 (data length: 8 bits, stop bit: 2 bit)
Pr. 120 PU communication parity check	1 (with odd parity check)	2 (with even parity check)
Pr. 122 PU communication check time interval	9999 (without communication check)	999 (without communication check)

REMARKS

-For futher details, refer to the Inverter instruction manual (applied).

POINT	
•Support GX Developer ver.8.0 or more	
•GX Developer Setting	
PLC series	ACPU
PLC type	A0J2H

$[$ Project data list $] \rightarrow$ PParameter $] \rightarrow$ [PLC parameter] \rightarrow [A parameter] \rightarrow «Memory capacity» tab \rightarrow "Program capacity" \rightarrow "Sequence" \rightarrow "main"

REMARKS

-Refer to the Inverter instruction manual (applied) for wiring.
-Refer to the GX Developer manuals for the specifications related to GX Developer and the personal computer that uses GX Developer.
GX Developer Version xx Operating manual
GX Developer Version xx Operating manual (startup)
-The programming tool that can be used is GX Developer only. (The A6GPP, A7PHP, etc. cannot be used.)

1.4 Wiring of the Inverter and Personal Computer Using GX Developer for RS-485 Communication

Personal computer

- Personal computer - inverter connection cable

Make connection after conversion between RS-232C and RS-485.

Examples of commercially available products (as of Sep., '05)

Sype	
SC-FRPC	BEIJERS

REMARKS

When fabricating the cable on the user side, refer to the inverter instruction manual (applied).

1.5 Prior to Sequence Program Creation

1.5.1 Precautions for sequence program creation

POINT

- Online change of the sequence program and access to other stations are not allowed.
In addition, program read/write from other stations and all PLC memory clear cannot be performed.
-Back up the ladder configured with the protective function of GX Developer.
If any of the instructions (refer to page 103) and devices (refer to page 3) that cannot be used with the built-in PLC function exists in a sequence program, an instruction code error occurs at the execution of that instruction.
Error code
D9008=10
Operation error step
D9010
D9011

REMARKS
\bullet Refer to page 22 for the error codes.

1.5.2 Usable main GX Developer functions

- Parameter or sequence program read/write
- Ladder monitor
- Device monitor
- Device test
- All device memory clear
- Remote RUN/STOP

CAUTION

Device test ([Online] - [Debug] - [Device test]) of GX Developer can be performed, but if devices corresponding to control terminal (e.g. STF, STR) signals are tested, the devices turn on in the sequence but the inverter does not perform the corresponding operation.

1.5.3 Sequence program execution key

The sequence program execution key (STOP/RUN) of the PLC is switched by turning off/on the SQ signal.

POINT

- For the terminal used for SQ signal input, set " 50 " in any of Pr. 178 to Pr. 189 to assign the function.
-SQ-SD must be shorted to execute the built-in PLC function.
CAUTION
If the SQ signal is not turned on, the start signal of the inverter is designed to become valid by the factory setting of Pr. 415 Inverter operation lock mode setting.

Open (STOP) the SQ signal-SD terminals when writing a sequence program, for example.
When executing the sequence program, short (RUN) the SQ signal-SD terminals.
Remote run/stop of the built-in PLC function can be executed in any of the following methods:

- Setting using the built-in PLC function parameter (contact)
- Using GX Developer
- Via CC-Link communication (refer to page 49)

REMARKS

-The validity limit of the SQ signal can be controlled using Pr. 415 Inverter operation lock mode setting. (Refer to page 43.)

CAUTION

The outputs (Y) are cleared by turning the SQ signal off (STOP) after sequence program execution (SQ signal on).
The other devices retain the device data prior to STOP. When you want to clear the remaining device data, power off or reset (short RES-SD for 0.1 s , then open) the inverter.

1.5.4 Sequence program write

POINT

Sequence program write can be performed in any operation mode.
When rewriting the PLC function parameters and sequence program using GX Developer, check the following:

1) Check that the sequence program execution key is in the STOP position (SQ signal is off) (refer to page 7).
2) Check that the inverter is at a stop.
3) Check that the communication specification setting parameters (Pr. 117 to Pr.124) are set correctly. If any of these parameters is set incorrectly, communication with GX Developer cannot be made.

REMARKS

Check and set the communication specification parameter (Pr . 117 to Pr . 124) using the parameter unit (FR-PU04/FR-PU07). (Refer to the FR-PU04/FR-PU07 instruction manual for the handling of the FR-PU04/FR-PU07.) GX Developer and the FR-PU04/FR-PU07 cannot be connected and used simultaneously.
4) Check the PLC series and sequence program capacity in the GX Developer parameters (refer to page 4).
5) Refer to the GX Developer manual and write the sequence program.
-A sequence program cannot be written with its steps specified. If written, the sequence program does not run. (The program outside the specified range is initialized.)
-Do not read the built-in PLC function parameters and sequence program without writing them to the inverter once using GX Developer. Since the inverter does not have normal data, always write the built-in PLC function parameters and sequence program once.
-Since the built-in PLC function parameters and sequence program are written to the flash ROM, there are restrictions on the number of write times. (Approximately 100,000 times)

1.5.5 Setting list of built-in PLC function parameter

The built-in PLC function parameters are designed to specify the ranges of using the PLC function, e.g. program capacity, device assignment and various functions.

Item	GX Developer Default	Setting Range <Usable device range>
Sequence program capacity	6 k steps	1k step
File register capacity	None	Cannot be set (default)
Comment capacity	None	Cannot be set (default)
Status latch	None	Cannot be set (default)
Sampling trace	None	Cannot be set (default)
Microcomputer program capacity	None	Cannot be set (default)
Latch range setting	L1000 to L2047	Cannot be set (invalid if set)
Link range setting	None	Cannot be set (default)
I/O assignment	None	Cannot be set (default)
Internal relay, latch relay, step relay setting	$\begin{aligned} & \text { M0 to } 999 \\ & \text { L1000 to } 2047 \\ & \text { None for S } \end{aligned}$	L and S cannot be set. (Operates as M if set) <M0 to M63>
Watchdog timer setting	200ms	10 to 2000ms
Timer setting	100ms: T0 to 199 10ms: T200 to 255 (100ms timers since only T0 to 7 are available)	16 points for $100 \mathrm{~ms}, 10 \mathrm{~ms}$ and retentive timers. Timers have consecutive numbers. <T0 to T15>
Counter setting	Without interrupt counters	Cannot be set (default) <C0 to C15>
Remote run/pause	None	Can be set using X0 to 1F. Otherwise invalid. Pause does not function.
Error-time operation mode	Fuse blow: Continued	Setting invalid (since there are no fuses)
	I/O verify error: Stop	Setting invalid (since there are no I/O modules)
	Operation error: Continued	Stop/Continued
	Special function module check error: Stop	Setting invalid (since there are no special modules)
STOP \rightarrow RUN output mode	Operation status prior to STOP is re-output.	Prior to STOP/after operation execution
Print title registration	None	Cannot be set
Keyword registration	None	Online setting cannot be made but parameter setting is valid.

REMARKS

-The following functions are not supported.

1. Constant scan, 2. Latch (device data backup for power failure), 3. Pause,
2. Status latch, 5. Sampling trace, 6. Offline switch

- If parameter clear of the inverter is performed, the above built-in PLC function parameters are not cleared.
-For the built-in PLC function parameter setting operation, refer to the GX Developer Operating Manual.

1.6 Device Map

1.6.1 I/O device map

\$	$\begin{gathered} \text { Device } \\ \text { No. } \end{gathered}$	Name	Remarks	Device No.	Name	Remarks	
	X00	STF terminal	External terminal	Y00	RUN terminal	External terminal	
	X01	STR terminal		Y01	SU terminal		
	X02	RH terminal		Y02	OL terminal		
	X03	RM terminal		Y03	IPF terminal		
	X04	RL terminal		Y04	FU terminal		
	X05	JOG terminal		Y05	ABC1 terminal		
	X06	RT terminal		Y06	ABC2 terminal		
	X07	AU terminal		Y07	Empty		
	X08	CS terminal		Y08			
	X09	MRS terminal		Y09			
	XOA	STOP terminal		YOA			
	XOB	RES terminal		YOB			
	XOC	Empty		YOC			
	XOD			YOD			
	XOE			YOE			
	X0F			Y0F			
Plug in option I/O	X10	X0 terminal	16bit digital Input FR-A7AX	Y10	DO0 terminal	Dgital output FR-A7AY	
	X11	X1 terminal		Y11	DO1 terminal		
	X12	X2 terminal		Y12	DO2 terminal		
	X13	X3 terminal		Y13	DO3 terminal		
	X14	X4 terminal		Y14	DO4 terminal		
	X15	X5 terminal		Y15	DO5 terminal		
	X16	X6 terminal		Y16	DO6 terminal		
	X17	X7 terminal		Y17	RA1 terminal	Relay	
	X18	X8 terminal		Y18	RA2 terminal	output	
	X19	X9 terminal		Y19	RA3 terminal	FR-A7AR	
	X1A	X10 terminal		Y1A	Empty		
	X1B	X11 terminal		Y1B			
	X1C	X12 terminal		Y1C			
	X1D	X13 terminal		Y1D			
	X1E	X14 terminal		Y1E			
	X1F	X15 terminal		Y1F			

\rangle	Device No.	Name	Remarks	Device No.	Name	Remarks
$\left.\begin{gathered} o \\ \underset{c}{\mathbf{c}} \\ \underset{\omega}{\omega} \\ \omega \\ \omega \end{gathered} \right\rvert\,$	X20	Operation mode setting read completion	D9140	Y20	Operation mode setting read command	D9140
	X21	Set frequency read completion (RAM)	D9141	Y21	Set frequency read command (RAM)	D9141
	X22	Set frequency read completion (E^{2} PROM)	D9142	Y22	Set frequency read command (E²PROM)	D9142
	X23	Operation mode setting write completion	D9143	Y23	Operation mode setting write command	D9143
	X24	Set frequency write completion (RAM)	D9144	Y24	Set frequency write command (RAM)	D9144
	X25	Set frequency write completion (E²PROM)	D9145	Y25	Set frequency write command ($\mathrm{E}^{2} \mathrm{PROM}$)	D9145
	X26	Alarm definition batch clear completion	D9146	Y26	Alarm definition batch clear command	D9146
	X27	Parameter clear completion	D9147	Y27	Parameter clear command	D9147
	X28	Parameter read completion (RAM)	$\begin{aligned} & \text { D9241, } \\ & \text { D9242, } \end{aligned}$	Y28	Parameter read request (RAM)	$\begin{aligned} & \text { D9241, } \\ & \text { D9242, } \end{aligned}$
	X29	Parameter write completion (RAM)	D9234	Y29	Parameter write request (RAM)	D9234
	X2A	Parameter read completion (EEPROM)	$\begin{aligned} & \text { D9243, } \\ & \text { D9244 } \end{aligned}$	Y2A	Parameter read request (EEPROM)	D9243, D9244
	X2B	Parameter write completion (EEPROM)		Y2B	Parameter write request (EEPROM)	
	X2C	System area		Y2C	System area	
	X2D			Y2D		
	X2E			Y2E		
	X2F			Y2F		
	X30	RY0	FR-A7NC	Y30	RX0	FR-A7NC
	X31	RY1		Y31	RX1	
	X32	RY2		Y32	RX2	
	X33	RY3		Y33	RX3	
	X34	RY4		Y34	RX4	
	X35	RY5		Y35	RX5	
	X36	RY6		Y36	RX6	
	X37	RY7		Y37	RX7	
	X38	RY8		Y38	RX8	
	X39	RY9		Y39	RX9	
	X3A	RYA		Y3A	RXA	
	X3B	RYB		Y3B	RXB	
	X3C	RYC		Y3C	RXC	
	X3D	RYD		Y3D	RXD	
	X3E	RYE		Y3E	RXE	
	X3F	RYF		Y3F	RXF	

1.6.2 Internal relay (M) device map

Device No.		Description
M0 to M63	Use freely on user side.	

1.6.3 Data register (D) device map

Data Register (D)	Inverter Pr. Number	Parameter Name	Reference Page
D0 to D99	Use freely on user side.	-	
D100 to D119	Pr.506 to Pr.515	User parameters. Use freely on user side.	38

1.6.4 Special relays

The special relays are internal relays with special applications and therefore should not be switched on-off in the program.

Number	Name	Description
M9008	Self-diagnostic error	Turned on by self-diagnosed error.
M9010	Operation error flag	Turned on by an instruction execution error. Turned off when error is removed.
M9011	Operation error flag	Turned on by an instruction execution error. Remains on after normal status is restored.
M9036	Normally ON	
M9037	Normally OFF	
M9038	On only for 1 scan after RUN	M9038 and M9039 change depending on the STOP or RUN status. In other than the STOP status, M9038 is on
M9039	Off only for 1 scan after RUN	for one scan only and M9039 is off for one scan only.
M9200	Inverter operation status control flag (STF)	Control the STF terminal of the inverter from PLC function
M9201	Inverter operation status control flag (STR)	Control the STR terminal of the inverter from PLC function
M9202	Inverter operation status control flag (RH)	Control the RH terminal of the inverter from PLC function
M9203	Inverter operation status control flag (RM)	Control the RM terminal of the inverter from PLC function
M9204	Inverter operation status control flag (RL)	Control the RL terminal of the inverter from PLC function
M9205	Inverter operation status control flag (JOG)	Control the JOG terminal of the inverter from PLC function
M9206	Inverter operation status control flag (RT)	Control the RT terminal of the inverter from PLC function
M9207	Inverter operation status control flag (AU)	Control the AU terminal of the inverter from PLC function
M9208	Inverter operation status control flag (CS)	Control the CS terminal of the inverter from PLC function
M9209	Inverter operation status control flag (MRS)	Control the MRS terminal of the inverter from PLC function
M9210	Inverter operation status control flag (STOP)	Control the STOP terminal of the inverter from PLC function

Number	Name	Description
M9211	Inverter operation status control flag (RES)	Control the RES terminal of the inverter from PLC function
M9216	Inverter status (RUN)	Inverter running
M9217	Inverter status (FWD)	Forward running
M9218	Inverter status (REV)	Reverse running
M9219	Inverter status (SU)	Up to frequency
M9220	Inverter status (OL)	Overload alarm
M9221	Inverter status (IPF)	Instantaneous power failure/undervoltage
M9222	Inverter status (FU)	Output frequency detection
M9223	Inverter status (ALM)	Alarm output
M9224	Inverter status (LF)	Minor fault output
M9225	Inverter status (DO0)	Status of output terminal function set in Pr. 313 is stored *1
M9226	Inverter status (DO1)	Status of output terminal function set in Pr.314 is stored *1
M9227	Inverter status (DO2)	Status of output terminal function set in Pr.315 is stored *1
M9228	Inverter status (DO3)	Status of output terminal function set in Pr.316 is stored *1
M9229	Inverter status (DO4)	Status of output terminal function set in Pr. 317 is stored *1
M9230	Inverter status (DO5)	Status of output terminal function set in Pr.318 is stored *1
M9231	Inverter status (DO6)	Status of output terminal function set in Pr.319 is stored *1
M9232	Inverter status (RA1)	Status of output terminal function set in Pr. 320 is stored *1
M9233	Inverter status (RA2)	Status of output terminal function set in Pr. 321 is stored *1
M9234	Inverter status (RA3)	Status of output terminal function set in Pr.322 is stored *1
M9255	Inverter operation status	Select the inverter status control command from M9200 to M9211 or D9148. control selection OFF: Special relay selection ON : Special register selection

*1. Even if the FR-A7AY, FR-A7AR is not mounted, Pr. 313 to Pr. 322 are accessible during PLC function operation, and status of output terminal functions are stored in each device. (virtual output terminal)

1.6.5 Special registers

The special registers are data registers with special applications and therefore data should not be written to the special registers in the program.

	Number	Name	Description	Page
	D9133	Output frequency monitor	Stores the current output frequency. 0.01 Hz units	20
	D9134	Output current monitor	Stores the current output current. 0.01A units	
	D9135	Output voltage monitor	Stores the current output voltage. 0.1 V units	
	D9136	Error history 1, 2	Store the errors that occurred in the inverter in order of occurrence.	21
	D9137	Error history 3, 4		
	D9138	Error history 5, 6		
	D9139	Error history 7, 8		
	D9140	Operation mode setting read	Stores the current operation mode.	23
	D9141	Set frequency read (RAM)	Reads and stores the set frequency (RAM).	24
$\begin{aligned} & \stackrel{\omega}{\omega} \\ & \stackrel{\omega}{0} \end{aligned}$	D9142	Set frequency read (E E^{2} PROM)	Reads and stores the set frequency (EEPROM).	24
-	D9143	Operation mode setting write	Sets a new operation mode.	26
	D9144	Set frequency write (RAM)	Sets the running frequency (RAM).	27
	D9145	Set frequency write (E^{2} PROM)	Sets the running frequency (EEPROM).	28
	D9146	Alarm definition batch clear	Write H9696 to clear the error history.	29
	D9147	Parameter clear	H9696 write: Parameter clear H9966 write: All clear H5A5A write:Parameter clear except communication parameters H55AA write:All clear except communication parameters During GX Developer communication, perform clearing by H5A5A or H55AA.	30

Device Map

	Number	Name	Description		Page
	D9159	Converter output voltage peak value	0.1 V units		-
	D9160	Input power	$0.01 \mathrm{~kW} / 0.1 \mathrm{~kW}$ units		-
	D9161	Output power	$0.01 \mathrm{~kW} / 0.1 \mathrm{~kW}$ units		-
	D9162	Input terminal status	Input terminal status details		-
	D9163	Output terminal status	Output terminal status details		-
-	D9164	Load meter	0.1\% units		-
$\frac{0}{0}$	D9165	Motor excitation current	$0.01 \mathrm{~A} / 0.1 \mathrm{~A}$ units *7		-
®	D9166	Position pulse			-
0	D9167	Cumulative energization time	1 h units		-
	D9169	-	Always 0		-
	D9170	Actual operation time	1h unit		-
	D9171	Motor load factor	0.1\% units		-
	D9172	Cumulative power	1 kW unit		-
	D9179	Torque command	0.1\% units		-
	D9180	Torque current command	0.1\% units		-
	D9181	Motor output	0.01 kW units		-
	D9182	Feedback pulse	1 unit		-
	D9197	Power saving effect	Variable according to parameters		-
	D9198	Cumulative saving power			-
	D9199	PID set point	0.1\% units		-
	D9200	PID measured value	0.1\% units		-
	D9201	PID deviation	0.1\% units		-

\begin{tabular}{|c|c|c|c|c|}
\hline \& Number \& Name \& Description \& Page

\hline \multirow{3}{*}{} \& D9205 \& Option input terminal status 1 \& The input status of the FR-A7AX is stored. All off (0) when an option is not fitted. \& -

-

\hline \& D9206 \& Option input terminal status 2 \& \& -

\hline \& D9207 \& Option output terminal status \& The output status of the FR-A7AY, FR-A7AR is stored. All off (0) when an option is not fitted. \& -

\hline
\end{tabular}

	Number	Name	Description	Page
	D9234	Second parameter changing (RAM)	When setting the calibration(bias/gain) parameters. H00: Frequency(toruque) H01: Parameter-set analog value H02: Analog value input from terminal	34, 36
	D9235	Second parameter changing (EEPROM)		
	D9236	Pulse train input sampling pulse	The number of pulses counted in count cycle is stored. (0 to 32767)	40
	D9237	Pulse train input cumulative count value L	The cumulative value of the number of sampling pulses is stored. (0 to 99999999)	
	D9238	Pulse train input cumulative count value H		
	D9239	Reset request of pulse train input count	The sampling pulses and cumulative count value are cleared. Automatically changes to " 0 " after reset. (1: count clear)	
	D9240	Count start of the pulse train input	Start counting the sampling pulses and cumulative count value. (0 : count stop, 1 : count start)	
	D9241	Parameter number (RAM)	Set the number of parameter read or written of the inverter.	34, 36
	D9242	Parameter description (RAM)	The parameter description of the inverter (RAM value) specified by D9241 is stored. Set the parameter setting for parameter write.	
	D9243	Parameter number (EEPROM)	Set the number of parameter read or written of the inverter.	
	D9244	Parameter description (EEPROM)	The parameter description of the inverter (EEPROM value) specified by D9243 is stored. Set the parameter setting for parameter write.	
	D9245	Terminal 1 input	Analog input value of terminal 1 (0.1% increments) is stored.	39
	D9246	Terminal 2 input	Analog input value of terminal 2 (0.1% increments) is stored.	
	D9247	Terminal 4 input	Analog input value of terminal 4 (0.1% increments) is stored.	
	D9248	PID set point / PID deviation	Set the PID set point or PID deviation (0.01\% units)	41
	D9249	PID measurement value	Set the PID measurement value (0.01% units)	
	D9250	PID manipulated variable	Stores the PID manipulated variable (0.01\% units)	
	D9251	Terminal FM output	When Pr. 54 is set to " 70 ", pulse train can be output from terminal FM. High speed pulse train output can be performed. (0.1% increments)	39
	D9252	Terminal AM output	When Pr. 158 is set to " 70 ", analog output can be performed from terminal AM. (0.1% increments)	
	D9253	AM0 output	Analog output can be performed from terminal AM0 and AM1 of the FR-A7AY. (0.1\% increments)	
	D9254	AM1 output		
	D9255	PID operation control	Setting 1 starts PID control.	41

1.7 Inverter Status Monitoring, Special Registers for Control

You can assign the data for grasping and changing the inverter's operation status to D9133 - D9147 and read/write them from the user sequence. (Refer to page 14 for the list.)

1.7.1 Data that can be read at all times

The following data can always be read. They are automatically refreshed every time the END instruction is executed.
(1) Operation monitor

The following data devices are always read-enabled (write-disabled) to allow you to monitor the output frequency, output current and output voltage of the inverter. Note the setting units.

Device No.	Name	Setting Unit	Data Example	Data Access Enable Condition
D9133	Output frequency monitor	0.01 Hz	Device data $6000 \rightarrow 60.00 \mathrm{~Hz}$	Always
D9134	Output current monitor	0.01 A	Device data $200 \rightarrow 2.00 \mathrm{~A}$	
D9135	Output voltage monitor	0.1 V	Device data $1000 \rightarrow 100.0 \mathrm{~V}$	

CAUTION

The frequency can be set in increments of 0.01 Hz but actual operation is performed in increments of 0.1 Hz .

(2) Error history (error codes and error definitions)

The inverter stores the error codes of the errors that occurred.
The error codes of up to eight errors are stored in the order as shown below and are always read-enabled (write-disabled).
<Error code storing method details>
b15 to b8 b7 to b0
D9136 Error history 2 Error history 1 D9137 Error history 4 Error history 3 D9138 Error history 6 Error history 5
D9139 Error history 8 Error history 7

Data	Description
H00	No alarm
H10	E.OC1
H11	E.OC2
H12	E.OC3
H20	E.OV1
H21	E.OV2
H22	E.OV3
H30	E.THT
H31	E.THM
H40	E.FIN
H50	E.IPF
H51	E.UVT
H52	E.ILF
H60	E.OLT
H70	E.BE
H80	E.GF
H81	E.LF

Data	Description
H90	E.OHT
H91	E.PTC
HA0	E.OPT
HA3	E.OP3
HB0	E.PE
HB1	E.PUE
HB2	E.RET
HB3	E.PE2
HC0	E.CPU
HC1	E.CTE
HC2	E.P24
HC4	E.CDO
HC5	E.IOH
HC6	E.SER
HC7	E.AIE
HC8	E.USB
HD0	E.OS
HD1	E.OSD

Data	Description
HD2	E.ECT
HD3	E.OD
HD5	E.MB1
HD6	E.MB2
HD7	E.MB3
HD8	E.MB4
HD9	E.MB5
HDA	E.MB6
HDB	E.MB7
HDC	E.EP
HF1	E.1
HF2	E.2
HF3	E.3
HF6	E.6
HF7	E. 7
HFB	E.11
HFD	E.13

Refer to the Inverter instruction manual (applied) for alarm definition details.
<Alarm definition read program example>
The following program reads the latest alarm definition of the inverter to DO.

<Regarding the error No. and details of the self-diagnostic errors>

During execution of a sequence program, any of the following error No. is stored into D9008 due to an operation error.
At occurrence of a self-diagnostic error, the P.RUN indication (LED) flickers.

Error No.	Error Name	Details
10	INSTRCT CODE ERR.	There is an instruction code that cannot be decoded. Unusable device is specified.
11	PARAMETER ERR	Main program capacity setting is over 1k step. Unusable function is set.
22	WDT ERR	Scan time is longer than the time that can be monitored by the watchdog timer.
24	END NOT EXECUTE	END instruction was not executed.

CAUTION

1. For the LD, AND, OR, logical comparison operation and OUT instructions, device checks are always made. For the other instructions (SET, RST, MOV, etc.), however, device checks are made when the execution condition holds.
2. Operation at error stop The outputs (Y) are cleared.
The other devices hold the states prior to an error stop.
When you want to clear them, power off or reset (short RES-SD (0.1s), then open) the inverter.

1.7.2 Data that are read by controlling (OFF to ON) the read command

You can read the operation mode and set frequency of the inverter.

Device No.	Name	Read Command	Write Completion	Data Access Enable Condition
D9140	Operation mode setting read	Y20	X20	Always
D9141	Set frequency read (RAM)	Y21	X21	
D9142	Set frequency read (EEPROM)	Y22	X22	

Data are stored into the above data devices as soon as the read completion turns from off to on after the read command has turned from off to on.
If the read command remains on, data is not refreshed. (Data is not updated.)
Turn the device off once, then on again to refresh data.

Data read timing chart

(1) Operation mode setting read (D9140)

Data Setting	Operation Mode
H0000	NET operation mode
H0001	External operation mode
H0002	PU operation mode

REMARKS

When the Pr. 79 "operation mode selection" setting is other than " 0 ", the operation mode is as set. However, when Pr. 79 = "3" or "4", the operation mode is "H0002" (PU operation mode).
<Operation mode setting read program example>
The following program reads the operation mode data to D0.

(2) Set frequency (RAM) (D9141)

The frequency set to the RAM is read to D9141. The unit is 0.01 Hz .
(For example, 6000 indicates 60.00 Hz .)
When the speed is set, the speed is either $1 \mathrm{r} / \mathrm{min}$ or $0.1 \mathrm{r} / \mathrm{min}$.
<Set frequency (RAM) read program example>
The following program reads the set frequency (RAM) to D0.

REMARKS

The read frequency is not the command value of the external signal.
(3) Set frequency (EEPROM) (D9142)

The frequency set to the EEPROM is read to D9142. The unit is 0.01 Hz .
(For example, 6000 indicates 60.00 Hz .)
When the speed is set, the speed is either $1 \mathrm{r} / \mathrm{min}$ or $0.1 \mathrm{r} / \mathrm{min}$.

<Set frequency read (EEPROM) program example>

The following program reads the set frequency ($E^{2} P R O M$) to D0.

REMARKS

The read frequency is not the command value of the external signal.

1.7.3 How to write data by controlling (OFF to ON) the write command

You can write the operation mode and set frequency to the inverter, batch-clear the alarm definitions, and clear all parameters.

Device No.	Name	Write Command	Write Completion	Data Access Enable Condition
D9143	Operation mode setting write	Y23	X23	Pr.79 =0, 2
D9144	Set frequency write (RAM)	Y24	X24	PU operation mode
(PU LED on) or CC-				
D9145	Set frequency write (E 2PROM)	Y25	X25	Link operation mode (PU and EXT LEDs flicker slowly)
D9146	Alarm definition batch clear	Y26	X26	Always
D9147	All parameter clear	Y27	X27	As set in Pr. 77

The above data are written as soon as the write completion turns on after the write command has turned from off to on.
(Alarm definition batch clear (D9146) and all parameter clear (D9147) turn on at completion of clear.)
To write the data again, the write command must be turned off once, then on again.

Data write timing chart

(1) Operation mode setting write (D9143)

Data are as follows:

Data Setting	Operation Mode
H0000	NET operation mode
H0001	External operation mode
H0002	PU operation mode

The operation mode switching method is as shown below when the Pr. 79 Operation mode selection value is " 0 ".

When Pr. $79=2$, switching is performed as shown below.

REMARKS

When Pr. 79 is other than 0 , the mode is fixed.
There are no restrictions on operation mode switching.
On normal completion of operation mode setting, the write completion signal (X23) turns on, and at the same time, 0 is set to D9150.
If the value written is other than H0OOO to H0OO2 or write is performed during inverter operation, HFFFF is set to D9150 as soon as the write completion signal (X23) turns on, resulting in abnormal completion.
If abnormal completion occurs, the operation mode is not changed.

<Operation mode setting write program example>

The following program changes the operation mode to the NET mode.

(2) Set frequency (RAM) (D9144)

The D9144 data is written to the RAM as a set frequency. The unit is 0.01 Hz . (For example, 6000 indicates 60.00 Hz .)
When the speed is set, the speed is either $1 \mathrm{r} / \mathrm{min}$ or $0.1 \mathrm{r} / \mathrm{min}$.
The range where the frequency can be set is 0 to $12000(0$ to 120.00 Hz).
When the frequency setting is written normally, the write completion signal (X24) turns on, and at the same time, 0 is set to D9150.
If any value outside the range is written, HFFFF is set to D9150 as soon as the write completion signal (X24) turns on, resulting in abnormal completion. If abnormal completion occurs, the set frequency is not changed.

POINT
 - The frequency can be set in the PU operation mode and NET operation mode. Refer to the inverter instruction manual (applied).

<Set frequency write (RAM) program example>

The following program changes the set frequency (RAM) to 30 Hz .

(3) Set frequency (EEPROM) (D9145)

The D9145 data is written to the EEPROM as a set frequency. The unit is 0.01 Hz . (For example, 6000 indicates 60.00 Hz .)
When the speed is set, the speed is either $1 \mathrm{r} / \mathrm{min}$ or $0.1 \mathrm{r} / \mathrm{min}$.
The range where the frequency can be set is 0 to $12000(0$ to 120.00 Hz).
When the frequency setting is written normally, the write completion signal (X25) turns on, and at the same time, 0 is set to D9150.
If any value outside the range is written, HFFFF is set to D9150 as soon as the write completion signal (X25) turns on, resulting in abnormal completion. If abnormal completion occurs, the set frequency is not changed.

POINT

- Setting is enabled in the PU operation mode and NET operation mode. (Refer to the Inverter instruction manual (applied).)
<Set frequency write (EEPROM) program example>
The following program changes the set frequency (EEPROM) to 10 Hz .

CAUTION

When rewriting the set frequency frequently, use device D9144 "set frequency (RAM)". There are restrictions on the number of write times of the EEPROM. (Approximately 100,000 times)

(4) Alarm definition batch clear (D9146)

Writing H9696 to D9146 batch-clears the alarm definitions.
At completion of clear, the write completion signal (X26) turns on, and at the same time, 0 is set to D9150. If any value outside the setting range is written or write is performed during inverter operation, HFFFF is set to D9150 as soon as the write completion signal (X26) turns on, resulting in abnormal completion. If abnormal completion occurs, the alarm definitions are not cleared.
<Alarm definition batch clear program example>
The following program batch-clears the alarm history.

(5) Parameter clear (D9147)

Writing H9696 or H9966 to D9147 clears all parameters. Writing H5A5A or H55AA to D9147 clears the parameters other than the communication parameters (Refer to the Inverter instruction manual (applied)).

Device No.	Setting	Description	Details
D9147	H9696	All parameter clear	Terminal functions are not cleared.
	H9966		Terminal functions are cleared.
	H5A5A	Parameters other than communication parameters are cleared.	Terminal functions are not cleared.
	H55AA	Terminal functions are cleared.	

At completion of clear, the write completion signal (X27) turns on, and at the same time, 0 is set to D9150. If any value outside the setting range is written or write is performed during inverter operation, HFFFF is set to D9150 as soon as the write completion signal (X27) turns on, resulting in abnormal completion. If abnormal completion occurs, the parameters are not cleared.

REMARKS

Check the terminal function parameters and communication-related parameters in the parameter list (Refer to the Inverter instruction manual (applied)).

POINT

Setting is enabled in the PU operation mode and NET operation mode. Refer to the inverter instruction manual (applied).

<All parameter clear program example>

The following program clears all parameters.

Related device

Device D9150: Parameter access error code (refer to page 33)

1.7.4 Inverter operation status control

Device No.	Name	Data Access Enable Condition
D9148	Inverter operation status control	Always Note that this function is enabled in the external/NET operation mode.
D9149	Inverter operation status control enable/disable	(Not enabled in the PU (Neration mode.)

(1) Inverter operation status control (D9148)

Device for inverter operation status control. The operation of the inverter can be controlled by turning on/off $(1,0)$ bits b0 to b11 of D9148.
All bits are factory-set to " 0 ".
Example: When 5 is set to D9148, bits b0 and b2 are 1 (ON), and STF and RH therefore turn on to give a high-speed forward rotation command.

CAUTION

As in the external input terminals, functions can be assigned to the bits of D9148 using Pr. 178 to Pr.189. However, no function can be assigned to SQ (sequence RUN setting: 50).
(2) Inverter operation status control enable/disable setting (D9149)

You can enable or disable D9148 "inverter operation status control". The controls of the corresponding bits of D9148 are enabled by turning on/off $(1,0)$ bits b0 to b11 of D9149. All bits are factory-set to "0".
Example: When H1F is set to D9149, bits b0 to b11 are 1 (ON), the external terminal inputs are therefore all disabled, and operation control using the inverter operation status control (D9148) can be performed.

CAUTION

-When D9148 "inverter operation status control" is enabled using D9149, the control performed by external terminal inputs and the control performed by CC-Link remote inputs are disabled for the enabled bits. (Same as when "No functions" are set to Pr. 178 to Pr.189.)
-When the terminal is made valid from PLC function, control from external terminal is made invalid.
<Operation command setting program example>
The following program example runs the inverter at high speed in forward rotation direction.

1.7.5 Inverter parameter access error (D9150)

Device No.	Name	Data Access Enable Condition
D9150	Inverter parameter access error	Always

If any value outside the setting range is written during parameter write, set frequency write, parameter clear, etc. from the sequence program of the inverter, or if write is performed when write is disabled, a write alarm occurs and the corresponding alarm code is stored into D9150.

<Parameter>

The parameter No. + H8000 is stored into D9150.
Example: If an error occurs during write of Pr. 0 Torque boost, $\mathrm{H} 8000(\mathrm{HO}+\mathrm{H} 8000)$ is stored into D9150.
If an error occurs during write of Pr. 10 DC injection brake operation frequency, H800A is stored into D9150.
<Operation mode, set frequency, alarm definition batch clear, all parameter clear>
HFFFF is stored into D9150. (Normal 0)
POINT
If write is completed normally after error occurrence, D9150 is not cleared (D9150 data is held at error occurrence). When using D9150 to stop operation, etc., the user must clear it.

1.7.6 Inverter status (D9151)

Device No.	Name	Data Access Enable Condition
D9151	Inverter status	Always

The running status and operating status of the inverter are stored.
The corresponding bits are set according to the inverter status.

1.8 Inverter Parameter Read/Write Method

1.8.1 Reading the inverter parameters

Device No.	Name	Command	Completion	Data Access Enable Condition (Operation mode)
D9241	Parameter number (RAM)	Y28	X28	Always
D9242	Parameter description (RAM)			
D9234	Second parameter changing (RAM)			
D9243	Parameter number (EEPROM)	Y2A	X2A	PU, NET operation mode (as in Pr.77)
D9244	Parameter description (EEPROM)			
D9235	Second parameter changing (EEPROM			

When reading the parameter, the parameter description is stored to D9242(D9244) by storing the parameter number to D9241(D9243) and turning Y28 (Y2A) on. When reading is completed, X28 (X2A) turns ON to notify the completion. (The device number within parentheses is used to read the parameter setting value from EEPROM.)
When reading the calibration parameter (Pr. 902 to $\operatorname{Pr} .939$), set the following value to D9234 (D9235) to read each calibration parameter value.
0 : Setting value (Frequency/Toruque)
1: Parameter-set analog value
2: Analog value input from terminal
When access error occurs such as "parameter does not exist", value obtained by adding the parameter number and 8000 H is stored to D9150. (Refer to page 33)

Inverter parameter data read timing chart

1.8.2 Writing the inverter parameters

Device No.	Name	Command	Completion	Data Access Enable Condition (Operation mode)
D9241	Parameter number (RAM)	Y29	X29	Always
D9242	Parameter description (RAM)			
D9234	Second parameter changing (RAM)			
D9243	Parameter number (EEPROM)	Y2B	X2B	PU, NET operation mode (as in Pr.77)
D9244	Parameter description (EEPROM)			
D9235	Second parameter changing (EEPROM			

Parameter writing is performed when the parameter number is stored to D9241 (D9243) and parameter writing value to D9242 (D9244), and turns ON the Y29 (Y2B). When writing is completed, X29 (X2B) turns ON to notify the completion. (The device number within parentheses is used to write the parameter setting value to EEPROM.) When writing the calibration parameter (Pr. 902 to Pr. 939), set the following value to D9234 (D9235) to write each calibration parameter value.
0 : Setting value (Frequency/Toruque)
1: Parameter-set analog value
2: Analog value input from terminal
As soon as the inverter parameter write completion (X29 (RAM) or X2B (EEPROM)) turns on, 0 is set to D9150 on normal completion.
If an error occurs during access to the parameters, e.g. if any value outside the setting range is written or write is performed during inverter operation, the value of parameter No. + H8000 is set to D9150 as soon as the write completion signal (X29 (RAM) or X2B (EEPROM)) turns on, resulting in abnormal completion. If abnormal completion occurs, the parameters are not written. (For example, if an error occurs in the torque boost, H8000 is written to D9150.)
For whether inverter parameter write can be performed or not, refer to Pr. 77 Parameter write selection.

Inverter parameter write must be performed in the PU operation mode or NET operation mode. (Refer to the inverter instruction manual (applied).)

Inverter parameter data write timing chart

1.9 User Area Read/Write Method

Inverter parameters Pr. 506 to Pr. 515 can be used as user parameters.
Since this parameter area and the devices used with the PLC function, D110 to D119, are accessible to each other, the values set in Pr. 506 to Pr. 515 can be used in a sequence program. The result of operation performed in the sequence program can also be monitored using Pr. 506 to Pr. 515.

Device No.	Inverter Parameter No.	Name	Initial Value	Setting Range	Minimum Setting Unit	Data Access
D110 to D119	506 to 515	User parameters	0	0 to 65535	1	Always enabled

POINT

Example of using the user parameter area

When the timing is to be changed for machine adjustment using D110 that stores the timer setting, setting Pr. 506 without modifying the program enters the set data into D110, enabling adjustment.

1.9.1 User parameter read/write method

User parameter (Pr. 506 to Pr.515) and device (D110 to D119) data can be read/written freely. Data transfer between Pr. 506 to Pr. 515 and D110 to D119 is executed automatically.

1) User parameter write processing

When values are written to Pr. 506 to Pr. 515 using the FR-PU04 or computer link communication, they are written to the parameter storing RAM area and EEPROM area, and further to D110 to D119 simultaneously.
2) User parameter read processing

When values are written to D110 to D119 from the PLC function side, they are written to the parameter storing RAM area (Pr. 506 to Pr.515) and read using the FR-PU04/FR-PU07 or communication(RS-485 or communication option). (Since data are not written to the EEPROM, making power-on reset returns the data to the original values.)
3) Processing performed at inverter reset or power restoration

When the inverter is reset, the Pr. 506 to Pr. 515 values stored in the EEPROM are transferred to the RAM area and D110 to D119.

1.10 Analog I/O function

1.10.1 Analog input

Analog input value of termianl 1, 2, 4 can be read from D9245 to D9247.

Device No.	Terminal Name	Setting Unit	Data Access Enable Condition
D9245	Terminal 1 input	0.1%	Always
D9246	Terminal 2 input	0.1%	
D9247	Terminal 4 input	0.1%	

Actual read processing is performed at the END processing of the sequence.

REMARKS

Full-scale value of analog input is determined by the setting of Pr. 73 Analog input selection, Pr. 267 Terminal 4 input selection. Refer to the inverter instruction manual (applied).

1.10.2 Analog output

Analog output from each terminal can be performed by setting value on D9251 to D9254.
Output from PLC function can be performed by setting "7" in output signal selection parameters of each terminal (terminal FM: Pr. 54, terminal AM: Pr. 158, terminal AMO, AM1: Pr. 306, Pr. 310).

Device No.	Terminal Name	Setting Unit	Data Access Enable Condition
D9251	Terminal FM	0.1%	
D9252	Terminal AM	0.1%	
D9253	Terminal AM0 (FR-A7AY)	0.1%	
D9254	Terminal AM1 (FR-A7AY)	0.1%	

Actual read processing is performed at the END processing of the sequence.

REMARKS

High speed pulse train output (Pr. 291) from terminal FM can be performed. (Refer to the inverter instruction manual (applied).)

1.11 Paluse train input function

Pulse train (the number of sampling pulses) from terminal JOG is stored to D9236.
When the sampling pulses overflow, make adjustment with the setting of Pr. 416 and Pr. 417.

The number of sampling pulses
$=$ the number of input pulses per count cycle x Pre-scale setting value (Pr.417) x increments scaling factor (Pr. 416)

Parameter	Name	Initial Value	Setting Range	Description
291	Pulse train input selection	0	0, 10,20	Terminal JOG
			1,11,21,100	Pulse train input
416	Pre-scale function selection	0	0 to 5	```Pre-scale function selection (increments scaling factor) 0 : No function 1: \(\times 1\) 2: \(\times 0.1\) 3: \(\times 0.01\) 4: \(\times 0.001\) 5: \(\times 0.0001\)```
417	Pre-scale setting value	1	0 to 32767	Set the pre-scale value to calcute the number of sampling pulse when inputting the pulse train.

Device No.	Name	Setting Range	Description
D9236	Pulse train input sampling pulse	0 to 32767	The number of pulses counted in count cycle is stored.
D9237	Pulse train input cumulative count value L	0 to	The cumulative value of the number of sampling pulses is stored.
D9238	Pulse train input cumulative count value H	99999999	0
D9239	Reset request of pulse train input count	Not clear	
D9240	Count start of the pulse train input	0	Count clear
	1	Stop counting	

1.12 PID control

With PLC function, PID set point/PID deviation value, PID process value can be set by setting Pr. 128.
Performing the PID operation using the value of D9248 and D9249 as PID set point/ PID deviation value, PID process value, manipulated variable is stored to D9250.
When performing PID control with PLC function, "1" is set on D9255 instead of X14 signal.

Parameter	Name	Initial Value	Setting Range	Description	
128	PID action selection	10	10	PID reverse action	Deviation value signal input (terminal 1)
			11	PID forward action	
			20	PID reverse action	Measured value
			21	PID forward action	(terminal 4) Set point (terminal 2 or Pr. 133)
			50	PID reverse action	Deviation value
			51	PID forward action	signal input (LONWORKS, CC-Link communication)
			60	PID reverse action	Measured value,
			61	PID forward action	set point input (LONWORKS, CC-Link communication)
			70	PID reverse action	Deviation value
			71	PID forward action	signal input (PLC function)
			80	PID reverse action	Measured value,
			81	PID forward action	Set point (PLC function)
			90	PID reverse action	Deviation value
			91	PID forward action	signal input (PLC function)
			100	PID reverse action	Measured value,
			101	PID forward action	Set point input (PLC function)

Device No.	Name	Setting Range	Description
D9248	PID set point / PID deviation	-100 to 100%	Set the PID set point or PID deviation (0.01\% units)
D9249	PID measurement value	0 to 100%	Set the PID measurement value (0.01\% units)
D9250	PID manipulated variable	-100 to 100%	Stores the PID manipulated variable (0.01\% units)
D9255	PID operation control	0	PID operation stop
		1	PID operation start

CAUTION

- The PID set point/PID deviation value of D9248 automatically switches over by Pr. 128 setting.
- If Pr. 128 is set to deviation input (70, 71, 90, 91), setting value of PID process value (D9249) is made invalid.
- Operates in the maximum value (the minimum value) of the setting range if the value outside the range is set.

1.13 Inverter Operation Lock Mode Setting

You can disable a sequence program from being executed until the sequence program execution key is set to RUN (SQ signal is turned on).

POINT

When you want to perform only inverter operation without using the PLC function, set "0" (inverter start signal enable) in this parameter.

Parameter	Name	initial Setting	Setting Range	Minimum Setting Unit
415	Inverter operation lock mode setting	0	0,1	1

Setting	Description
0	The inverter start signal is made valid regardless of the sequence program execution key.
1	The inverter start signal is made valid only when the sequence program execution key is set to RUN (SQ signal is turned on). When the sequence program execution key is in the STOP position (SQ shignal is off), , the inverter does not start if the inverter start signal STF or STR is turned on. (If the key is switched from RUN to STOP during inverter operation, the inverter is decelerated to a stop.)

CAUTION

\bullet Independently of the $\operatorname{Pr} .77$ setting, this parameter value cannot be rewritten during inverter operation.
-During automatic operation performed using D9148(or M9200 to M9211) in the sequence program, the inverter comes to a stop when the sequence is set to a STOP status with "1" set in Pr.415. However, when " 0 " is set in Pr.415, the device data are held and the operation status does not change if the sequence is set to a STOP status. (Inverter operation is continued.)

REMARKS

This parameter setting is also valid for the start signal from the operation panel or FR-PU04/FR-PU07.

MEMO

2. CC-Link COMMUNICATION

2.1 System Configuration 46
2.2 CC-Link Parameters 49
2.3 CC-Link I/O Specifications 50
2.4 Buffer Memory 57
Chapter 1
Chapter 2
Chapter 3
Chapter 4

2.1 System Configuration

2.1.1 System configuration example

(1) PLC side

Mount the "Control \& Communication Link system master/local module" on the main base unit or extension base unit of the PLC CPU that will act as the master station.
(2) Connect the PLC CC-Link module master station and inverters by CC-Link dedicated cables.

REMARKS

Refer to the FR-A7NC indtruction manual for the CC-Link communication wiring and CC-Link cables.

2.1.2 Function block diagram

How I/O data are transferred to/from the inverter in CC-Link will be described using function blocks.
(1) Between the master station and inverter in the CC-Link system, link refresh is always made at 3.5 to 18 ms (512 points).
(2) I/O refresh and master station's sequence program are executed asynchronously.
(3) Data read from the inverter are read from the buffer memory of the CC-Link system master/local module using the FROM instruction.
(4) Data to be written to the inverter are written to the buffer memory of the CC-Link system master/local module using the TO instruction.

1) I / O signals assigned to the CC-Link system master/local module. These signals are used to make communication between the PLC CPU and CC-Link system master/local module.
2) Input data from the inverter can be read, and output data from the inverter can be written. Buffer memory read/write is performed using the FROM/TO instruction of the sequence program. Refer to page 57 for details of the buffer memory.
3) PLC link start is commanded from the sequence program. After PLC link has started, link refresh is always made asynchronously with the sequence program execution.
4) I/O data are transferred between the CC-Link system master/local module and inverter CPU via the sequence program.
5) I/O data are transferred between the inverter CPU and sequence program. (5) indicates the operation performed when CC-Link is not used, and is irrelevant to 1) to 4).)

REMARKS

Programs cannot be read/written via CC-Link communication.

POINT
The difference between CC-Link communication (Pr. $544=100,112,114,118)$ with PLC function and normal CC-Link communication (Pr. $544=1,2,12,14,18$) is indicated below.

2.2 CC-Link Parameters

2.2.1 CC-Link Extended Setting (Pr. 544)

Remote register function can be extended.

Parameter Number	Name	Initial Value	Setting Range	CC-Link Ver.	Description
544	CC-Link extended setting	0	0	1	Occupies one station (FR-A5NC compatible) *1
			1		Occupies one station
			12 *2	2	Occupies one station double
			14 *2		Occupies one station quadrople
			18 *2		Occupies one station octuple
			100	1	Occupies one station (PLC function)
			112 *2	2	Occupies one station double (PLC function)
			114 *2		Occupies one station quadrople (PLC function)
			118 *2		Occupies one station octuple (PLC function)

*1 The program used for conventional series inverter (FR-A5NC) can be used.
*2 When using double, quadruple and octuple settings of the CC-Link Ver.2, station data of the master station must be set to double, quadruple and octuple also.
(If the master station is CC-Link Ver. 1 compatible station, the above setting can not be made.)

REMARKS

The setting change is reflected after an inverter reset.

2.3 CC-Link I/O Specifications

2.3.1 I/O signal when CC-Link Ver. 1 one station is occupied (Pr. 544 = 100)

The device points usable in CC-Link communication are 32 input (RX) points (16 points are available for PLC function), 32 output (RY) points (16 points are available for PLC function), 4 remote register (RWr) points and 4 remote register (RWw) points.

(1) Remote I/O

	Remote output device No.	Signal
X30	RYn0	Forward rotation command
X31	RYn1	Reverse rotation command
X32	RYn2	High-speed operation command (terminal RH function) *1
X33	RYn3	Middle-speed operation command (terminal RM function) *1
X34	RYn4	$\begin{aligned} & \text { Low-speed operation } \\ & \text { command } \\ & \text { (terminal RL function) *1 } \end{aligned}$
X35	RYn5	Jog operation command (terminal JOG function) *1
X36	RYn6	Second function selection (terminal RT function) *1
X37	RYn7	Current input selection (terminal AU function) *1
X38	RYn8	Selection of automatic restart after instantaneous power failure (terminal CS function) *1
X39	RYn9	Output stop
X3A	RYnA	Start self-holding selection (terminal STOP function) *1
X3B	RYnB	Reset (terminal RES function) *1
X3C	RYnC	
X3D	RYnD	General-purpose remote input
X3E	RYnE	available in PLC function
X3F	RYnF	
-	$\begin{gathered} \mathrm{RY}(\mathrm{n}+1) 0 \\ \mathrm{to} \\ \mathrm{RY}(\mathrm{n}+1) 7 \end{gathered}$	Reserved
-	$\mathrm{RY}(\mathrm{n}+1) 8$	Not used (initial data process completion flag)
-	$\mathrm{RY}(\mathrm{n}+1) 9$	Not used (initial data process request flag)
-	$\mathrm{RY}(\mathrm{n}+1) \mathrm{A}$	Error reset request flag

	Remote input device No.	Signal
X30	RXn0	Forward running
X31	RXn1	Reverse running
X32	RXn2	Running (terminal RUN function) *2
X33	RXn3	Up to frequency (terminal SU function) *2
X34	RXn4	Overload alarm (terminal OL function) *2
X35	RXn5	Instantaneous power failure (terminal IPF function) *2
X36	RXn6	Frequency detection (terminal FU function) *2
X37	RXn7	$\underset{\text { Error }}{\text { (terminal ABC1 function) *2 }}$
X38	RXn8	- (terminal ABC2 function) *2
X39	RXn9	Pr. 313 assignment function (DO0)
X3A	RXnA	Pr. 314 assignment function (DO1)
X3B	RXnB	Pr. 315 assignment function (DO2)
X3C	RXnC	
X3D	RXnD	General-purpose remote input
X3E	RXnE	available in PLC function
X3F	RXnF	
-	$\begin{array}{\|c\|} \hline R X(n+1) 0 \\ \text { to } \\ R X(n+1) 7 \\ \hline \end{array}$	Reserved
-	$\mathrm{RX}(\mathrm{n}+1) 8$	Not used (initial data process request flag)
-	$\mathrm{RX}(\mathrm{n}+1) 9$	Not used (initial data process completion flag)
-	$\mathrm{RX}(\mathrm{n}+1) \mathrm{A}$	Error status flag

PLC function device No.	Remote output device No.	Signal	PLC function device No.	Remote input device No.	Signal
	$\begin{gathered} R Y(n+1) B \\ \text { to } \\ R Y(n+1) F \end{gathered}$	Reserved		$\mathrm{RX}(\mathrm{n}+1) \mathrm{B}$	Remote station Ready
-			-	$\begin{gathered} \mathrm{RX}(\mathrm{n}+1) \mathrm{C} \\ \text { to } \\ \mathrm{RX}(\mathrm{n}+1) \mathrm{F} \end{gathered}$	Reserved

(" n " indicates a value determined according to the station number setting.)
*1 Signal names are initial values. Using Pr. 180 to Pr. 186, Pr. 188, and Pr .189, you can change input signal functions.
Signals of the RYn0, RYn1, and RYn9 can not be changed. Even when changed using Pr. 178, Pr. 179, and Pr. 187, the settings are invalid.
Refer to the inverter manual (applied) for details of Pr. 178 to Pr. 189.
*2 Signal names are initial values. Using Pr. 190 to $\operatorname{Pr} .196$, you can change output signal functions.
Refer to the inverter manual (applied) for details of Pr. 190 to Pr. 196.
(2) Remote resister

PLC function device No.	Address	Description	PLC function device No.	Address	iption
D9062	RWwn	Registers designed to read data received from the master station	D9078	RWrn	Registers designed to write data to be sent to the master station.
D9063	RWwn+1		D9079	RWrn+1	
D9064	RWwn+2		D9080	RWrn+2	
D9065	RWwn+3		D9081	RWrn+3	

(" n " indicates a value determined according to the station number setting.)

(3) Data I/O image

REMARKS

Use the remote registers freely since they are all user areas.

2.3.2 I/O signal when CC-Link Ver. 2 double setting is selected (Pr. 544 = 112)

The device points usable in CC-Link communication are 32 input (RX) points (12 points are available for PLC function), 32 output (RY) points (12 points are available for PLC function), 4 remote register (RWr) points and 4 remote register (RWw) points.

(1) Remote I/O

$\begin{array}{\|c\|} \hline \text { PLC } \\ \text { function } \\ \text { device } \\ \text { No. } \end{array}$	Remote output device No.	Signal		Remote input device No.	Signal
X30	RYn0	Forward rotation command	X30	RXn0	Forward running
X31	RYn1	Reverse rotation command	X31	RXn1	Reverse running
X32	RYn2	High-speed operation command (terminal RH function) *1	X32	RXn2	Running (terminal RUN function) *2
X33	RYn3	Middle-speed operation command (terminal RM function) *1	X33	RXn3	Up to frequency (terminal SU function) *2
X34	RYn4	Low-speed operation command (terminal RL function) *1	X34	RXn4	Overload alarm (terminal OL function) *2
X35	RYn5	Jog operation command (terminal JOG function) *1	X35	RXn5	Instantaneous power failure (terminal IPF function) *2
X36	RYn6	Second function selection (terminal RT function) *1	X36	RXn6	Frequency detection (terminal FU function) *2
X37	RYn7	Current input selection (terminal AU function) *1	X37	RXn7	$\begin{aligned} & \text { Error } \\ & \text { (terminal ABC1 function) *2 } \end{aligned}$
X38	RYn8	Selection of automatic restart after instantaneous power failure (terminal CS function) *1	X38	RXn8	- (terminal ABC2 function) *2
X39	RYn9	Output stop	X39	RXn9	Pr. 313 assignment function (DO0)
X3A	RYnA	Start self-holding selection (terminal STOP function) *1	X3A	RXnA	Pr. 314 assignment function (DO1)
X3B	RYnB	Reset (terminal RES function) *1	X3B	RXnB	Pr. 315 assignment function (DO2)
-	RYnC	Monitor command	-	RXnC	Monitoring
-	RYnD	Frequency setting command (RAM)	-	RXnD	Frequency setting completion (RAM)
-	RYnE	Frequency setting command (RAM, EEPROM)	-	RXnE	Frequency setting completion (RAM, EEPROM)
-	RYnF	Instruction code execution request	-	RXnF	Instruction code execution completion
-	$\begin{array}{\|c\|} \hline \mathrm{RY}(\mathrm{n}+1) 0 \\ \mathrm{to} \\ \mathrm{RY}(\mathrm{n}+1) 7 \\ \hline \end{array}$	Reserved	-	$\begin{array}{\|c\|} \hline R X(n+1) 0 \\ t o \\ R X(n+1) 7 \\ \hline \end{array}$	Reserved
-	$\mathrm{RY}(\mathrm{n}+1) 8$	Not used (initial data process completion flag)	-	$R X(n+1) 8$	Not used (initial data process request flag)
-	$\mathrm{RY}(\mathrm{n}+1) 9$	Not used (initial data process request flag)	-	$\mathrm{RX}(\mathrm{n}+1) 9$	Not used (initial data process completion flag)
-	RY($\mathrm{n}+1) \mathrm{A}$	Error reset request flag	-	RX($n+1) \mathrm{A}$	Error status flag
				$\mathrm{RX}(\mathrm{n}+1) \mathrm{B}$	Remote station Ready
-	$\begin{gathered} \text { to } \\ \mathrm{RY}(\mathrm{n}+1) \mathrm{F} \end{gathered}$	Reserved	-	$\begin{array}{\|c\|} \hline R X(n+1) C \\ \text { to } \\ R X(n+1) F \\ \hline \end{array}$	Reserved

(" n " indicates a value determined according to the station number setting.)
*1 Signal names are initial values. Using Pr. 180 to Pr. 186, Pr. 188, and Pr .189, you can change input signal functions.
Signals of the RYn0, RYn1, and RYn9 can not be changed. Even when changed using Pr. 178, Pr. 179, and Pr. 187, the settings are invalid.
Refer to the inverter manual (applied) for details of Pr. 178 to Pr. 189.
*2 Signal names are initial values. Using $\operatorname{Pr} .190$ to $\operatorname{Pr} .196$, you can change output signal functions.
Refer to the inverter manual (applied) for details of Pr. 190 to Pr. 196.

(2) Remote resister

PLCfunction device No.	Address	Description	
		Lower 8 Bits	
-	RWwn	Monitor code 2	Monitor code 1
-	RWwn+1	Set frequency (0.01Hz increments)	
-	RWwn+2	Link parameter expansion setting	Instruction code
D9062	RWwn+4	Write data	
R9063	RWwn+5	Registers designed to read data received	
D9064	RWwn+6	from the master	
D9065	RWwn+7	station	

PLCfunction device No.	Address	Description	
-	RWrn	First monitor value	
-	RWrn+1	Second monitor value	
-	RWrn+2	Reply code2	Reply code1
-	RWrn+3	Read data	
D9078	RWrn+4	Registers designed to write data to be sent to the master station.	
D9079	RWrn+5		
D9080	RWrn+6		
D9081	RWrn+7		

(" n " indicates a value determined according to the station number setting.)

2.3.3 I/O signal when CC-Link Ver. 2 quadruple setting is selected (Pr. 544 = 114)

The device points usable in CC-Link communication are 32 input (RX) points (12 points are available for PLC function), 32 output (RY) points (12 points are available for PLC function), 8 remote register (RWr) points and 8 remote register (RWw) points.

(1) Remote I/O

Same as when Pr. $544=112$ (

(2) Remote resister

PLCfunction device No.	Address	Description		PLC function device No.	Address	Description	
		Upper 8 Bits	Lower 8 Bits				
-	RWwn	Monitor code 2	Monitor code 1	-	RWrn	First m	or value
-	RWwn+1	Set frequency $(0.01 \mathrm{~Hz}$ increments)		-	RWrn+1	Second monitor value	
-	RWwn+2	Link parameter expansion setting	Instruction code	-	RWrn+2	Reply code2	Reply code1
-	RWwn+3	Write data		-	RWrn+3	Read data	
-	RWwn+4	Monitor code 3		-	RWrn+4	Third monitor value	
-	RWwn+5	Monitor code 4		-	RWrn+5	Fourth monitor value	
-	RWwn+6	Monitor code 5		-	RWrn+6	Fifth monitor value	
-	RWwn+7	Monitor code 6		-	RWrn+7	Sixth monitor value	
D9062	RWwn+8	Registers designed to read data received from the master station		D9078	RWrn+8	Registers designed to write data to be sent to the master station.	
D9063	RWwn+9			D9079	RWrn+9		
D9064	RWwn+A			D9080	RWrn+A		
D9065	RWwn+B			D9081	RWrn+B		
D9066	RWwn+C			D9082	RWrn+C		
D9067	RWwn+D			D9083	RWrn+D		
D9068	RWwn+E			D9084	RWrn+E		
D9069	RWwn+F			D9085	RWrn+F		

(" n " indicates a value determined according to the station number setting.)

2.3.4 I/O signal when CC-Link Ver. 2 octuple setting is selected (Pr. 544 = 118)

The device points usable in CC-Link communication are 32 input (RX) points (12 points are available for PLC function), 32 output (RY) points (12 points are available for PLC function), 16 remote register (RWr) points and 16 remote register (RWw) points.

(1) Remote I/O

Same as when Pr. $544=112$ (Refer to page 52)

(2) Remote resister

PLC function device No.	Address	Description		PLC function device No.	Address	Description	
		Upper 8 Bits	Lower 8 Bits				
-	RWwn	Monitor code 2	Monitor code 1	-	RWrn	First monitor value	
-	RWwn+1	Set frequency(0.01 Hz increments)		-	RWrn+1	Second monitor value	
-	RWwn+2	Link parameter expansion setting	Instruction code	-	RWrn+2	Reply code2	Reply code1
-	RWwn+3	Write data		-	RWrn+3	Read data	
-	RWwn+4	Monitor code 3		-	RWrn+4	Third monitor value	
-	RWwn+5	Monitor code 4		-	RWrn+5	Fourth monitor value	
-	RWwn+6	Monitor code 5		-	RWrn+6	Fifth monitor value	
-	RWwn+7	Monitor code 6		-	RWrn+7	Sixth monitor value	
-	RWwn+8	Alarm definition No.	H00	-	RWrn+8	Alarm definition No.	$\begin{aligned} & \text { Alarm } \\ & \text { definition } \\ & \text { data } \end{aligned}$
-	RWwn+9	PID set point(0.01% increments) *1		-	RWrn+9	$\begin{gathered} \text { Alarm definition } \\ \text { (output frequency) } \end{gathered}$	
-	RWwn+A	PID measured value (0.01\% increments) *1		-	RWrn+A	Alarm definition (output current)	
-	RWwn+B	PID deviation$(0.01 \% \text { increments })^{* 1}$		-	RWrn+B	Alarm definition (output voltage)	
-	RWwn+C	toruqe command / limit (0.01\% increments)		-	RWrn+C	$\begin{gathered} \text { Alarm definition } \\ \text { (energization time) } \end{gathered}$	
-	RWwn+D	H00 (Free)		-	RWrn+D	H00 (Free)	
-	RWwn+E			-	RWrn+E		
-	RWwn+F			-	RWrn+F		

PLCfunction device No.	Address	Description		PLC function device No.	Address	Description
		$\begin{aligned} & \text { Upper } 8 \\ & \text { Bits } \end{aligned}$	Lower 8 Bits			
D9062	RWwn+10	Registers designed to read data received from the master station		D9078	RWrn+10	Registers designed to write data to be sent to the master station.
D9063	RWwn+11			D9079	RWrn+11	
D9064	RWwn+12			D9080	RWrn+12	
D9065	RWwn+13			D9081	RWrn+13	
D9066	RWwn+14			D9082	RWrn+14	
D9067	RWwn+15			D9083	RWrn+15	
D9068	RWwn+16			D9084	RWrn+16	
D9069	RWwn+17			D9085	RWrn+17	
D9070	RWwn+18			D9086	RWrn+18	
D9071	RWwn+19			D9087	RWrn+19	
D9072	RWwn+1A			D9088	RWrn+1A	
D9073	RWwn+1B			D9089	RWrn+1B	
D9074	RWwn+1C			D9090	RWrn+1C	
D9075	RWwn+1D			D9091	RWrn+1D	
D9076	RWwn+1E			D9092	RWrn+1E	
D9077	RWwn+1F			D9093	RWrn+1F	

[^0]
2.4 Buffer Memory

2.4.1 Remote output signals (Master module to inverter(FR-A7NC))

- Input states to the remote device station are stored.
-Two words are used for each station.
(Do not use address 16n ($n=2(X-1)+1, X=$ station No. $)$)

Correspondences between Master Station Buffer Memory Addresses and Station Numbers

Station No.	Buffer Memory Address						
1	160H	17	180H	33	1 AOH	49	1 COH
2	162H	18	182H	34	1A2H	50	1-2H
3	164H	19	184H	35	1A4H	51	1C4H
4	166H	20	186H	36	1A6H	52	1C6H
5	168H	21	188H	37	1A8H	53	1-8H
6	16Ан	22	18Ан	38	1ААн	54	1САн
7	16 CH	23	18 CH	39	1ACH	55	1 CCH
8	16EH	24	18EH	40	1AEH	56	1СEH
9	170H	25	190H	41	180H	57	100H
10	172H	26	192H	42	1B2H	58	1D2H
11	174H	27	194H	43	1B4H	59	1D4H
12	176H	28	196H	44	186H	60	1D6H
13	178H	29	198H	45	188H	61	1D8H
14	17Ан	30	19Ан	46	1ВАн	62	1DAH
15	17 CH	31	19CH	47	1BCH	63	1DCH
16	17Eн	32	19EH	48	1BEH	64	1DEH

2.4.2 Remote input signals Pr.544=100 (Inverter(FR-A7NC) to master module)

- Input states from the remote device station are stored.
- Two words are used for each station.
(Do not use address En ($n=2(X-1)+1, X=$ station No. $)$)

Correspondences between Master Station Buffer Memory Addresses and Station Numbers

Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address
1	E0H	17	100 H	33	120 H	49	140 H
2	E2H	18	102 H	34	122 H	50	142 H
3	E4H	19	104 H	35	124 H	51	144 H
4	E6H	20	106 H	36	126 H	52	146 H
5	E8H	21	108 H	37	128 H	53	148 H
6	EAH	22	10 AH	38	12 AH	54	14 H
7	ECH	23	10 CH	39	12 CH	55	14 CH
8	EEH	24	10 EH	40	12 H H	56	14 E H
9	FOH	25	110 H	41	130 H	57	150 H
10	F2H	26	112 H	42	132 H	58	152 H
11	F4H	27	114 H	43	134 H	59	154 H
12	F6H	28	116 H	44	136 H	60	156 H
13	F8H	29	118 H	45	138 H	61	158 H
14	FAH	30	11 AH	46	13 AH	62	15 AH
15	FCH	31	11 CH	47	13 CH	63	15 CH
16	FEH	32	11 EH	48	13 EH	64	15 EH

2.4.3 Remote registers Pr.544=100
 (Master module to inverter(FR-A7NC))

- Data to be sent to the remote registers (RWW) of the remote device station are stored.
- Four words are used for each station.

Correspondences between Master Station Buffer Memory Addresses and Station Numbers

Station No.	Buffer Memory Address						
1	1E0h to 1E3н	17	220 H to 223H	33	260H to 263H	49	2A0H to 2A3H
2	1E4н to 1E7н	18	224H to 227H	34	264 to 267H	50	2A4H to 2A7H
3	1E8H to 1EBh	19	228 H to 22BH	35	268 H to 26BH	51	2 A 8 H to 2ABH
4	1ECH to 1EFH	20	22 CH to 22FH	36	26 CH to 26FH	52	2 ACH to 2AFH
5	1F0H to 1F3H	21	230 H to 233H	37	270 H to 273H	53	2 BOH to 2B3H
6	1F4H to 1F7H	22	234 to 237H	38	274 to 277 H	54	2 B 4 H to 2B7H
7	1F8H to 1FBн	23	238 H to 23BH	39	278 H to 27BH	55	2B8H to 2BBH
8	1FCн to 1FF\%	24	23Ch to 23FH	40	27 CH to 27 FH	56	2BCh to 2BFH
9	200 H to 203H	25	240 H to 243H	41	280H to 283H	57	2 COH to 2C3H
10	204H to 207 H	26	244 to 247 H	42	284 to 287H	58	2C4H to 2C7H
11	208H to 20BH	27	248 H to 24BH	43	288 H to 28BH	59	2C8H to 2CBH
12	20 CH to 20F\%	28	24 CH to 24FH	44	28 CH to 28FH	60	2 CCH to 2CFH
13	210 H to 213 H	29	250 H to 253H	45	290 H to 293H	61	2D0H to 2D3H
14	214H to 217H	30	254 to 257H	46	294H to 297H	62	2D4H to 2D7H
15	218 H to 21 BH	31	258 H to 25BH	47	298H to 29BH	63	2D8H to 2DBH
16	21- ${ }^{\text {c }}$ to 21FH	32	25 CH to 25F	48	29CH to 29FH	64	2DCн to 2DFH

2.4.4 Remote registers Pr.544=100 (Inverter(FR-A7NC) to master module)

- Data sent from the remote registers (RWR) of the remote device station are stored.
- Four words are used for each station.

Correspondences between Master Station Buffer Memory Addresses and Station Numbers

$\begin{gathered} \text { Station } \\ \text { No. } \end{gathered}$	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address	Station No.	Buffer Memory Address
1	2 EOH to 2E3H	17	320 H to 323H	33	360H to 363H	49	3A0H to 3A3H
2	2 E 4 H to 2E7H	18	324H to 327H	34	364 H to 367H	50	3 A 4 H to 3A7H
3	2E8H to 2EBн	19	328 H to 32Bн	35	368 H to 36Вн	51	3A8H to 3ABн
4	2ECh to 2EFH	20	32 CH to 32FH	36	36C to 36F\%	52	3ACH to 3AFH
5	2 FOH to 2F3H	21	330 H to 333H	37	370 H to 373H	53	3 BOH to 3B3H
6	2F4H to 2F7H	22	334 H to 337 H	38	374H to 377 H	54	3B4H to 3B7H
7	2 F 8 H to 2 FBH	23	338 H to 33Bн	39	378 H to 37Bн	55	$3 \mathrm{B8H}$ to 3BBH
8	2 FCH to 2FFH	24	33 CH to 33FH	40	37 CH to 37FH	56	3 BCH to 3BFH
9	300 H to 303H	25	340 H to 343H	41	380 H to 383H	57	3 COH to 3C3H
10	304 H to 307H	26	344 H to 347\%	42	384H to 387H	58	3 C 4 H to 3C7H
11	308 H to 30Вн	27	348H to 34Bн	43	388 H to 38Bн	59	3 C 8 H to 3СВн
12	30 CH to 30FH	28	34 CH to 34FH	44	38 CH to 38FH	60	3CCH to 3CFH
13	310 H to 313H	29	350 H to 353 H	45	390 H to 393H	61	3D0H to 3D3H
14	314 H to 317H	30	354 H to 357 H	46	394H to 397H	62	3D4H to 3D7H
15	318 H to 31BH	31	358 H to 35Bн	47	398H to 39Bн	63	3D8H to 3DBH
16	31 CH to 31FH	32	35 CH to 35FH	48	39CH to 39F\%	64	3DCH to 3DFH

3. SEQUENCE PROGRAMMING

3.1 Overview 62
3.2 RUN and STOP Operation Processings 64
3.3 Program Makeup 64
3.4 Programming Languages 65
3.5 Operation Processing Method of PLC Function. 68
3.6 I/O Processing Method 69
3.7 Scan Time. 71
3.8 Numerical Values Usable in Sequence Program. 72
3.9 Description of devices 75
3.10 Counters C 83
3.11 Data Registers D 86
3.12 Special Relays, Special Registers 87
3.13 Function List 89
3.14 How to RUN/STOP the Built-in PLC Function from Outside (Remote RUN/STOP) 90
3.15 Watchdog Timer (Operation clog up monitor timer) 92
3.16 Self-diagnostic Function 93
3.17 Keyword Registration 95
3.18 Setting of Output (Y) Status at Switching from STOP Status to RUN Status 96
3.19 Instruction Format. 97
3.20 Bit Device Processing Method 99
3.21 Handling of Numerical Value 101
3.22 Operation Error. 102
3.23 Instructions List 103
3.24 Description of the Instructions 110
3.25 Sequence Instructions 111
3.26 Basic Instructions 140
3.27 Application instructions 155

Chapter 1

Chapter 2

Chapter 3

Chapter 4

3.1 Overview

3.1.1 Outline of Operation Processings

This section outlines processings performed from when the inverter is powered on until a sequence program is executed.
The built-in PLC function processings are roughly classified into the following three types.
(1) Initial processing

Pre-processing for executing sequence operation. This processing is executed only once when power is switched on or a reset is performed.
(a) The inputs/outputs are reset and initialized.
(b) The data memories are initialized (the bit devices are turned off and the word devices are cleared to 0).
(c) Self-diagnostic checks are made on the built-in PLC function parameter setting, operation circuit, etc.

REMARKS

The built-in PLC function parameters can be confirmed from GX Developer. (Refer to the GX Developer Operating Manual.)
(2) Sequence program operation processing

The sequence program written to the built-in PLC function is executed from step 0 to an END instruction.
(3) END processing

Post-processing for terminating one sequence program operation processing and return the sequence program execution to step 0.
(a) Self-diagnostic checks are performed.
(b) The present values of the timers are updated and their contacts are turned on/off, and the present values of the counters are updated and their contacts are turned on.

Fig 3.1 Operation Processings of Built-in PLC function

3.2 RUN and STOP Operation Processings

The built-in PLC function has two different operation statuses: RUN status and STOP status.
This section explains the operation processings of the built-in PLC function in each operating status.
(1) Operation processing in RUN status A RUN status indicates that a sequence program repeats its operation in order of step 0 to END (FEND) instruction to step 0 when SQ-SD are shorted. (P.RUN is on) When entering the RUN status, the function outputs the output status saved at STOP according to the "STOP to (RUN-time output mode setting" (refer to page 96).
(2) Operation processing in STOP status

A STOP status indicates that a sequence program stops its operation when SQSD are opened or remote STOP is commanded. (P.RUN is off)
When entering the STOP status, the function saves the output status and turns off all outputs. The contents of the data memories other than the outputs (Y) are maintained.

POINT

In either the RUN or STOP status, the built-in PLC function is performing I/O refresh processings. In the STOP status, therefore, I/O monitoring and test operation can be performed from the peripheral device.

3.3 Program Makeup

(1) Program classification

The program that can be used by the built-in PLC function is a main sequence program only. Microcomputer, interrupt and SFC programs cannot be used.
(2) Program capacity A program capacity indicates the capacity of the program storage memory, and it is 1 k steps. Set the program capacity in the built-in PLC function parameter.

3.4 Programming Languages

The built-in PLC function has two different programming methods: one that uses ladders and the other that uses dedicated instructions.

- Programming that uses ladders is performed in the relay symbolic language. *1
- Programming that uses dedicated instructions is performed in the logic symbolic language. *2
Whether the relay symbolic language or logic symbolic language is used, the same program is created.

REMARKS

*1. When using GX Developer for programming, perform programming in the "ladder mode".
*2. When using GX Developer for programming, perform programming in the "list mode".

3.4.1 Relay symbolic language (Ladder mode)

The relay symbolic language is based on the concept of a relay control circuit.
You can perform programming in the representation close to the sequence circuit of relay control.
(1) Ladder block

A ladder block is the minimum unit for performing sequence program operation. It starts with the left hand side vertical bus and ends with the right hand side vertical bus.

Fig 3.2 Ladder Blocks
(2) Sequence program operation method

Sequence program operation repeats execution from a ladder block at step 0 to an END instruction.
In a single ladder block, operation is performed from the left hand side vertical bus to the right, and from the top to the bottom.

Fig 3.3 Operation Processing Sequence

3.4.2 Logic symbolic language (List mode)

The logic symbolic language uses dedicated instructions for programming contacts, coils, etc. instead of their symbols used by the relay symbolic language.
(1) Program operation method

Sequence program operation is executed from an instruction at step 0 to an END instruction in due order. When the END instruction is executed, operation is executed from the instruction at step 0 again.

Fig 3.4 Operation Processing Sequence

3.5 Operation Processing Method of PLC Function

The operation processing method is the repeated operation of a stored program.
(1) Stored program system

1) In a stored program system, a sequence program to be operated is stored in the internal memory beforehand.
2) When sequence program operation is executed, the sequence program stored in the built-in PLC function is read to the CPU instruction by instruction to execute the operation, and the corresponding devices are controlled according to the results.
(2) Repeated operation system

In a repeated operation system, a sequence of operations is repeated.
The built-in PLC function repeats the following processings.

1) The built-in PLC function executes the sequence program stored in the internal memory from step 0 in due order.
2) When the END instruction is executed, internal processings, such as timer/ counter present value updating and self-diagnostic checks, are performed, and the execution returns to step 0 of the sequence program again.

Fig 3.5 Operation Processing Method of Built-in PLC Function

REMARKS

A processing from step 0 to next step 0 or from END to next END is called one scan.
Therefore, one scan is the sum of the processing time of a user-created program (step 0 to END) and the internal processing time of the built-in PLC function.

3.6 I/O Processing Method

The control system is a refresh system.

3.6.1 What is refresh system?

In the refresh system, control input terminal changes are batch-imported into the input data memory of the CPU before execution of each scan, and the data of this input data memory are used as the input data for operation execution.
Each program operation result of the output (Y) is output to the output data memory, and after the END instruction is executed, the contents of the output data memory are batch-output from the control output terminal.

- Input refresh

Before execution of step 0, input data are batch-read from the input module (1)) and stored into the input (X) data memory.

- Output refresh

Before execution of step 0 , the data of the output (Y) data memory (2)) are batchoutput to the output module.

- When input contact instruction is executed Input data are read from the input (X) data memory (3)) and the sequence program is executed.
- When output contact instruction is executed

Output data are read from the output (Y) data memory (4)) and the sequence program is executed.

- When output OUT instruction is executed The operation result (5) of the sequence program is stored into the output (Y) data memory.

Fig 3.6 I/O Data Flows in Refresh System

3.6.2 Response delay in refresh system

This section describes a delay of an output change in response to an input change.
An output change in response to an input change has a delay of up to two scans as shown in Fig. 2.6.

Ladder example

When Y1E turns on earliest

The Y1E output turns on earliest when the control input terminal turns from OFF to ON immediately before a refresh. X5 turns on at an input refresh, Y1E turns on at step 0 , and the control output terminal turns on at an output refresh after execution of the END instruction.
In this case, therefore, a delay of a control output terminal change in response to a control input terminal change is one scan.

When Y1E turns on latest

The Y1E output turns on latest when the control input terminal turns from OFF to ON immediately after a refresh. X5 turns on at the next input refresh, Y1E turns on at step 0 , and the control output terminal turns on at an output refresh after execution of the END instruction.
In this case, therefore, a delay of a control output terminal change in response to a control input terminal change is two scans.

Fig 3.7 Output Y Change in Response to Input X Change

3.7 Scan Time

(1) Scan time

A scan time is a time from when sequence program operation is executed from step 0 until step 0 is executed again.
The scan time of each scan is not equal, and changes depending on whether the used instructions are executed or not.

Fig 3.8 Scan Time
(2) Scan time confirmation
(a)The scan time from the END instruction to the next END instruction is timed in the PLC, and stored into the special registers D9017 to D9019 in units of 10 ms .

1) Data stored into special registers D9017 to D9019

- D9017 Minimum value of scan time
- D9018 Present value of scan time
- D9019 Maximum value of scan time

2) Scan time accuracy

The accuracy of the scan time observed in the PLC is $\pm 10 \mathrm{~ms}$.
For example, when the D9018 data is 5 , the actual scan time is 40 ms to 60 ms .

3.8 Numerical Values Usable in Sequence Program

The built-in PLC function represents numerical values, alphabets and other data in two statuses: 0 (OFF) and 1 (ON).
The data represented by these 0s and 1s are called BIN (binary code).
The built-in PLC function can also use HEX (hexadecimal code) that represents BIN data in blocks of four bits.
Table 2.1 indicates the numerical representations of BIN, HEX and decimal code.
Table 3.1 Numerical Representations of BIN, HEX and Decimal Code

$\begin{gathered} \text { DEC } \\ \text { (Decimal Code) } \end{gathered}$	HEX (Hexadecimal Code)	BIN (Binary Code)
0	0	0
1	1	1
2	2	10
3	3	11
-	-	-
-	-	-
-	-	-
-	-	-
9	9	1001
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111
16	10	10000
17	11	10001
-	-	-
-	-	-
-	-	$\stackrel{\square}{\bullet}$
-	-	-
$\stackrel{-}{47}$	2F	101111
47	2F	101111

3.8.1 BIN (Binary Code)

(1) Binary code

BIN is a numerical value represented by 0 s (OFF) and 1 s (ON).
In the decimal code, a number is incremented from 0 to 9 , and at this point, a carry occurs and the number is incremented to 10.
In BIN, 0, 1 are followed by a carry, and the number is incremented to 10 (2 in decimal).
Table 2.2 indicates the numerical representations of BIN and decimal code.
Table 3.2 Differences between Numerical
Representations of BIN and Decimal Code
$\left.\begin{array}{|r|r|}\hline \text { DEC (Decimal Code) } & \text { BIN (Binary Code) } \\ \hline 0 & 0000 \\ 1 & 0001 \\ 2 & 0010 \\ 3 & 0011 \\ 4 & 0100 \\ 4 & 0101 \\ 5 & 0110 \\ 6 & 0111 \\ 7 & 1000 \\ 7 & 1001 \\ 8 & 1010 \\ 9 & 1011 \\ 10 & \\ 11 & \\ \hline\end{array}\right]$ Carry
(2) Numerical representation of BIN

1) Each register (e.g. data register) of the built-in PLC function consist of 16 bits. Each bit of the register is assigned a 2^{n} value.
However, the most significant bit is used to judge whether the value is positive or negative.

- Most significant bit is 0 Positive
- Most significant bit is 1 Negative

The numerical representation of each register of the built-in PLC function is shown in Fig. 2.8.

Fig 3.9 Numerical Representation of Each Register of Built-in PLC Function
2) Numerical data usable with the built-in PLC function In the numerical representation shown in Fig. 2.8, values can be represented in
the range - 32768 to 32767 .
Therefore, each register of the built-in PLC function can store any value between -32768 and 32767.

3.8.2 HEX (HEX Decimal)

(1) HEX

HEX represents four bits of BIN data as one digit.
Using four bits in BIN, you can represent 16 values from 0 to 15.
Since HEX represents any of 0 to 15 in a single digit, 9 is followed by alphabets A (instead of 10), B (11)..., and $F(15)$ is followed by a carry.
Refer to page 72 for the correspondences between BIN, HEX and decimal code.
(2) Numerical representation of HEX

Each register (e.g. data register) of the built-in PLC function consist of 16 bits.
Therefore, the value that can be stored into each register is represented as any of 0 to HFFFF in HEX.

3.9 Description of devices

3.9.1 Device List

The following table indicates the device names usable with the built-in PLC function and their ranges of use.

Table 3.3 Device List

Input (X)		64 (X0 to X3F) < 12 points installed>
Output (Y)		64 (Y0 to Y3F) <7 points installed>
Internal relay (M)		64 (M0 to M63)
Latch relay (L)		None (Can be set with built-in PLC function parameters but will not latch)
Step relay (S)		None (Can be set with built-in PLC function parameters but will operate as M)
Link relay (B)		None
Timer (T)	Points	16(T0 to T15)
	Specifications	100ms timer: Set time 0.1 to 3276.7 s 10 ms timer: Set time 0.01 to 327.67 s 100ms retentive timer: Set time 0.1 to 3276.7s
Counter (C)	Points	16(C0 to T15)
	Specifications	Normal counter: Setting range 1 to 32767 Interrupt program counter: None
Data device (D)		120(D0 to D119)
Link register (W)		None
Annunciator (F)		None
File register (R)		None
Accumulator (A)		None
Index register (Z, V)		None
Pointer (P)		None
Interrupt pointer (I)		None
Special relay (M)		256 (M9000 to 9255) with function limit
Special register (D)		256 (D9000 to 9255) with function limit

Description of devices

3.9.2 Inputs, Outputs X, Y

Inputs and outputs are devices designed to transfer data between the inverter and external devices.
Inputs provide ON/OFF data given to the corresponding control input terminals from outside the inverter. In a program, they are used as contacts (normally open, normally closed contacts) and the source data of basic instructions. Outputs are used when the operation results of a program are output from the control output terminals to outside the inverter.

Fig 3.10 Inputs (X), Outputs (Y)
(1) Inputs X
(a) Inputs are designed to give commands and data from external devices, such as pushbuttons, select switches, limit switches and digital switches, to the inverter (built-in PLC function).
(b) On the assumption that the PLC function contains a virtual relay Xn for one input point, the normally open (N/O) or normally closed (N/C) contact of that Xn is used in the program.

Fig 3.11 Concept of Inputs (X)
(c) There are no restrictions on the number of N/O and N/C contacts of Xn used in the program.

Fig 3.12 Use of Contacts in Input (X) Program
When no external devices are connected to the control input terminals, " X " can be used as the internal relay " M ".

(2) Outputs Y

(a) Outputs are designed to output the control results of a program to outside the inverter (signal lamps, digital indicators, magnetic switches (contactors), solenoids, etc.).
(b) An output can be exported to outside the inverter as equivalent to one N / O contact.
(c) There are no restrictions on the number of N/O and N/C contacts of output Yn used in the program, if they are used within the program capacity range.

Fig 3.13 Concept of Outputs (Y)
When no external devices are connected to the control output terminals, " Y " can be used as the internal relay " M ".

3.9.3 Internal Relays M

Internal relays are auxiliary relays that are used in the PLC function and cannot latch data (backup for power failure).
All internal relays are turned off when:

- Power is switched from off to on; or
- Reset is performed.

There are no restrictions on the number of contacts (N/O and N/C contacts) used in the program.
Use outputs (Y) when outputting the operation results of the sequence program to outside the inverter.

Fig 3.14 Internal Relay

3.9.4 Timers T

The timers of the PLC function are count up timers.
The count up timer starts timing the present value when its coil turns on, and the contact of that timer turns on when the present value reaches the setting (time-out).

3.9.5 $100 \mathrm{~ms}, 10 \mathrm{~ms}$ and 100 ms retentive timers

(1) 100 ms and 10 ms timers

The timer starts timing the present value when its coil turns on, and the present value is reset to 0 and the contact turns off when the coil turns off.

Ladder example

Fig 3.15 Timing Chart

REMARKS

$100 \mathrm{~ms}, 10 \mathrm{~ms}$ and 100 ms retentive timers can be changed using the built-in PLC function parameter. (The default is a 100 ms timer.)
Since the FR-C500 has 8 timers (T0 to T7), it can use only any one type of $100 \mathrm{~ms}, 10 \mathrm{~ms}$ and 100 ms retentive timers.
(2) 100 ms retentive timers

1) A 100 ms retentive timer is designed to time the ON period of the timer coil. When its coil turns on, the timer starts timing the present value and maintains the present value and contact ON/OFF state if the coil turns off.
When the coil turns on again, the timer resumes timing from the maintained present value.
2) Use the RST T \square instruction to clear the present value and turn off the contact.

Fig 3.16 Timing Chart

3.9.6 Timer processing method and accuracy

(1) Timer processing method

The coil of the timer is turned on/off at execution of the OUT T \square instruction, and the timer's present value is updated and its contact turned on/off at execution of the END instruction.

1) When the coil of the timer turns on, the present value of that timer is updated after execution of the END instruction, and when the timer times out, its contact turns on.
(a) When the coil of the 10 ms or 100 ms timer turns off, the present value of that timer is reset to 0 and the contact is also turned off after execution of the END instruction.
(b) If its coil turns off, the 100 ms retentive timer maintains the prevent value and contact ON/OFF state.
2) When the timer is reset by the RST instruction, the present value of the timer is reset to 0 and the contact turns off too at execution of the RST T \square instruction.

POINT

If the timer setting is " 0 ", the setting becomes infinite and the timer does not time out.
(2) Present value update timing and accuracy in refresh system

1) The timer accuracy is +2 scan times independently of the used timer and scan time.
2) The following shows the present value update timing and accuracy when the 10 ms timer is used in a program where the scan time is 10 ms or more.

Ladder example

Timer timing method

Scan time 25 ms

Fig 3.17 Timer Timing Method
In Fig. 3.8, the time-out period of the 10 ms timer T 3 has the following errors.
*1 10ms timer error (+1 scan time)
*2..........Error produced by timer's input condition ON timing and OUT $T \square i n s t r u c t i o n ' s ~ p r o g r a m ~ p o s i t i o n ~(+1 ~ s c a n ~ t i m e) ~$
The accuracy is +2 scan time $(+0.05$ s in Fig. 3.8)
3) When the timer times out, its contact remains on until END even if the coil turns off, and turns off at execution of the END instruction.

3.10 Counters C

The counters of the built-in PLC function are up counters.
An up counter stops counting and its contact turns on when the count value reaches the setting.
(1) Count processing

1) The coil of the counter is turned on/off at execution of the OUT C \square instruction, and its present value is updated and its contact turns on after execution of the END instruction.
2) The counter counts on detection of the leading edge (OFF to ON) of the coil. It does not count if the coil remains on.
(2) Counter resetting
3) The count value is not cleared even if the coil turns off. Use the RST C \square instruction to clear the count value and turn off the contact.
4) When the counter is reset by the RST instruction, the present value and contact of the counter are cleared at execution of the RST instruction.

Ladder example

Fig 3.18 Count Ladder

3.10.1 Count processing in refresh system

The counter counts on the leading edge of the input condition of the counter imported at an input refresh.

Ladder example

Counting method

Fig 3.19 Counter Counting Method

REMARKS

Refer to page 85 for the maximum counting speed of the counter.

3.10.2 Maximum counting speed of counter

The maximum counting speed of the counter is determined by the scan time, and the counter can count only when the ON/OFF period of the input condition is longer than the scan time.

Maximum counting speed $\mathrm{Cmax}=\frac{\mathrm{n}}{100} \times \frac{1}{\text { ts }}[$ times $/ \mathrm{s}]$
n: Duty (\%)
ts: Scan time [s]

REMARKS

The duty n is a percent (\%) ratio of ON/OFF period to (ON + OFF period) of the count input signal.

$$
\begin{aligned}
& \text { When T1 } \leq \mathrm{T} 2 \quad \mathrm{n}=\frac{\mathrm{T} 1}{\mathrm{~T} 1+\mathrm{T} 2} \times 100[\%] \\
& \text { When T1 }>\mathrm{T} 2 \quad \mathrm{n}=\frac{\mathrm{T} 2}{T 1+\mathrm{T} 2} \times 100[\%]
\end{aligned}
$$

3.11 Data Registers D

(1) Data registers are memories that can store numerical data (-32768 to 32767 or H0000 to HFFFF) in the built-in PLC function.
One point of data register consists of 16 bits and allows data to be read/written in units of 16 bits.

Fig 3.20 Data Register Structure
(2) The data stored once by the sequence program is maintained until other data is stored.
(3) If more data registers are needed, the unused timers (T) and counters (C) can be used as data registers.

3.12 Special Relays, Special Registers

Special relays and special registers are internal relays and data registers, respectively, whose applications are predetermined by the built-in PLC functions.
They have the following main applications.
(1) Sequence operation check

The special relays and special registers can be used to:
(a)Check the operating status (RUN/STOP)
(b)Detect a fault by the self-diagnostic function
(c)Detect an operation error
(d)Check the scan time
(2) Timing contact

There are special relays that can be used in a sequence program and differ in operating status.
(a)Normally ON/OFF flag
(b)RUN flag (OFF for 1 scan)
(c)Initial processing flag (ON for 1 scan)

REMARKS

For the special relays and special registers usable with the built-in PLC function, refer to page 10.

Table3.4 Special Relay Application List

Item	Special Relay	Application/Description
Initial processing flag (1 scan ON)	M9038	(1) This relay turns on for one scan when the built-in PLC function switches from STOP to RUN. (2)Using M9038, you can create a sequence program to be executed only once without using the PLS instruction at switching from STOP to RUN. Initial processing program
Normal OFF flag	M9037	This relay remains off while power is on. Can be used to temporarily disable execution for debugging, etc.
Normally ON flag	M9036	This relay is on while power is on. Can be used to create a program to be executed only once after power-on.
RUN flag	M9039	This relay turns on at the second scan of the sequence program when SQ-SD are shorted.

3.13 Function List

Function	Description
Remote RUN/STOP	•This function performs remote RUN/STOP from outside the inverter when SQ-SD are shorted (PLC function in RUN status (P.RUN lit)).
Watchdog timer variable (10 to 2000 ms)	- The watchdog timer is an internal timer of the sequence function designed to detect hardware or program faults and can be changed in setting.
Self-diagnostic function	- The built-in PLC function itself diagnoses faults and performs fault detection, indication, built-in sequence function stop, etc.
STOP to RUN-time output setting	- This setting is made to determine the output (Y) state when the function has switched from the STOP status to the RUN status.
Keyword registration	-This setting is made to inhibit read/interrupt of a program (parameters and main/sub program) and comments.

CAUTION

The following functions are unavailable.
Constant scan, latch (backup for power failure), PAUSE, status latch, sampling trace, step run, clock, interrupt processing, comment, microcomputer mode, print title registration, annunciator display mode, ERROR LED priority setting

3.14 How to RUN/STOP the Built-in PLC Function from Outside (Remote RUN/STOP)

The built-in PLC function is RUN/STOPped by shorting/opening SQ-SD.
Remote RUN/STOP is to RUN/STOP the built-in PLC function from outside the inverter with SQ-SD shorted (RUN status).
(1) Applications of remote RUN/STOP

In the following cases, the function can be RUN/STOPped by remote operation using remote RUN/STOP.

1) When the inverter is out of reach.
2) When the inverter in a control box is RUN/STOPped from outside the control box.
(2) Operation performed at remote RUN/STOP

The operation of the sequence program for performing remote RUN/STOP is as described below.

- Remote STOP....... The function enters the STOP status after the sequence program is executed up to the END instruction.
- Remote RUN When remote RUN is performed after the function has been put in the "STOP status" by remote STOP, the function enters the RUN status again and executes the sequence program from step 0.
(3) Remote RUN/STOP method

There are the following remote RUN/STOP methods.

1) Setting using built-in PLC function parameter (using contact)

Remote RUN/STOP can be performed by turning the remote RUN contact off/on.
For example, this method can be used to STOP the PLC function with the emergency stop contact.

- When the remote RUN contact turns off, the function enters the "RUN" status.
- When the remote RUN contact turns on, the function enters the "STOP" status.

Fig 3.21 Timing Chart for RUN/STOP Using Remote RUN Contact

POINT

Setting of remote RUN contact built-in PLC function parameter X0 to X1F can be set as the remote RUN contacts.
 (Refer to the GX Developer manual for details.)

2) Method using GX Developer

RUN/STOP can be performed by remote RUN/STOP operation from GX Developer.
For example, this method can be used to STOP the function for sequence program write in a place where the inverter is out of reach.

Fig 3.22 Timing Chart for RUN/STOP Using GX Developer
(4) Instructions

Note the following points since the built-in PLC function gives priority to STOP.

- The built-in PLC function enters the STOP status when remote STOP is performed from any of the remote RUN contact, GX Developer, etc.
- To place the built-in PLC function in the RUN status again after it has been put in the STOP status by remote STOP, all external factors (remote RUN contact, GX Developer, etc.) for remote STOP must be set to RUN.

REMARKS

What are RUN and STOP statuses?
-RUN status \qquad Status where a sequence program is repeating operation from step 0 to END instruction.
-STOP status Status where sequence program operation is at a stop and the outputs (Y) are all off.

3.15 Watchdog Timer (Operation clog up monitor timer)

(1) Watchdog timer

A watchdog timer is the internal timer of the built-in PLC function designed to detect hardware or sequence program faults.
Its default value is set to 200 ms .
(2) Watchdog timer resetting

The built-in PLC function resets the watchdog timer before execution of step 0 (after execution of END processing).
When the built-in PLC function operates properly and the END instruction is executed within the setting in the sequence program, the watchdog timer does not time out.
If the hardware fault of the built-in PLC function occurs or the scan time of the sequence program is too long to execute the END instruction within the setting, the watchdog timer times out.

Fig 3.23 Watchdog Timer Resetting
(3) Processing performed when watchdog timer times out

If the scan time exceeds the watchdog timer setting, a watchdog timer error occurs and:

1) The built-in PLC function turns off all outputs.
2) The P.RUN LED goes off or flickers.
3) M9008 turns on and the error code is stored into D9008.

REMARKS

The watchdog timer setting can be changed by built-in PLC function parameter setting of GX Developer. (Refer to the GX Developer manual for details.)

3.16 Self-diagnostic Function

The self-diagnostic function diagnoses faults by the built-in PLC function itself.
(1) Self-diagnostic timing

The self-diagnostic function is performed at power-on, at reset, at execution of any instruction, or at execution of the END instruction.

1) At power-on, at reset

Whether operation can be executed or not is diagnosed.
2) At execution of any instruction

An error occurs if the operation of any instruction in the sequence program is not executed properly.

CAUTION

For the LD, AND, OR, logical comparison operation, and OUT instructions, the set devices are always checked. For the other instructions (SET, RST, MOV, etc.), a check is made as soon as the execution condition holds and the instruction is ready to be executed.
3) At execution of END instruction

Operation clog up monitor timer
(2) Operation mode at fault detection

There are two different PLC operation modes at detection of a fault by the selfdiagnostic: operation stop mode and operation continuation mode.
The operation continuation mode includes a fault that enables operation to be stopped by built-in PLC function parameter setting. (Refer to page 94)

1) If an operation stop error is detected by the self-diagnostic, operation is stopped and outputs (Y) are all turned off as soon as the error is detected. The other devices maintain their states at occurrence of the error.
2) If an operation continuation error is detected, only the faulty program part is not executed and the program at the next step is executed.
(3) Error definition checking

When M9008 (self-diagnostic error) turns on at detection of an error, the error code is stored into D9008 (self-diagnostic error). Especially in the continuation mode, use it in the program to prevent a mechanical system malfunction.
For the errors detected by the self-diagnostic, refer to the error code list on page 172.

3.16.1 Error-time operation mode

The built-in PLC function allows you to set whether the sequence program operation will be stopped or continued at occurrence of an operation error.
Use the built-in PLC function parameter to set whether operation will be stopped or continued.

- Default value of error-time operation mode

The following table indicates the default value (initial value) of the error-time operation mode and the status of the built-in PLC function.

Table 3.5 Error-time Operation Mode

Error Definition		CPU Status				
		Operation	P.RUN LED	Special relays turned on	Special registers for data storage	Self-diagnostic error No. (D9008)
		Default value				
Operation error	An error occurred in the sequence program, e.g. an attempt was made to make BCD conversion of any value outside the range 0 to 9999 (or 0 to 99999999).	Continuation	Flicker	M9010 M9011	$\begin{aligned} & \text { D9010 } \\ & \text { D9011 } \end{aligned}$	50

3.17 Keyword Registration

The keyword is designed to inhibit the read and rewrite of the program and comments in the built-in PLC function using GX Developer.
(1) Read/write from built-in PLC function where keyword has been registered When the keyword has been registered, the built-in PLC function parameters, main program and comments cannot be read/written from the built-in PLC function to the GX Developer device unless the keyword registered to the built-in PLC function is entered.
(2) Registration and cancel of keyword

A keyword of up to six digits can be set in hexadecimal (0 to 9 , A to F). Make built-in PLC function parameter setting to register or cancel the keyword.

3.18 Setting of Output (Y) Status at Switching from STOP Status to RUN Status

When the RUN status is switched to the STOP status, the outputs (Y) in the RUN status are stored into the built-in PLC function.
Using the built-in PLC function parameter, you can set whether the outputs (Y) will be output again or will be output after execution of operation when the STOP status is switched to the RUN status.
"Output (Y) status at STOP is output"
The sequence program operation is performed after the output (Y) status at the time of entering the STOP status is output.
"Outputs (Y) are cleared (output one scan later)"
The outputs (Y) are all cleared, and after execution of the sequence program operation, the outputs are provided.

Fig 3.24 Processing Performed when STOP Status Is Switched to RUN Status

3.19 Instruction Format

(1) Many of the instructions can be divided into an instruction part and a device, and their applications are as described below.
$\left\{\begin{array}{l}\text { Instruction part Indicates the function of that instruction. } \\ \text { Device Indicates the data used with the instruction. }\end{array}\right.$
(2) The instruction format can be roughly classified as follows according to the instruction part and device combinations.

1) Instruction partThis instruction does not change the device status and mainly controls the program.
Example END
2) Instruction part + Device This instruction performs ON/OFF control of the device, controls the execution condition according to the ON/OFF status of the device, and branches the program.

3)

This instruction performs operation using the data of the destination and source, and stores the operation result into the destination.

4) Others \qquad Combinations other than the above 1) to 3).
(3) Source (S)

The source contains the data to be used for operation.
The data changes depending on the specified device.

- Constant \qquad Specify the numerical value to be used for operation. Since this value is set at the time of program creation, it is fixed and cannot be changed during program execution.
- Bit device \qquad Specify the device that stores the data to be
Word device used for operation. Therefore, the data must have been stored into the specified device until operation is executed. By changing the data stored into the specified device during program execution, the data used for that instruction can be changed.
(4) Destination (D)

The destination stores the data resulting from operation. Note that if the format consists of Instruction part + Source device + Destination device , the data to be used for operation must have been stored into the destination before operation.
At the destination, always specify the device for storing data.

REMARKS

- In this manual, the source and destination are abbreviated as follows.
Source
(S)

Source 1............................ S1
Source 2............................. S2
Destination (D)
Destination 1 (D1)

3．20 Bit Device Processing Method

As the processing method when the bit device（ $\mathrm{X}, \mathrm{Y}, \mathrm{M}$ ）is specified，1－bit processing and 16 －bit processing using digit designation processing are available．

3．20．1 1－bit processing

When a PLC instruction is used，the device used as the target of operation processing is one bit（one point）of bit device，and multiple bits cannot be specified．

Example LD XO，OUT

3．20．2 Digit designation processing

When a basic or application instruction is used，the bit device used as the target of operation processing may have to be specified by digit designation．When the instruction whose processing unit is 16 bits is specified by this digit designation，up to 16 points can be specified in units of four points．
（1）16－bit instruction：K1 to 4 （4 to 16 points）
Example Setting ranges of 16－bit data，X0 to F，by digit designation

Fig 3．25 Digit Designation Setting Range for 16－bit Instruction
（a）When there is digit designation on the source（ S ）side，the numerical values that can be handled as the source data are as indicated in Table 3．6．
Table 3．6 List of Designated Digits and Numerical Values That Can Be Handled

Number of Designated Digits	16－bit Instruction
K1（4 points）	0 to 15
K2（8 points）	0 to 255
K3（12 points）	0 to 4095
K4（16 points）	-32768 to 32767

Ladder Example	Processing
For 16-bit instruction	

Fig 3.26 Ladder Example and Processing
(b) When there is digit designation on the destination (D) side, the number of points specified by digit designation is the target on the destination side.

Fig 3.27 Ladder Examples and Processingse

3．21 Handling of Numerical Value

The built－in PLC function has instructions that handle numerical values indicated in 16 bits．
The most significant bit of the 16 bits is used to judge whether the value is positive or negative．Therefore，the numerical values that can be handled as 16 bits are as follows．

16 bits：-32768 to 32767

POINT

－Numerical value setting method
1）Decimal number

K10
D10 10 is stored into D10 in BIN．

K－10
010 〕
-10 is stored into D10 in BIN．

2）Hexadecimal number
［MOV H10 D10 \quad［

The decimal notation and hexadecimal notation correspond as indicated below．

Decimal Notation	Hexadecimal Notation
32767	H7FFF
to	to
5	H0005
4	H0004
3	H0003
2	H0002
1	H0001
0	H0000
-1	HFFFF
-2	HFFFE
-3	HFFFD
-4	HFFFC
-5	HFFFB
to	to
-32768	H8000

3.22 Operation Error

When a basic instruction is used, an operation error will occur in the following case.
(a) If any error described in the description of the corresponding instruction occurs.

POINT
Note that if the device designation range is outside the corresponding device range, an operation error does not occur and data is written to other than the specified device.

[MOV D0 K4M50 $] |$| M50 to M65 are the targets, but actual |
| :--- |
| setting range is M0 to M63, and error |
| occurs since M64 and M65 do not exist. |

(1) Error processing

If an operation error occurred at execution of a basic instruction, the error flag turns on and the error step number is stored into the error step storage register.
$\left\{\begin{array}{l}\text { Error flag } \\ \text { Error step } \\ \text { storage register }\end{array}\{\right.$

M9010 ... Turns on at an operation error and turns off if the next basic

M9011.... Turns on at the first operation error.
D9010.... Stores the first step number of the instruction where an operation error occurred.

D9011 Stores the first step number of the instruction where an operation error occurred first.

1) D9011 stores the step number of the instruction where an operation error occurred when M9011 turned from OFF to ON. Therefore, D9011 data does not change if M9011 remains on.
2) To reset M9011 and D9011, program as shown below.

Fig 3.28 Special Relay and Register Resetting Ladder
3) Whether sequence processing will be stopped or continued at occurrence of an operation error can be selected by built-in PLC function parameter setting. Refer to page 94 for details.

3.23 Instructions List

3.23.1 How to use the instruction list

Classification	Instruction Symbol	Symbol	Processing	Execution Condition	Number of Steps
Transfer	MOV	MOV (S) (D)	$(\mathrm{S}) \rightarrow(\mathrm{D})$	$\sqrt{\square}$	5
	MOVP	$-\mathrm{MOVP}(\mathrm{~S})(\mathrm{D})$		\downarrow	
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
1)	2)	$3)$	4)	5)	$6)$

1)....... Classifies the instruction by application.
2)....... Indicates the instruction symbol used for programming.

The instructions are based on 16-bit data instructions.

16-bit transfer instruction

- Add P to the end of the instruction to define it as executed only on the leading edge of the preceding condition.

Example

Instruction executed continuously while preceding condition is on

Instruction executed only on leading edge of preceding contact condition
3)....... Indicates the symbol used in the ladder diagram.

Destination:...Indicates the destination of the operation result.
Source: \qquad Indicates the source of the data for the operation.
4).......Indicates the operation.
$(S) \longrightarrow(D)$

Indicates 16 bits.
5).......Indicates the condition of execution for each instruction as described below:

Symbol	Execution Condition
No entry	The instruction is always executed independently of whether its preceding condition is on or off. When the preceding condition is off, the instruction is off.
\square	The instruction is executed continuously only while its preceding condition is on. When the preceding condition is off, the instruction is not executed and not processed.
\square	The instruction is executed once only when the preceding condition turns from off to on. If the condition remains on after that, the instruction is not executed and not processed.
\square	The instruction is executed continuously only while its preceding condition is off. When the preceding condition is on, the instruction is not executed and not processed.
\square	The instruction is executed once only when the preceding condition turns from on to off. If the condition remains off after that, the instruction is not executed and not processed.

6).......Indicates the number of program steps required for each instruction. The number of steps that changes depending on conditions is two.

3.23.2 Sequence instruction

Classification	Instruction Symbol	Symbol	Processing		¢	
Contacts	L D		Logical operation start (Operation start at N/O contact)		1	
	LDI	\downarrow	Logical NOT operation start (Operation start at N/C contact)	\qquad	1	
	AND	\longrightarrow	Logical product (N/O contact series connection)		1	
	ANI	H	Logical product NOT (N/C contact series connection)		1	111
	O R		Logical sum (N/O contact parallel connection)		1	
	ORI	L	Logical sum NOT (N/C contact parallel connection)		1	
Connectio n	ANB		AND between logical blocks (series connection between blocks)		1	117
	ORB		OR between logical blocks (parallel connection between blocks)		1	
	MPS		Stores the operation result. Reads the operation result stored in MPS. Reads and resets the operation result stored in MPS.		1	120
	MRD				1	
	MPP				1	
Outputs	OUT		Outputs device.		1	123
	SET		Sets device.		1	126
	RST	RST	Resets device.		1	
					3	
	PLS		Produces a pulse lasting one program scan time on the leading edge of input signal.	\downarrow	3	129
	PLF		Produces a pulse lasting one program scan time on the trailing edge of input signal.	\downarrow	3	
Shift	SFT		1-bit device shift		33	131
	SFTP			\downarrow		

Classification	Instruction Symbol	Symbol	Processing		¢	
Master control	M C	MC n (D)	Master control start		5	133
	MCR		Master control reset		3	
Program end end	END	-	Must be written at the end of sequence program to return to step 0.		1	137
No operation	NOP	-	No operation For program deletion or space		1	138
	NOPLF	-	No operation Line feed instruction for printer output		1	-

3．23．3 Basic instructions

3.23.4 Application instructions

Classification	Instruction Symbol	Symbol	Processing	$\begin{gathered} \text { Executi } \\ \text { on } \\ \text { Conditi } \\ \text { on } \end{gathered}$	[10	¢	
Logical product	WAND	- WAND (S)\|(D)	(D) AND (S) \rightarrow (D)		5	156	
	WANDP	- WANDP\|(S)	(D)		\uparrow	5	
	WAND	$-W_{\text {WND }}(S 1)((S 2)(D)$	$(\mathrm{S} 1)$ AND (S2) \rightarrow (D)	\square	7		
	WANDP	WANDP/(S1)(S2) (D)		\uparrow	7		
Logical sum	WOR	$\xrightarrow{\text { WOR }}$ (S)\|(D)	(D) $\mathrm{OR}(\mathrm{S}) \rightarrow$ (D)	$\sqrt{\square}$	15		
	WORP	-WORP(S) D		\uparrow			
	WOR	$-w O R \mid(S 1)(S 2)(D)$	$(\mathrm{S} 1) \mathrm{OR}(\mathrm{S} 2) \rightarrow$ (D)	$\sqrt{\square}$			
	WORP	-WORP (S1) (S2) (D)		\uparrow			
Exclusive logical sum	WXOR	- W×OR\|(S)(D) ${ }^{\text {d }}$	(D) $\mathrm{XOR}(\mathrm{S}) \rightarrow$ (D)		5	16	
	WXORP	-WXORP (S) (D) ${ }^{\text {d }}$		\uparrow	5		
	WXOR	WXOR (S1) (S2) (D)	$(\mathrm{S} 1) \mathrm{XOR}(\mathrm{S} 2) \rightarrow$ (D)	$\sqrt{\square}$	7		
	WXORP	WXORP (S1) (S2) (D) ${ }_{\text {d }}$		\uparrow	7		
NOT exclusive logical sum	WXNR	-WXNR (S) (D) ${ }^{\text {d }}$	$\overline{(D) X O R}(\mathrm{~S}) \rightarrow$ (D)	$\sqrt{\square}$	5	165	
	WXNRP	- WXNRP (S) D ${ }^{\text {d }}$		」	5		
	WXNR	WXNR (S1) (S2) (D) ${ }^{\text {d }}$	$\overline{(S 1) \mathrm{XOR} \mathrm{(S2)}} \rightarrow$ (D)]	7		
	WXNRP	WXNRP (S1) (S2) (D) ${ }^{\text {d }}$		\uparrow	7		
2's complement	NEG	$\begin{array}{\|l\|l\|} \hline \text { NEG } & \text { (} \\ \hline \end{array}$	$0-(\mathrm{D}) \rightarrow$ (D)		3	168	
	NEGP	NEGP (D) \square		\uparrow	3		

3.24 Description of the Instructions

In Chapter 6, the instructions are described in the following format.

Description

1) Indicates the section number, instruction outlines and instruction symbols.
2) The devices usable with the instructions are marked.
3) The digit designation that can be set is indicated for the instruction that requires digit designation when a bit device is used.
4) The instruction for which the error flag turns on at operation error occurrence is marked.
5) Shows the format in the ladder mode.
6) Explains the instruction.
7) Indicates the execution conditions of the instructions.
8) Shows program examples in the ladder mode and list mode.

3.25 Sequence Instructions

Sequence instructions are used for relay control circuits, etc.

3.25.1 Contact Instructions:

 Operation start, series connection, parallel connection LD, LDI, AND, ANI, OR, ORI| Usable Devices | | | | | | | | | Digit
 Desig
 nation | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit devices | | | Word (16-bit) devices | | | Constants | | Level | | Error Flag |
| X | Y | M | T | C | D | K | H | N | | (M9010,M9011) |
| \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | | | | | | |

Functions

LD, LDI

(1) LD is an N/O contact operation start instruction, and LDI is an N/C contact operation start instruction. Each of them imports the ON/OFF data of the specified device and uses it as an operation result.

AND, ANI

(1) AND is an N/O contact series connection instruction, and ANI is an N/C contact series connection instruction. Each of them imports the ON/OFF data of the specified device, ANDs it with the previous operation result, and uses the resultant value as an operation result.
(2) There are no restrictions on the use of AND and ANI, but there are the following conditions in the ladder mode.

1) Write \qquad When contacts are connected in series by AND or ANI, a ladder of up to 21 contacts can be created.
2) Read......... When contacts are connected in series by AND or ANI, a ladder of up to 24 contacts can be displayed. If the ladder has more than 24 contacts, up to 24 contacts are displayed.

OR, ORI
(1) OR is an N/O contact parallel connection instruction, and ORI is an N/C contact parallel connection instruction. Each of them imports the ON/OFF data of the specified device, ORs it with the previous operation result, and uses the resultant value as an operation result.
(2) There are no restrictions on the use of OR and ORI, but there are the following conditions in the ladder mode.

1) Write \qquad A ladder of up to 23 contacts connected consecutively by OR or ORI can be created.
2) Read......... A ladder of up to 23 contacts connected consecutively by OR or ORI can be displayed. If the ladder has more than 23 contacts, it cannot be displayed properly.

Execution Conditions

Executed every scan independently of the device ON/OFF and preceding operation result.

Program Examples

LD, LDI, AND, ANI, OR , ORI

	- Coding		
,	0	LD	X3
,	1	OR	X4
	2	OR	X5
	3	OUT	Y3
	4	LD	X5
	5	AND	M11
	6	OR	X6
	7	OUT	Y4
,	8	END	

, | 0 | LD | X3 |
| :--- | :--- | :--- |
| 1 | AND | M6 |
| 2 | LD | $X 4$ |
| 3 | ANI | $X 7$ |
| 4 | ORB | |
| 5 | ANI | $M 9$ |
| 6 | $0 U T$ | $Y 3$ |
| 7 | LD | $X 5$ |
| 8 | LD | M8 |
| 9 | $0 R$ | $M 9$ |
| 10 | ANB | |
| 11 | ANI | M11 |
| 12 | OUT | $Y 4$ |
| 13 | END | |

Ψv
Coding

0	LD	X5
1	OUT	Y5
2	AND	X8
3	$0 U T$	$Y 6$
4	ANI	X9
5	OUT	Y7
6	END	

3.25.2 Contact Instructions: Ladder block series connection, parallel connection ... ANB, ORB

Usable Devices									Digit Desig nation	Error Flag
Bit devices			Word (16-bit) devices			Constants		Level		
X	Y	M	T	C	D	K	H	N		(M9010,M9011)

Functions

ANB

(1) ANDs blocks A and B and uses the resultant value as an operation result.
(2) The symbol of ANB is not a contact symbol but a connection symbol.
(3) ANB can be written up to seven instructions (eight blocks) consecutively. If ANB is written consecutively more than the above, the PLC cannot perform normal operation.

ORB

(1) ORs blocks A and B and uses the resultant value as an operation result.
(2) ORB connects in parallel the ladder blocks of two or more contacts. Use OR or ORI to connect in parallel the ladder blocks of only one contact.

(3) The symbol of ORB is not a contact symbol but a connection symbol.
(4) ORB can be written up to seven instructions (eight blocks) consecutively. If ORB is written consecutively more than the above, the PLC cannot perform normal operation.

Program Examples

ANB

Though there are the following two different program coding methods for connecting ladder blocks in series consecutively, use the coding example 1.

- Coding example 1

0	LD	X0
1	OR	X1
2	LD	X2
3	OR	X3
4	ANB	
5	LD	X4
6	OR	X5
7	ANB	
8	LD	X6
9	OR	X7
10	ANB	
11	LD	X8
12	OR	X9
13	ANB	
14	OUT	M7
15	END	

- Coding example 2

0	LD	X0
1	OR	X1
2	LD	X2
3	OR	X3
4	LD	$\times 4$
5	OR	X5
6	LD	$\times 6$
7	OR	$\times 7$
8	LD	X8
9	OR	$\times 9$
10	ANB	
11	ANB	
12	ANB	
13	ANB	
14	OUT	M7
15	END	

ORB

Though there are the following two different program coding methods for connecting ladder blocks in parallel consecutively, use the coding example 1.

- Coding example 1

0	LD	X0
1	AND	$\times 1$
2	LD	$\times 2$
3	AND	$X 3$
4	ORB	
5	LD	$X 4$
6	AND	$X 5$
7	ORB	
8	LD	X6
9	AND	X7
10	ORB	
11	OUT	M7
12	END	

- Coding example 2

0	LD	X0
1	AND	$X 1$
2	LD	$X 2$
3	AND	$X 3$
4	LD	$X 4$
5	AND	$X 5$
6	LD	$\times 6$
7	AND	X7
8	ORB	
9	ORB	
10	ORB	
11	OUT	$M 7$
12	END	

3.25.3 Connection Instructions:

 Ladder block series connection, parallel connection ... ANB, ORB| Usable Devices | | | | | | | | | Digit Desig nation | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit devices | | | Word (16-bit) devices | | | Constants | | Level | | Error Fl |
| X | Y | M | T | C | D | K | H | N | | (M9010,M9011) |
| | | | | | | | | | | |

Functions

ANB

(1) ANDs blocks A and B and uses the resultant value as an operation result.
(2) The symbol of ANB is not a contact symbol but a connection symbol.
(3) ANB can be written up to seven instructions (eight blocks) consecutively. If ANB is written consecutively more than the above, the PLC cannot perform normal operation.

ORB

(1) ORs blocks A and B and uses the resultant value as an operation result.
(2) ORB connects in parallel the ladder blocks of two or more contacts. Use OR or ORI to connect in parallel the ladder blocks of only one contact.

(3) The symbol of ORB is not a contact symbol but a connection symbol.
(4) ORB can be written up to seven instructions (eight blocks) consecutively. If ORB is written consecutively more than the above, the PLC cannot perform normal operation.

Program Examples

ANB

Though there are the following two different program coding methods for connecting ladder blocks in series consecutively, use the coding example 1.

- Coding example 1			- Coding example 2		
0	LD	X0	0	LD	X0
1	OR	X1	1	OR	X1
2	LD	X2	2	LD	X2
3	OR	X3	3	OR	$\times 3$
4	ANB		4	LD	$\times 4$
5	LD	X4	5	OR	X5
6	OR	X5	6	LD	$\times 6$
7	ANB		7	OR	$\times 7$
8	LD	X6	8	LD	X8
9	OR	$\times 7$	9	OR	$\times 9$
10	ANB		10	ANB	
11	LD	X8	11	ANB	
12	OR	X9	12	ANB	
13	ANB		13	ANB	
14	OUT	M7	14	OUT	M7
15	END		15	END	

ORB

Though there are the following two different program coding methods for connecting ladder blocks in parallel consecutively, use the coding example 1.

- Coding example 1

- Coding example 2

0	LD	X0
1	AND	$\times 1$
2	LD	$\times 2$
3	AND	$\times 3$
4	LD	$\times 4$
5	AND	$\times 5$
6	LD	$\times 6$
7	AND	X7
8	ORB	
9	ORB	
10	ORB	
11	OUT	M7
12	END	

3.25.4 Connection Instructions:

Operation result, push, read, pop ... MPS, MRD, MPP

Usable Devices									Digit Desig nation	Error Flag
Bit devices			Word (16-bit) devices			Constants		Level		Error
X	Y	M	T	C	D	K	H	N		(M9010,M9011)

Functions

MPS

(1) Stores the operation result (ON/OFF) immediately before itself.
(2) The MPS instruction can be used consecutively up to 12 times. In the ladder mode, however, it can be used up to 11 times.
When the MPP instruction is used midway, the number of used MPS instructions is decremented by 1.

MRD

(1) Reads the operation result stored by the MPS instruction, and continues operation from the next step with that operation result.

MPP

(1) Reads the operation result stored by the MPS instruction, and continues operation from the next step with that operation result.
(2) Clears the operation result stored by the MPS instruction.

POINT
(1) Ladders differ as shown below between when MPS, MRD and MPP are used and when they are not used.
Ladder using MPS, MRD and MPP
(2) Use the same number of MPS and MPP instructions. If they differ in the number of used instructions, operation will be performed as described below.

1) If the MPS instructions are used more than MPP instructions, the ladder is changed and the built-in PLC function performs operation according to the new ladder.

Before change

2) If the MPP instructions are used more than MPS instructions, that ladder block results in a ladder creation error, and the built-in PLC function cannot perform normal operation.

Program Example

MPS
 , MRD
 MPP

1) Program using MPS, MRD and MPP

3.25.5 Output Instructions: Bit device, timer, counter ... OUT

		Usable Devices									Digit Designation	$\begin{aligned} & \begin{array}{c} \text { Error } \\ \text { Flag } \end{array} \\ & \hline \text { (M9010, } \\ & \text { M9011) } \end{aligned}$
		Bit devices			Word (16-bit) devices			Constants		Level N		
		X	Y	M	T	C	D	K	H			
Bit d	evice		\bigcirc	\bigcirc								
	Device				\bigcirc							
Timer	Setting						O	O				
	Device					\bigcirc						
ounter	Setting						\bigcirc	\bigcirc				

Functions

OUT (Y, M)
(1) Outputs the operation result up to OUT instruction to the specified device.

Operation Result	OUT Instruction		
	Coil	Contacts	
		N/O contact	N/C contact
OFF	OFF	Not energize	Energize
ON	ON	Energize	Not energize

REMARKS

Three steps are used for the OUT instruction only when the following device is used.

- Special relay (M)

OUT(T)

(1) When the operation result up to the OUT instruction is ON, the coil of the timer turns on and the timer times up to the setting, and when the timer times out (timing value \geq setting), the contact operates as indicated below.

N/O contact	Energize
N/C contact	Not energize

(2) When the operation result up to the OUT instruction turns from ON to OFF, the timer operates as indicated below.

Timer Type	Timer Coil	Present Value of Timer	Before Time-out		After Time-out	
			N/O contact	N/C contact	N/O contact	N/C contact
100ms timer	OFF	0	Not	Energize	Not	Energize
10 ms timer	OFF	0	energize	Energize	energize	Energize
100 ms retentive timer	OFF	Maintained	Not energize	Energize	Energize	Not energize

(3) After a time-out, the contact state of the retentive timer remains unchanged until the RST instruction is executed.
(4) A negative number (-32768 to -1) cannot be specified for the setting.
(5) If the setting is 0 , it is timed as infinity. Hence, the timer does not time out.
(6) Refer to page 81 for the timing method of the timer.

OUT(C)

(1) When the operation result up to the OUT instruction turns from OFF to ON, the present value (count value) is incremented by 1, and when the counter stops counting (present value $=$ setting), the contact operates as indicated below.

N/O contact	Energize
N/C contact	Not energize

(2) The counter does not count if the operation result remains ON. (Count inputs need not be converted into pulses.)
(3) After the counter has stopped counting, the count value and contact state remain unchanged until the RST instruction is executed.
(4) A negative number (-32768 to -1) cannot be specified for the setting. If the setting is 0 , processing is the same as when the setting is 1 .
(5) Refer to page 83 for the counting method of the counter.

Execution Conditions

Executed every scan independently of the operation result up to the OUT instruction.

Program Examples

OUT

1) Program that outputs to the output module.

2) Program that turns on $Y 10$ and $Y 14$ 10s after $X 0$ has turned on.

3) Program that turns on $Y 0$ when $X 0$ turns on 10 times and turns off $Y 0$ when $X 1$ turns on.

K10
4)Program that changes the $C 0$ setting to 10 when $X 0$ turns on and to 20 when $X 1$ turns on.

- Coding

0	LD	X0	
1	MOVP	K10	D0
6	LD	X1	
7	MOVP	K20	D0
12	LD	X3	
13	OUT	C0	D0
14	LD	C0	
15	OUT	YO	
16	END		

3.25.6 Output Instructions : Device set, reset ... SET, RST

		Usable Devices									Digit Designation	$\begin{gathered} \begin{array}{c} \text { Error } \\ \text { Flag } \end{array} \\ \hline \text { (M9010, } \\ \text { M9011) } \\ \hline \end{gathered}$
		Bit devices			Word (16-bit) devices			Constants		Level N		
		X	Y	M	T	C	D	K	H			
SET			\bigcirc	O								
RS T	(D)		\bigcirc	O	O	\bigcirc	O					

Functions

SET

(1) Turns on the specified device when the SET input turns on.
(2) The device turned on is held on if the SET input turns off. It can be turned off by the RST instruction.

(3) When the SET input is off, the device status does not change.

RST

(1) When the RST input turns on, the specified device operates as described below.

Device	Status
Y, M	The coil and contact are turned off.
T, C	The present value is reset to 0 and the coil and contact are turned off.
D	Cleared to 0.

(2) When the RST input is off, the device status does not change.
(3) The function of RST (D) is the same as that of the following ladder.
RST input

Execution Conditions

The SET and RST instructions are executed every scan.

REMARKS

Three steps are used when the following device is used.
SET instruction ... Special relay (M)
RST instruction ... Special relay (M), all word devices

Program Examples

SET, RST

1) Program that sets (turns on) $Y 8$ when $X 8$ turns on and resets (turns off) $Y 8$ when $X 9$ turns on.

2) Program that resets the data register contents to 0 .

Stores X10 to 1F contents into D8 when X0 turns on.

Resets D8 contents to 0 when X5 turns on.
3) Program that resets the 100 ms retentive timer and counter.

When T5 is set as retentive timer, T5 turns on when $O N$ period of $X 4$ reaches 30 minutes.

Counts the number of times T5 turned on.

Resets T5 when T5 turns on.

When C0 stops counting, Y5 turns on.
When X 5 turns on, C 0 is reset.

- Coding

0	LD	X4	
1	0 OUT	T5	K18000
2	LD	T5	
3	OUT	C0	K16
4	RST	T5	
7	LD	C0	
8	$0 U T$	Y5	
9	LD	X5	
10	RST	C0	
13	END		

3.25.7 Output Instructions : Leading edge, trailing edge differential outputs ... PLS, PLF

	Usable Devices									Digit Designation	$\begin{gathered} \text { Error } \\ \text { Flag } \\ \hline \text { (M9010, } \\ \text { M9011) } \end{gathered}$
	Bit devices			Word (16-bit) devices			Constants		Level N		
	X	Y	M	T	C	D	K	H			
(D)		\bigcirc	\bigcirc								

Functions

PLS

(1) Turns the specified device on when the PLS command turns from OFF to ON, and turns it off except when the PLS command turns from OFF to ON.
When there is one PLS instruction for the device specified at (D) during one scan, the specified device turns on for one scan.
Do not execute the PLS instruction for the same device more than once during one scan.

MO

(2) If the status is switched to STOP and switched to RUN again after execution of the PLS instruction, the PLS instruction is not executed.

PLF

(1) Turns the specified device on one scan when the PLF command turns from ON to OFF, and turns it off except when the PLF command turns from ON to OFF.

When there is one PLF instruction for the device specified at (D) during one scan, the specified device turns on for one scan.
Do not execute the PLF instruction for the same device more than once during one scan.

(2) If the status is switched to STOP and switched to RUN again after execution of the PLF instruction, the PLF instruction is not executed.

Program Examples

PLS

Program that executes the PLS instruction when X9 turns on.

PLF

Program that executes the PLF instruction when X9 turns off.

3.25.8 Shift Instructions : Bit device shift ... SFT, SFTP

	Usable Devices									Digit Designation	Error Flag (M9010, M9011)
	Bit devices			Word (16-bit) devices			Constants		Level		
	X	Y	M	T	C	D	K	H	N		
(D)		\bigcirc	\bigcirc								

Functions

(1) Shifts the ON/OFF status of the device preceding the one specified at (D) to the specified device, and turns off the preceding device.
(2) Use the SET instruction to turn on the first device from which data will be shifted.
(3) When using the SFT or SFTP instructions consecutively, program in order of larger to smaller device numbers.

Program Example

SFT

1) Program that shifts the $Y 7$ - B data when $X 8$ turns on.

YOB

Coding		
0	LD	X8
1	SFTP	Y0B
4	SFTP	Y0A
7	SFTP	Y9
10	SFTP	Y8
13	LD	X7
14	PLS	M8
17	LD	M8
18	SET	Y7
19	END	

3.25.9 Master Control Instructions : Master control set, reset ... MC, MCR

	Usable Devices									Digit Designation	$\begin{gathered} \text { Error } \\ \text { Flag } \\ \hline \text { (M9010, } \\ \text { M9011) } \\ \hline \end{gathered}$
	Bit devices			Word (16-bit) devices			Constants		Level		
	X	Y	M	T	C	D	K	H	N		
n									\bigcirc		
(D)		\bigcirc	\bigcirc								

Functions

(1) The master control instructions are designed to create an efficient ladder switching sequence program by switching on/off the common bus of the ladder. The ladder that uses master control is as shown below.

MC
(1) When the MC ON/OFF command is on at the start of master control, the operation results between MC and MCR are as performed by the instructions (ladder).
(2) If the MC instruction is off, the scan between the MC and MCR instructions is executed, and therefore, the scan time does not become short.
When the MC instruction is off, the operation results between MC and MCR are as described below.

$100 \mathrm{~ms}, 10 \mathrm{~ms}$ timer	The count value is reset to 0 and both the coil and contact turn off.
100 ms retentive timer, counter	The coil turns off but both the count value and contact maintain the current states.
Devices in OUT instruction	All turn off.
SET, RST, SFT or basic	device in instruction

(3) By changing the device at (D), the MC instruction can use the same nesting (N) number any number of times.
(4) When the MC instruction is on, the coil of the device specified at (D) turns on. Since using the same device in the OUT instruction, etc. will result in double coils, the device specified at (D) should not be used in any other instruction.

MCR

(1) This instruction is designed to reset the master control and indicates the end of the master control range.
(2) Do not provide a contact instruction in front of the MCR instruction.

The master control instructions can be nested. Their master control ranges are differentiated by the nesting (N). The nesting can be used from N0 to N7.
Using the nesting structure, you can create a ladder that restricts the program execution conditions in order.
The ladder using the nesting structure is as shown below.

Note the following when nesting the instructions.
(1) The instructions can be nested to a level of eight (N0 to 7). When nesting them, use MC from lower to higher nesting (N) numbers and MCR from higher to lower numbers. In the opposite order, the PLC function cannot perform normal operation since the instructions cannot be nested.

Nesting numbers of MCR are opposite.

Since buses cross each other, normal master control ladder cannot be created.
(2) When the MCR instructions are gathered in one place in the nesting structure, all master controls can be terminated by one lowest nesting (N) number.

3.25.10 End Instruction : Sequence program end ... END

Usable Devices									Digit Designation	Error
Bit devices			Word (16-bit) devices			Constants		Level		Flag
X	Y	M	T	C	D	K	H	N		(M9010, M9011)

Functions

(1) Indicates the end of a program. Execution terminates scanning at this step and returns to step 0.

(2) The END instruction cannot be used halfway through the sequence program.

CAUTION

If the END instruction does not exist in the program, an operation error occurs and the PLC function does not operate.

3.25.11 Other Instructions : No operation ... NOP

Usable Devices									Digit Designation	Error Flag (M9010, M9011)
Bit devices			Word (16-bit) devices			Constants		Level N		
X	Y	M	T	C	D	K	H			
										\bigcirc

Functions

NOP

(1) No-operation instruction that has no influence on the preceding operation.
(2) Use NOP to:

1) Provide space for debugging of a sequence program.
2) Delete an instruction without changing the number of steps. (Change the instruction for NOP)
3) Delete an instruction temporarily.

Program Examples

NOP
1）Contact short－circuit（AND，ANI）

2）Contact short－circuit（LD，LDI）．．．．．．．Note that if LD or LDI is replaced by NOP，the ladder will be completely changed．

3.26 Basic Instructions

The basic instructions can handle numerical data represented in 16 bits.

3.26.1 Comparison Operation Instructions

(1) The comparison operation instruction is handled as a contact, compares the magnitudes of two pieces of data (e.g. =, >, <), and turns on when the condition holds.
(2) Use the comparison operation instructions in the same manner as the contact instructions of the PLC instructions as indicated below.

- LD, LDI......... LD=
- AND, ANI AND=
- OR, ORI OR=
(3) There are the following 18 different comparison operation instructions.

Refer to page 142 for details.

Classification	Instruction Symbol
$=$	LD=
	AND=
	OR=
\neq	$\mathrm{LD}<>$
	$\mathrm{AND}<>$
	OR<>

Classification	Instruction Symbol
$>$	LD>
	AND>
	OR>
\leq	LD $<=$
	AND<=
	OR<=

Classification	Instruction Symbol
$<$	$\mathrm{LD}<$
	$\mathrm{AND}<$
	$\mathrm{OR}<$
\geq	$\mathrm{LD}>=$
	$\mathrm{AND}>=$
	$\mathrm{OR}>=$

(4) The conditions that the comparison operation instructions turn on are as follows.

CAUTION

The comparison instruction regards the specified data as BIN values. Hence, if the value whose most significant bit (b15) is 1 (8 to F) is specified for comparison of hexadecimal data, it is regarded as a negative BIN value.

Example

Comparison of 4-digit HEX values

Therefore, the result is $\mathbf{- 3 2 7 6 7}<1384$ and Y 10 does not turn on.

3.26.2 Comparison Operation Instructions:

16-bit data comparison ... =, <>, >, <=, <, >=

	Usable Devices									Digit Designation	Error Flag (M9010, M9011)
	Bit devices			Word (16-bit) devices			Constants		Level		
	X	Y	M	T	C	D	K	H	N		
(51)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	O			
(S2)	\bigcirc										

Functions

(1) Handled as an N/O contact and performs 16-bit comparison operation.
(2) The comparison operation results are as indicated below.

Instruction symbol in \square	Condition	Comparison Operation Result
$=$	S1) = S2	Energize
<>	(51) $=$ S2	
>	(51) $>$ (52)	
<=	(51) \leq S2	
<	(51) < 52	
>=	(51) \geq S2	

Instruction symbol in \square	Condition	Comparison Operation Result
=	S1) \neq S2	Not energize
<>	S1 $=$ S2	
>	S1) \leq S2	
<=	S1) $>$ S2	
$<$	S1) \geq S2	
>=	(S1) < S2	

Execution Conditions

The execution conditions of LD $\square \square$, AND \square and OR \square are as indicated below.

Instruction	Execution Condition
LD \square	Executed every scan.
AND \square	Executed only when the preceding contact instruction is on.
OR \square	Executed every scan.

REMARKS

Seven steps are used when:

- The digit designation of a bit device is not K4.
- The beginning of a bit device is not a multiple of 8 .

Program Examples

$=$

1) Program that compares the $X 0-F$ data and $D 3$ data.

<>

2) Program that compares the BCD value 100 and D3 data.

3) Program that compares the BIN value 100 and D3 data.

<=

4) Program that compares the D0 and D3 data.

3.26.3 Arithmetic Operation Instructions

The arithmetic operation instructions are instructions which perform the addition, subtraction, multiplication, and division of two BIN data.
(1) Arithmetic operation with BIN (Binary)

- If the operation result of an addition instruction exceeds 32767 , the result becomes a negative value.
- If the operation result of a subtraction instruction is less than - 32768, the result becomes a positive value.
- The operation of a positive value and a negative value is as follows:
$5+8 \rightarrow 13$
$5-8 \rightarrow-3$
$5 \times 3 \rightarrow 15$
$-5 \times 3 \rightarrow-15$
$-5 \times(-3) \rightarrow 15$
$-5 / 3 \rightarrow-1$ and remainder -2
$5 /(-3) \rightarrow-1$ and remainder 2
$-5 /(-3) \rightarrow 1$ and remainder -2

3.26.4 Arithmetic Operation Instructions: BIN 16-bit addition, subtraction ... +, +P, -, -P

	Usable Devices									Digit Designation	Error Flag (M9010, M9011)
	Bit devices			Word (16-bit) devices			Constants		Level N		
	X	Y	M	T	C	D	K	H			
(S)	\bigcirc		K1 to K4	\bigcirc							
(D)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
(S1)	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
(3)	\bigcirc										
(D1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					

Functions

$+$
(1) Performs the addition of BIN data specifies at (D) and the BIN data specified at (S), and stores the addition result into the device specified at (D).

(2) Performs the addition of BIN data specified at (11) and the BIN data specified at (S2), and stores the addition result into the device specified at (D1).

(3) At (S), (S1), S2) and (D), -32768 to 32767 (BIN 16 bits) can be specified.
(4) The judgment of whether the data of (S), (S1), S2) and (D) are positive or negative is made at the highest bit (b15).
0 Positive
1 Negative
(5) When the Oth bit has underflown, the carry flag does not turn on.

When the 15th bit has overflown, the carry flag does not turn on.

Functions

-

(1) Performs the subtraction of BIN data specifies at (D) and the BIN data specified at (S), and stores the subtraction result into the device specified at (D).

(2) Performs the subtraction of BIN data specified at (11) and the BIN data specified at S2), and stores the subtraction result into the device specified at (D1).

(3) At (S), (S1), S2) and (D), -32768 to 32767 (BIN 16 bits) can be specified.
(4) The judgment of whether the data of (S), (S1), (S2) and (D) are positive or negative is made at the highest bit (b15).
0 Positive
1 Negative
(5) When the 0th bit has underflown, the carry flag does not turn on. When the 15th bit has overflown, the carry flag does not turn on.

Execution Conditions

Addition/subtraction command.
 command

Program Examples

Program which adds the content of A0 to the content of D3 and outputs the result to Y 38 to 3 F when X 5 turns on.

Program which outputs the difference between the set value and present value timer T3 to Y 40 to 53 in BCD.

$\begin{array}{rllll}\text { - Coding } & & & \\ 0 & \text { LD } & \text { X003 } & & \\ 1 & \text { OUT } & \text { T3 } & \text { K18000 } & \\ 2 & \text { LD } & \text { M9036 } & & \\ 3 & -P & \text { K18000 } & \text { T3 } & \text { D3 } \\ 10 & \text { DBCD } & \text { D3 } & & \text { K5Y040 } \\ 19 & \text { END } & & & \end{array}$

3.26.5 Arithmetic Operation Instructions:

 BIN 16-bit multiplication, division ... *, *P, /, /P| | Usable Devices | | | | | | | | | Digit Designation | Error Flag(M9010,M9011) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Bit devices | | | Word (16-bit) devices | | | Constants | | Level
 N | | |
| | X | Y | M | T | C | D | K | H | | | |
| (51) | \bigcirc | O | O | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | | K1 to K4 | \bigcirc |
| (52) | \bigcirc | | | |
| (D) | | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | | | | | |

Functions

*

(1) Performs the multiplication of BIN data specified at (S1) and the BIN data specified at S2), and stores the multiplication result into the device specified at (D).

(2) When (D) is a bit device, specify the bits, beginning with the lower bits. Example

K1: Lower 4 bits (b0 to 3)
K4: Lower 16 bits (b0 to 15)
(3) At S1) and S2), -32768 to 32767 (BIN 16 bits) can be specified.
(4) The judgment of whether the data of (S1) and (52) are positive or negative is made at the highest bit (b15) and that of (D), at (b31).
0
...... Positive
1 Negative

1

（1）Performs the division of BIN data specified at S1 and the BIN data specified at S2），and stores the result into the device specified at（D）．

（2）In regards to the operation result，the quotient and remainder are stored by use of 32 bits in the case of word device，and only the quotient is stored by use of 16 bits in the case of bit device．

Quotient：Stored to the lower 16 bits．
Remainder ：Stored to the upper 16 bits．（Storable only in the case of word device）
（3）At S1 and S2），-32768 to 32767 （BIN 16 bits）can be specified．
（4）The judgment of whether the data of（S1），（22），（D）and（D）+1 are positive or negative is made at the highest bit（b15）．
（Both quotient and remainder have sign．）
0 ．．．．．．Positive
1 ．．．．．．Negative

Execution Conditions

The execution conditions of the transfer instructions are as shown below．

Operation Errors

In the following case, operation error occurs and the error flag turns on.

- A1 or V has been specified at (D).
- The divisor \$2 is 0 .

Program Examples

\square

1) Program which stores the multiplication result of 5678 and 1234 in BIN to D3 and 4 when X5 turns on.

2) Program which outputs the multiplication result of the BIN data of $X 8$ to F and the BIN data of X 10 to 1 B to Y 30 to 3 F .

M9038	- Coding							
	K2	K3	K4	-	LD	M9038		
0	X008	X010	Y030	1	*	K2X008	K3X010	K4Y030
				8	END			

\square
Program which outputs the quotient, obtained by dividing the data of $X 8$ to F by 3.14, to $Y 30$ to 3 F when X 3 turns on.

- Coding

0 LD X003
1 *P K2X008 K100 D0
$\begin{array}{rlllll}8 & \text { /P } & \text { D0 } & \text { K314 } & \text { K4Y030 } \\ 15 & \text { END } & & & \end{array}$

3.26.6 Data Transfer Instructions

The data transfer instructions are designed to transfer data.
The data moved by the data transfer instruction is maintained until new data is transferred.

3.26.7 Data Transfer Instructions : 16-bit data transfer ... MOV, MOVP

Functions

MOV

Transfers the 16-bit data of the device specified at (S) to the device specified at (D).

Execution Conditions

The execution conditions of the transfer instructions are as shown below.

Program Examples

MOV

1) Program that stores the input $X 0-B$ data into $D 8$.

2) Program that stores 155 into D8 in binary when $X 8$ turns on.

3.27 Application instructions

Application instructions are used when special processing is required.

3.27.1 Logical Operation Instructions

(1) The logical operation instructions are instructions which perform the logical operations such as logical add and logical product.
(2) The logical operation instructions are available in the following 10 types.

Classification	Instruction Symbol
Logical product	WAND
	WANDP
Logical add	WOR
	WORP

Classification	Instruction Symbol
Exclusive OR	WXOR
	WXORP
Exclusive NOR	WXNR
	WXNRP

Classification	Instruction Symbol
2's complement (Sign reversal)	NEG
	NEGP

REMARKS

The logical operation instructions perform the following processings in units of one bit.

Classification	Processing	Operation Expression	Example		
			A	B	Y
Logical product	Set to 1 only when both inputs A and B are 1 . Set to 0 otherwise.	$Y=A \cdot B$	0	0	0
			0	1	0
			1	0	0
			1	1	1
Logical add	Set to 0 only when both inputs A and B are 0 . Set to 1 to 1 otherwise.	$Y=A+B$	0	0	0
			0	1	1
			1	0	1
			1	1	1
Exclusive OR	Set to 0 when inputs A and B are equal. Set to 1 when they are different.	$Y=\bar{A} \cdot B+A \cdot \bar{B}$	0	0	0
			0	1	1
			1	0	1
			1	1	0
Exclusive NOR	Set to 1 when inputs A and B are equal. Set to 0 when they are different.	$Y=(\bar{A}+B)(A+\bar{B})$	0	0	1
			0	1	0
			1	0	0
			1	1	1

3.27.2 Logical Operation Instructions: 16-bit Logical Product ... WAND, WANDP

		Usable Devices									Digit Designation	$\begin{array}{c}\text { Error } \\ \text { Flag }\end{array}$ (M9010, M9011)
		Bit devices			Word (16-bit) devices			Constants		$\begin{array}{\|c\|} \hline \text { Level } \\ \hline \mathbf{N} \\ \hline \end{array}$		
		X	Y	M	T	C	D	K	H			
	(S)	\bigcirc										
	(D)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
WAND	(51)	\bigcirc		K1 to K4	0							
	(32)	\bigcirc										
	(11)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					

Functions

WAND

(1) ANDs the 16-bit data of the device specified at (D) and the 16-bit data of the device specified at S on a bit-by-bit basis, and stores the result into the device specified at (D).

(2) ANDs the 16 -bit data of the device specified at (51) and the 16 -bit data of the device specified at $\$ 2$ on a bit-by-bit basis, and stores the result into the device specified at (D1).

(3) More than the digit designation of a bit device is regarded as 0 for operation.

Execution Conditions

The execution conditions of the logical product instructions are as shown below.

Program Examples

WAND

1)Program that masks the tenth digit (second place from the least significant digit) with 0 among the four BCD digits of D10 when XA turns on.

2) Program that AND the $X 10-1 B$ and D33 data and outputs the result to Y0-B when XA turns on.

ANDs X10-1B data and D33 data and stores result to D33.

Outputs D33 data to Y0-F.

- Coding

0	LD	X0A	
1	WANDP	K3X10	D33
6	MOVP	D33	K3Y0
11	END		

	b15	b14	13	12	11	10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
D33	1	1	1	0	1	1	1	0	0	0	0	0	1	0	0	0

D33

3) Program that AND the $X 10-1 B$ and D33 data and outputs the result to Y0-B when XA turns on.

3.27.3 Logical Operation Instructions: 16-bit Logical Add ... WOR, WORP

		Usable Devices									Digit Designation	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Error } \\ \text { Flag } \end{array} \\ \hline \text { (M9010, } \\ \text { M9011) } \\ \hline \end{array}$
		Bit devices			Word (16-bit) devices			Constants		$\begin{array}{\|c\|} \hline \text { Level } \\ \hline \mathrm{N} \\ \hline \end{array}$		
		X	Y	M	T	C	D	K	H			
	(S)	\bigcirc										
	(D)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
wor	(S1)	\bigcirc	0		K1 to K4	0						
	(32)	\bigcirc										
	(D1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					

Functions

WOR

(1) ORs the 16 -bit data of the device specified at (D) and the 16 -bit data of the device specified at (S) on a bit-by-bit basis, and stores the result into the device specified at (D).

(2) ORs the 16 -bit data of the device specified at (S1) and the 16 -bit data of the device specified at (S2) on a bit-by-bit basis, and stores the result into the device specified at (D1).

(3) More than the digit designation of a bit device is regarded as 0 for operation.

Execution Conditions

The execution conditions of the logical add instructions are as shown below.

Operation command

Program Examples

WOR
1)Program that ORs the D10 and D20 data and stores the result into D10 when XA turns on.

2) Program that ORs the $X 10-1 B$ and $D 33$ data and outputs the result to $Y 0-F$ when $X A$ turns on.

- Coding

0	LD	X0A	
1	WORP	K3X10	D33
6	MONP	D33	K4Y0
11	END		

3)Program that ORs the D10 and D20 data and stores the result into D33 when XA turns on.

4)Program that ORs the $X 10-1 B$ and D33 data and outputs the result to $Y 0-B$ when XA turns on.

3.27.4 Logical Operation Instructions: 16-bit Exclusive Logical Add ... WXOR, WXORP

		Usable Devices									Digit Designation	Error Flag (M9010, M9011)
		Bit devices			Word (16-bit) devices			Constants		$\begin{array}{\|c\|} \hline \text { Level } \\ \hline \mathrm{N} \\ \hline \end{array}$		
		X	Y	M	T	C	D	K	H			
	(S)	\bigcirc										
	(D)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
WXOR	(S1)	\bigcirc		K1 to K4	0							
	(52)	\bigcirc										
	(D1)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					

Functions

WXOR

(1) Performs the exclusive OR of the 16-bit data of device specified at (D) and the 16-bit data of device specified at (S) per bit, and stores the result into the device specified at (D).

(2) Performs the exclusive OR of the 16-bit data of device specified at \$1 and the 16-bit data of device specified at \$2) per bit, and stores the result into the device specified at (D).

(3) When operation is performed, the digits of bit device higher than the specified are regarded as 0 .

Execution Conditions

The execution conditions of the exclusive logical add instructions are as shown below.

Program Examples

WXOR

1) Program which performs exclusive OR of the data of D10 and that of D20, and stores the result to D10 when XA turns on.

D10

2) Program which performs the exclusive OR of the data of $X 10$ to $1 B$ and data of D33, and sends the result to the Y 30 to 3 B when XA turns on.

D33
K3
3
3
Exclusive OR of the data of X10 to 1 B and the data of D33 is performed and the result is stored into D33.

Data of D33 is sent to Y30 to 3B.

- Coding

0 LD X00A
1 WXORP K3X010 D33
6 MOVP D33 K3Y030
11 END
3)Program which performs exclusive OR of the data of D10 and that of D20, and stores the result to D33 when XA turns on.

D10
D20 D33 Н

- Coding
$\begin{array}{llllll}0 & \text { LD X00A } & & \\ 1 & \text { WXORP } & \text { D10 } & \text { D20 } & \text { D33 } \\ 8 & \text { END } & & & \end{array}$

4) Program which performs exclusive $O R$ of the data of $X 10$ to $1 B$ and the data of D33, and sends the result to the Y 30 to 3B when XA turns on.

3.27.5 Logical Operation Instructions:

16-bit NOT Exclusive Logical Add ... WXNR, WXNRP

		Usable Devices									Digit Designation	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Error } \\ \text { Flag } \end{array} \\ \hline \text { (M9010, } \\ \text { M9011) } \\ \hline \end{array}$
		Bit devices			Word (16-bit) devices			Constants		$\begin{array}{\|c\|} \hline \text { Level } \\ \hline \mathbf{N} \\ \hline \end{array}$		
		X	Y	M	T	C	D	K	H			
	(S)	\bigcirc										
	(D)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
wXNR	(51)	\bigcirc		K1 to K4	\bigcirc							
	(32)	\bigcirc										
	(D1)		0	0	\bigcirc	\bigcirc	0					

Functions

WXNR

(1) Performs the exclusive NOR of the 16-bit data of device specified at (D) and the 16-bit data of device specified at (S) per bit, and stores the result into the device specified at (D).

After
execution
(D)

(2) Performs the exclusive NOR of the 16-bit data of device specified at S1 and the 16-bit data of device specified at $\$ 2$ per bit, and stores the result into the device specified at (D).

(3) When operation is performed, the digits of bit device higher than the specified are regarded as 0 .

Execution Conditions

The execution conditions of the not exclusive logical add instructions are as shown below.

Program Examples

WXNR

1) Program which compares the bit pattern of the 16-bit data of $X 30$ to $3 F$ and that of the 16 -bit data of D99 and stores the number of the same bit patterns and the number of different bit patterns to D7 and 8, respectively, when XC turns on.

\bullet	Coding		
0	LD	X00C	
1	WXNRP	K4X030	D99
6	SUMP	D99	
9	MOVP	A0	D7
14	MOVP	K16	D8
19	P	A0	D8
24	END		

2) Program which compares the bit pattern of the 16-bit data of $X 30$ to $3 F$ and that of the data of D99 and stores the result to D7 when X0 turns on.

3.27.6 Logical Operation Instructions:
 BIN 16-bit 2's complement ... NEG, NEGP

		Usable Devices									Digit Designation	Error Flag (M9010, M9011)
		Bit devices			Word (16-bit) devices			Constants		Level		
		X	Y	M	T	C	D	K	H	N		
NEG	(D)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc		K1 to K4	\bigcirc

Functions

(1) Reverses the sign of the 16-bit data of device specified at (D) and stores the result in device specified at (D).

Before execution

Sign

After execution

(2) Used to reverse the positive sign to the negative sign and vice versa.

Execution Conditions

Program Examples

NEG

1) Program which calculates "D10-D20" when XA turns on, and obtains the absolute value when the result is negative.

- Coding

0	LD	X00A	
1	AND	D10	D20
6	OUT	M3	
7	LD	X00A	
8	$-P$	D20	D10
13	AND	M3	
14	NEGP	D10	
17	END		

MEMO

4. ERROR CODE LIST

4.1 How to Read the Error Code172

Chapter 3

When the built-in PLC function is in the RUN status or if an alarm occurs during RUN, the self-diagnostic function displays the error and stores the error code and error step into the special registers. This chapter describes the error definitions and corrective actions.

4.1 How to Read the Error Code

When an error has occurred, the error code can be read with the peripheral device.
For the operation method, refer to the operating manual of the peripheral device.
The following table indicates the error names, error codes, definitions, causes and corrective actions.
The error code and error step are stored into the following special registers.
Error code.................D9008
Error step..................D9010, D9011
Table 4.1 Error Code List

Error Name	Error Code (D9008)	Status	Definition and Cause	Corrective Action
"INSTRCT CODE ERR." [Checked at instruction execution]	10	Stop	The instruction code that cannot be decoded is included in the program. - The memory contents changed for some reason.	Read the error step using GX Developer, and correct that step in the program.
"PARAMETER ERROR" [Checked at power-on or STOP to RUN]	11	Stop	(1) Write to the CPU was performed after the capacity larger than the memory capacity of the CPU was set using GX Developer. (2) The parameter data of the CPU memory changed due to noise or memory loading fault.	Check the memory capacity of the CPU with the memory capacity set using GX Developer, and re-set using GX Developer.
"WDT ERROR" [Checked at END processing execution]	22	Stop	The scan time exceeds the watchdog error monitor time. - The user program scan time has increased.	Calculate/check the user program scan time and reduce the scan time.
"END NOT EXECUTE" [Checked at END instruction execution]I	24	Stop	(1) The END instruction has been read as another instruction code due to noise, etc. (2) The END instruction has changed into another instruction code for some reason.	Reset and RUN again. If the same error appears again, the cause is a CPU hardware fault. Consult the Mitsubishi representative.

Error Name	Error Code (D9008)	Status	Definition and Cause	Corrective Action
"OPERATION ERROR" [Checked at instruction execution]	50	Run (Stop)	Divided by zero	Read the error step by use of peripheral device, and check and correct the program at that step.

MEMO

APPENDIX

Appendix1Instruction Processing Time176Appendix1 Instruction Processing Time

Instruction	Condition (Device)	Number of Steps	Processing Time ($\mu \mathrm{s}$)
LD		1	2.6
LDI		1	2.7
AND		1	2.8
ANI		1	2.8
OR		1	2.7
ORI		1	2.8
ORB		1	2.0
ANB		1	2.0
MPS		1	1.9
MRD		1	1.9
MPP		1	2.0
MC		5	3.7
MCR		3	2.4
NOP		1	2.1
NOPLF		1	2.1
END		1	1.3
PLS		3	3.6
PLF		3	3.5
SFT		3	3.6
SFTP		3	4.1
OUT	Y,M	1	2.5
	Special M	3	3.2
	T	1	2.5
	C	1	2.6
SET	Y,M	1	2.5
	Special M	3	3.1
RST	Y,M	1	2.6
	Special M	3	3.3
	T	3	3.8
	C	3	3.8
	D	3	3.2
MOV		5	7.7
MOVP		5	8.5
WAND		5	10.3
WANDP		5	10.7
WAND		7	10.1
WANDP		7	10.7
WOR		5	10.3
WORP		5	10.7

Instruction	Condition (Device)	Number of Steps	Processing Time ($\mu \mathrm{s}$)
WOR		7	10.2
WORP		7	10.6
WXOR		5	10.4
WXORP		5	10.8
WXOR		7	10.3
WXORP		7	10.7
WXNR		5	10.5
WXNRP		5	10.9
WXNR		7	10.3
WXNRP		7	10.7
NEG		3	7.7
NEGP		3	8.1
LD=		5	7.7
LD=		7	8.3
LD<>		5	7.8
LD<>		7	8.3
LD>		5	7.7
LD>		7	8.3
LD<=		5	7.8
LD<=		7	8.3
LD<		5	7.8
LD<		7	8.3
LD>=		5	7.9
LD>=		7	8.3
AND=		5	7.3
AND=		7	7.5
AND<>		5	7.4
AND<>		7	7.5
AND>		5	7.4
AND>		7	7.5
AND<=		5	7.5
AND<=		7	7.7
AND<		5	7.4
AND<		7	7.7
AND>=		5	7.5
AND>=		7	7.7
OR=		5	7.4
OR=		7	8.1
OR<>		5	7.5

Instruction	Condition (Device)	Number of Steps	Processing Time $(\mu \mathbf{s})$
OR<>		7	8.2
OR>		5	7.5
OR>		7	8.2
OR<=		5	7.5
OR<=		7	8.2
OR<		5	7.5
OR<		7	8.2
OR>=		5	7.6
OR>=		7	8.2
+		5	10.3
$+P$		5	10.7
+		7	10.3
$+P$		5	10.7
-		7	10.3
$-P$		7	10.7
-		7	10.4
$-P$		7	11.8
*		7	11.3
*P			

REMARKS

As inverter control is also performed actually, the scan time is approximately 40 ms at 500 steps.

HEADQUARTERS	EUROPEAN REPRESENTATIVES	EUROPEAN REPRESENTATIVES
MITSUBISHI ELECTRIC EUROPE B.V. EUROPE German Branch Gothaer Straße 8 D-40880 Ratingen Phone: +49 (0)2102 / 486-0 Fax: +49 (0)2102 / 486-1120	GEVA AUSTRIA Wiener Straße 89 AT-2500 Baden Phone: +43 (0)2252 / 855520 Fax: +43 (0)2252 / 48860	ALFATRADE Ltd. MALTA 99, Paola Hill Malta- Paola PLA 1702 Phone: +356 (0)21 / 697816 Fax: $+356(0) 21 / 697817$
MITSUBISHIELECTRICEUROPEB.V. CZECH REPUBLIC Czech Branch Avenir Business Park, Radlická 714/113a CZ-158 00 Praha 5 Phone: +420 (0)251551470 Fax: +420 (0)251-551-471	Oktyabrskaya 16/5, 0ff. 703-711 BY-220030 Minsk Phone: +375 (0)17 / 2104626 Fax: +375 (0) 17 / 2104626	bld. Traian 23/1 MD-2060 Kishinev Phone: +373 (0)22 / 664242 Fax: +373 (0)22 / 664280
	ESCO DRIVES \& AUTOMATION BELGIUM Culliganlaan 3	HIFLEX AUTOM.TECHNIEK B.V. NETHERLANDS Wolweverstraat 22
MITSUBISHI ELECTRIC EUROPE B.V. FRANCE French Branch 25, Boulevard des Bouvets F-92741 Nanterre Cedex Phone: + +33 (0)1 $/ 55685568$ Fax: +33 (0) $1 / 55685757$	BE-1831 Diegem Phone: +32 (0) 2 / 7176430 Fax: +32 (0)2 / 7176431	NL-2984 CD Ridderkerk Phone: +31 (0) 180 - 466004 Fax: +31 (0) $180-442355$
	Koning \& Hartman b.v. BELGIUM Woluwelan 31 BE-1800 Vilvoorde	Koning \& Hartman b.v. NETHERLANDS Haarlerbergweg 21-23 NL-1101 CH Amsterdam
MITSUBISHI ELECTRIC EUROPE B.V. IRELAND Irish Branch Westgate Business Park, Ballymount IRL-Dublin 24 Phone: +353 (0) 14198800 Fax: +353 (0)1 4198890	$\begin{aligned} & \text { Phone: + 32 (0) 2 / } 2570240 \\ & \text { Fax: }+32(0) 2 / 2570249 \end{aligned}$	$\begin{aligned} & \text { Phone: }+31 \text { (0) } 20 / 5877600 \\ & \text { Fax: }+31 \text { (0) } 20 / 5877605 \end{aligned}$
	INEA BH d.o.0. BOSNIA AND HERZEGOVINA Aleja Lipa 56 BA-71000 Sarajevo Phone: $+387(0) 33 / 921164$	Beijer Electronics AS NORWAY Postboks 487 NO-3002 Drammen Phone: $+47(0) 32$ / 243000
MITSUBISHI ELECTRIC EUROPE B.V. ITALY Italian Branch Viale Colleoni 7 I-20041 Agrate Brianza (MI) Phone: +39 039 / 60531 Fax: +39 039 / 6053312	Fax: +387 (0)33 / 524539	Fax: +47 (0)32 /848577
	AKHNATON BULGARIA 4 Andrej Ljapchev Blvd. Pb 21 BG-1756 Sofia Phone: $+359(0) 2 / 8176004$ Fax: $+359(0) 2 / 9744061$	MPL Technology Sp.z o.o. POLAND Ul. Krakowska 50 PL-32-083 Balice Phone: +48 (0) 12 / 6304700 Fax: +48 (0) 12 / 6304701
MITSUBISHI ELECTRIC EUROPE B.V. SPAIN Spanish Branch Carretera de Rubí 76-80 E-08190 Sant Cugat del Vallés (Barcelona) Phone: 902 131121// +34 935653131 Fax: +34935891579	INEACR d.0.0. CROATIA Losinjska 4 a HR-10000 Zagreb Phone: $+385(0) 1 / 36940-01 /-02 /-03$ Fax: $+385(0) 1 / 36940-03$	Sirius Trading \& Services srl ROMANIA Aleea Lacul Morii Nr. 3 RO-060841 Bucuresti, Sector 6 Phone: $+40(0) 21 / 4304006$ Fax: +40 (0)21 / 430 4002
MITSUBISHI ELECTRIC EUROPE B.V. UK Branch Travellers Lane UK-Hatfield, Herts. AL10 8XB Phone: +44 (0) $17707 / 276100$ Fax: +44 (0) $1707 / 278695$	AutoCont C.S. s.r.0. \quad CZECH REPUBLIC Technologická 374/6 CZ-708 00 Ostrava-Pustkovec Phone: +420 595691150 Fax: +420 595691199	Craft Con. \& Engineering d.o.0. SERBIA Bulevar Svetog Cara Konstantina 80-86 SER-18106 Nis Phone: +381 (0) $18 / 292-24-4 / 5$ Fax: +381 (0)18 / 292-24-4/5
	B:TECH A.S. CZECH REPUBLIC	INEA SR d.o.0. SERBIA
MITSUBISHI ELECTRIC CORPORATION JAPANOffice Tower "Z" 14F8-12,1 chome, Harumi Chuo-KuTokyo 104-6212Phone: +813622 16060Fax: +81362216075	CZ-58001 Havlíčkův Brod Phone: +420 (0) 569777777 Fax: +420 (0)569-777 778	SER-113000 Smederevo Phone: +381 (0)26 / 617163 Fax: +381 (0)26 / 617163
	Beijer Electronics A/S Lykkegårdsvej $17,1$. DENMARK	AutoCont Control s.r.o. Radlinského 47
MITSUBISHI ELECTRIC AUTOMATION, Inc.500 Corporate Woods ParkwayVernon Hills, IL 60061Phone: +18474782100Fax: +18474782253	DK-4000 Roskilde Phone: +45 (0) $46 / 757666$ Fax: +45 (0)46 / 755626	SK-02601 Doiny Kubin Phone: +421 (0)43 / 5868210 Fax: +421 (0)43 / 5868210
	Beijer Electronics Eesti 0Ü ESTONIA Pärnu mnt.160i EE-11317 Tallinn Phone: $+372(0) 6 / 518140$ Fax: $+372(0) 6 / 518149$	CS MTrade Slovensko, s.r.o. SLOVAKIA Vajanskeho 58 SK-92101 Piestany Phone: $+421(0) 33 / 7742760$ Fax: $+421(0) 33 / 7735144$
	Beijer Electronics OY FINLAND Jaakonkatu 2 FIN-01620 Vantaa Phone: $+358(0) 207 / 463500$ Fax: +358 (0) $207 / 463501$	INEA d.o.o. SLOVENIA Stegne 11 SI-1000 Ljubljana Phone: +386(0)1/5138100 Fax: +386(0)1/5138170
	UTECO A.B.E.E. GREECE 5, Mavrogenous Str. GR-18542 Piraeus Phone: +30211/1206900 Fax: $+30211 / 1206999$	Beijer Electronics AB SWEDEN Box 426 SE-20124 Malmö Phone: $+46(0) 40 / 358600$ Fax: $+46(0) 40 / 358602$
	MELTRADE Ltd. HUNGARY Fertő utca 14. HU-1107 Budapest Phone: $+36(0) 1 / 431-9726$ Fax: +36 (0) $1 / 431-9727$	Econotec AG SWITZERLAND Hinterdorfstr. 12 CH-8309 Nürensdorf Phone: +41 (0) 44 / 8384811 Fax: +41 (0) 44 / 8384812
	Beijer Electronics SIA LATVIA Vestienas iela 2 LV-1035 Riga Phone: $+371(0) 784$ / 2280 Fax: +371 (0) $784 / 2281$	GTS TURKEY Bayraktar Bulvari Nutuk Sok. No:5 TR-34775 Yukari Dudullu-Umraniye-ISTANBUL Phone: +90 (0)2165263990 Fax: +90 (0)2165263995
	Beijer Electronics UAB LITHUANIA Savanoriu Pr. 187 LT-02300 Vilnius Phone: $+370(0) 5 / 2323101$ Fax: $+370(0) 5 / 2322980$	CSC Automation Ltd. 4-B, M. Raskovoyi St. UA-02660 Kiev Phone: +380 (0) 44 / 4943355 Fax: +380 (0) 44 / 494-33-66

EURASIAN REPRESENTATIVES
Kazpromautomatics Ltd. KAZAKHSTAN
Mustafina Str. 7/2
KAZ-470046 Karaganda
Phone: $+77212 / 501150$
Fax: $+77212 / 501150$

MIDDLE EAST REPRESENTATIVE	
SHERF Motion Techn. Ltd.	ISRAEL
Rehov Hamerkava 19	
IL-58851 Holon	
Phone: +972 (0)3/5595462	
Fax: +972 (0)3/5560182	
CEG INTERNATIONAL	LEBANON
Cebaco Center/Block A Autostrade DORA	
Lebanon-Beirut	
Phone: +961 (0)1/240 430	
Fax: +961 (0)1/240438	

AFRICAN REPRESENTATIVE
CBI Ltd. SOUTH AFRICA
Private Bag 2016
ZA-1600 Isando
Phone: + 27 (0) 11 / 9282000
Fax: + 27 (0) 11 / 3922354

Fax: +48 (0) $12 / 6304701$

Aleea Lacul Morii Nr. 3
RO-060841 Bucuresti, Sector 6
Phone: $+40(0) 21 / 4304006$
Fax: +40 (0)21 / 4304002
Bulevar Svetog Cara Konstantina 80-86
SER-18106 Nis
Phone: + 381 (0) 18 / 292-24-4/5
ax. +381 (0) 18 / 292-24-4/5
INEA SR d.0.0.
Izletnicka 10
SER-113000 Smederevo
SER-113000 Smederevo
Phone: +381 (0)26 / 617163
Fax: +381 (0)26 / 617163
AutoCont Control s.r.o.
Radlinského 47

Phone: +421 (0)43 / 5868210
Fax: +421 (0)43 / 5868210
ajanskeho 58
Phone: +421 (0)33 / 7742760
Fax: +421 (0) $33 / 7735144$
Stegne 11
SI-1000 Ljubljana
Phone: +386 (0) $1 / 5138100$
Fax: + 386 (0) $1 / 5138170$
Box 426
SE-20124 Malmö
/358600
Econotec AG SWITZERLAND
Hinterdorfstr. 12
(H-3309 Nurensdorf
ax: +41 (0)44 / 8384812
GTS TURKEY
Bayraktar Bulvari Nutuk Sok. No:5
TR-34775 Yukari Dudullu-Umraniye-ISTANBUI
Phone: +90 (0)2165263990
Fax: +90 (0)216 5263995

4-B, M. Raskovoyi St
Phone: +380 (0)44 / 4943355
Fax: + 380 (0) 44 / 494-33-66

[^0]: (" n " indicates a value determined according to the station number setting.)

