MITSUBISH ELECTRIC INVERTER
 FR－A700
 INSTALLATION GUIDELINE
 FR－A720－00030 to 03460－NA
 FR－A740－00015 to 09620－NA
 FR－A720－00030 to 00330－N4
 FR－A740－00015 to 00170－N4
 FR－A760－00017 to 06630－NA

Thank you for choosing this Mitsubishi Inverter．
Please read through this Installation Guideline and a CD－ROM enclosed to operate this inverter correctly．
Do not use this product until you have a full knowledge of the equipment，safety information and
instructions．
Please forward this Installation Guideline and the CD－ROM to the end user．

Please read through this Installation Guideline and a CD－ROM enclosed to operate this inverter correctly． Do not use this product until you have a full knowledge of the equipment，safety information and instructions．
Please forward this Installation Guideline and the CD－ROM to the end user．
CONTENTS
【1）INSTALLATION OF THE INVERTER AND INSTRUCTIONS 1
〈2〉 OUTLINE DIMENSION DRAWING 3
【3）WIRING 6
【4】 PRECAUTIONS FOR USE OF THE INVERTER 22
〈5〉 FAILSAFE OF THE SYSTEM WHICH USES THE INVERTER 24
〈6〉 PARAMETER LIST． 25
【7】 TROUBLESHOOTING 33

This section is specifically about safety matters

Do not attempt to install, operate, maintain or inspect the inverter until you have read through this Installation Guideline and appended documents carefully and can use the equipment correctly. Do not use the inverter until you have a full knowledge of the equipment, safety information and instructions. In this Installation Guideline, the safety instruction levels are classified into "WARNING" and "CAUTION".

Incorrect handling may cause hazardous conditions, resulting in death or severe injury.
\triangle CAUTION Incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause only material damage.

The \triangle CAUTION level may even lead to a serious consequence according to conditions. Both instruction levels must be followed because these are important to personal safety.

1. Electric Shock Prevention

AWARNING

- While power is ON or when the inverter is running, do not open the front cover. Otherwise you may get an electric shock
- Do not run the inverter with the front cover or wiring cover removed.
Otherwise you may access the exposed high-voltage terminals or the charging part of the circuitry and get an electric shock.
- Even if power is off, do not remove the front cover except for wiring or periodic inspection. You may access the charged inverter circuits and get an electric shock.
- Before wiring, inspection or switching EMC filter ON/OFF connector, power must be switched OFF. To confirm that, LED indication of the operation panel must be checked. (It must be OFF.) Any person who is involved in wiring, inspection or switching EMC filter ON/OFF connector shall wait for at least 10 minutes after the power supply has been switched OFF and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power OFF, and it is dangerous.
- This inverter must be earthed (grounded). Earthing (grounding) must conform to the requirements of national and local safety regulations and electrical code (NEC section 250, IEC 536 class 1 and other applicable standards).
A neutral-point earthed (grounded) power supply for 400 V class inverter in compliance with EN standard must be used.
- Any person who is involved in wiring or inspection of this equipment shall be fully competent to do the work.
- The inverter must be installed before wiring. Otherwise you may get an electric shock or be injured.
- Setting dial and key operations must be performed with dry hands to prevent an electric shock. Otherwise you may get an electric shock.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Otherwise you may get an electric shock.
- Do not replace the cooling fan while power is on. It is dangerous to replace the cooling fan while power is on.
- Do not touch the printed circuit board with wet hands. You may get an electric shock.
- When measuring the main circuit capacitor capacity (Pr. 259 Main circuit capacitor life measuring $=" 1 "$), the DC voltage is applied to the motor for 1 s at powering off. Never touch the motor terminal, etc. right after powering off to prevent an electric shock.

$\triangle C A U T I O N$

- Inverter must be installed on a nonflammable wall without holes (so that nobody touches the inverter heatsink on the rear side, etc.). Mounting it to or near flammable material can cause a fire
- If the inverter has become faulty, the inverter power must be switched OFF. A continuous flow of large current could cause a fire
- When using a brake resistor, a sequence that will turn OFF power when a fault signal is output must be configured.
Otherwise the brake resistor may excessively overheat due to damage of the brake transistor and such, causing a fire.
- Do not connect a resistor directly to the DC terminals P/+ and N/ -. Doing so could cause a fire.

3. Injury Prevention

\triangle CAUTION

- The voltage applied to each terminal must be the ones specified in the Instruction Manual. Otherwise burst, damage, etc. may occur.
- The cables must be connected to the correct terminals. Otherwise burst, damage, etc. may occur.
- Polarity must be correct. Otherwise burst, damage, etc. may occur.
- While power is ON or for some time after power-OFF, do not touch the inverter since the inverter will be extremely hot. Doing so can cause burns.

4. Additional Instructions

Also the following points must be noted to prevent an accidental failure injury, electric shock, etc.

(1) Transportation and installation
 $\triangle C A U T I O N$

- The product must be transported in correct method that corresponds to the weight. Failure to do so may lead to injuries.
- Do not stack the boxes containing inverters higher than the number recommended
- The product must be installed to the position where withstands the weight of the product according to the information in the Instruction Manual.
- Do not install or operate the inverter if it is damaged or has parts missing. This can result in breakdowns.
- When carrying the inverter, do not hold it by the front cover or setting dial; it may fall off or fail.
- Do not stand or rest heavy objects on the product.
- The inverter mounting orientation must be correct.
- Foreign conductive bodies must be prevented to enter the inverter. That includes screws and metal fragments or other flammable substance such as oil.
- As the inverter is a precision instrument, do not drop or subject it to impact.
- The inverter must be used under the following environment: Otherwise the inverter may be damaged.

Surrounding air temperature *1		LD, ND (initial setting), HD*3	$\begin{aligned} & -10^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \text { to } 122^{\circ} \mathrm{F}\right) \\ & \text { (non-freezing) } \end{aligned}$
		SLD	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $104^{\circ} \mathrm{F}$ (non-freezing)*2
	Ambient humidity		90\% RH or less (non-condensing)
	Storage temperature		$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C} * 2\left(-4^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
	Atmosphere		Indoors (free from corrosive gas, flammable gas, oil mist, dust and dirt)
	Altitude, vibration		Maximum 1000m (3280.80feet) above sea level for standard operation. After that derate by 3% for every extra 500 m (1640.40feet) up to 2500 m (8202feet) $(91 \%) .5 .9 \mathrm{~m} / \mathrm{s}^{2}$ or less at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes) *5
*1 For the FR-A760-00840 or less, the Surrounding air temperature is $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ ($14^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$) *2 For the FR-A760-00061 or less with SLD set, the temperature is $-10^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ ($14^{\circ} \mathrm{F}$ to $86^{\circ} \mathrm{F}$) *3 For the FR-A760-01040 or more with HD set, the temperature is $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ ($14^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$) *4 Temperature applicable for a short time, e.g. in transit. *5 $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-A740-03250 (FR-A760-02210) or more.			

(2) Wiring \triangle CAUTION

- Do not install a power factor correction capacitor, surge suppressor or capacitor type filter on the inverter output side. These devices on the inverter output side may be overheated or burn out.
- The connection orientation of the output cables $\mathrm{U}, \mathrm{V}, \mathrm{W}$ to the motor affects the rotation direction of the motor.

(3) Test operation and adjustment
 \triangle CAUTION

- Before starting operation, each parameter must be confirmed and adjusted. A failure to do so may cause some machines to make unexpected motions.

(4) Operation \triangle WARNING

- Any person must stay away from the equipment when the retry function is set as it will restart suddenly after trip.
- Since pressing (STOP (REEE may not stop output depending on the function setting status, separate circuit and switch that make an emergency stop (power OFF, mechanical brake operation for emergency stop, etc.) must be provided.
- OFF status of the start signal must be confirmed before resetting the inverter fault. Resetting inverter alarm with the start signal ON restarts the motor suddenly.
- The inverter must be used for three-phase induction motors. Connection of any other electrical equipment to the inverter output may damage the equipment.
- Performing pre-excitation (LX signal and X13 signal) under torque control (Real sensorless vector control) may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may also run at a low speed when the speed limit value $=0$ with a start command input. It must be confirmed that the motor running will not cause any safety problem before performing pre-excitation.
- Do not modify the equipment.
- Do not perform parts removal which is not instructed in this manual. Doing so may lead to fault or damage of the inverter.

\triangle CAUTION

- The electronic thermal relay function does not guarantee protection of the motor from overheating. It is recommended to install both an external thermal and PTC thermistor for overheat protection.
- Do not use a magnetic contactor on the inverter input for frequent starting/stopping of the inverter. Otherwise the life of the inverter decreases.
- The effect of electromagnetic interference must be reduced by using a noise filter or by other means. Otherwise nearby electronic equipment may be affected.
- Appropriate measures must be taken to suppress harmonics. Otherwise power supply harmonics from the inverter may heat/ damage the power factor correction capacitor and generator.
- When driving a $400 \mathrm{~V} / 600 \mathrm{~V}$ class motor by the inverter, the motor must be an insulation-enhanced motor or measures must be taken to suppress surge voltage. Surge voltage attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor.
- When parameter clear or all parameter clear is performed, the required parameters must be set again before starting operations because all parameters return to the initial value.
- The inverter can be easily set for high-speed operation. Before changing its setting, the performances of the motor and machine must be fully examined.
- Stop status cannot be hold by the inverter's brake function. In addition to the inverter's brake function, a holding device must be installed to ensure safety.
- Before running an inverter which had been stored for a long period, inspection and test operation must be performed.
- For prevention of damage due to static electricity, nearby metal must be touched before touching this product to eliminate static electricity from your body.

(5) Emergency stop \triangle CAUTION

- A safety backup such as an emergency brake must be provided to prevent hazardous condition to the machine and equipment in case of inverter failure.
- When the breaker on the inverter input side trips, the wiring must be checked for fault (short circuit), and internal parts of the inverter for a damage, etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.
- When any protective function is activated, appropriate corrective action must be taken, and the inverter must be reset before resuming operation.

(6) Maintenance, inspection and parts replacement
 $\triangle C A U T I O N$

- Do not carry out a megger (insulation resistance) test on the control circuit of the inverter. It will cause a failure.

(7) Disposing of the inverter
 $\triangle C A U T I O N$

- The inverter must be treated as industrial waste.

General instructions
 Many of the diagrams and drawings in this Installation Guideline show the inverter without a cover or partially open for explanation. Never operate the inverter in this manner. The cover must be always reinstalled and the instruction in this Installation

 Guideline must be followed when operating the inverter.
1 INSTALLATION OF THE INVERTER AND INSTRUCTIONS

- Inverter Model

Capacity plate

Capacity plate	FR-A720-00175-NA $\times \times \times \times \times \times$
	4
Inverter model	Serial number

Rating plate

	Overload current rating	Surrounding air temperature	
	FR-A720/A740		FR-A760
SLD	$110 \% 60 \mathrm{~s}, 120 \% 3 \mathrm{~s}$	$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$	$30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)(00061$ or less $)$ $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)(00120$ or more $)$
LD	$120 \% 60 \mathrm{~s}, 150 \% 3 \mathrm{~s}$	$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$	$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)(00840$ or less $)$ $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)(01040$ or more $)$
ND	$150 \% 60 \mathrm{~s}, 200 \% 3 \mathrm{~s}$	$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$	$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)(00840$ or less $)$ $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)(01040$ or more $)$
HD	$200 \% 60 \mathrm{~s}, 250 \% 3 \mathrm{~s}$	$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$	$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$

- Installation of the inverter

Note - Some inverter models may be installed outside an enclosure. See Appendix 2 for details. Installation on the enclosure

- CAUTION
- When encasing multiple inverters, install them in parallel as a cooling measure.
- Install the inverter vertically.

*1 1 cm or more for FR-A720-00175
(FR-A740-00090, FR-A760-00061) or less
10 cm or more for FR-A720-02880
(FR-A740-01440, FR-A760-01040) or more
*2 20cm or more for FR-A720-02880 (FR-A740-01440, FR-A760-01040) or more

REMARKS

To use an enclosed brake resistor for the FR-A760-00061 or less, refer to page 8.

- General Precaution

The bus capacitor discharge time is 10 minutes. Before starting wiring or inspection, switch power off, wait for more than 10 minutes, and check for residual voltage between terminal $\mathrm{P} /+$ and $\mathrm{N} /-$ with a meter etc., to avoid a hazard of electrical shock.

- Environment

Before installation, check that the environment meets following specifications.

Surrounding air temperature	FR-A720/A740 LD, ND (initial setting),HD: $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (non-freezing) SLD: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ (non-freezing) FR-A760 LD, ND (initial setting): $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ (non-freezing) (00840 or less) $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (non-freezing) (01040 or more) HD: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ (non-freezing) SLD: $-10^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.86^{\circ} \mathrm{F}\right)$ (non-freezing) (00061 or less) $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ (non-freezing) (00120 or more)	Measureme position	
Ambient humidity	90\%RH or less (non-condensing)		
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$		
Ambience	Indoors (No corrosive and flammable gases, oil mist, dust and dirt.)		
Altitude, vibration	Maximum 1000m (3280.80feet) above sea level for standard operation. After that derate by 3% for every extra 500 m (1640.40feet) up to 2500 m (8202feet) (91%). $5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes) *1		
*1 $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the FR-A740-03250 (FR-A760-02210) or more			

- Install the inverter on a strong surface securely and vertically with bolts.
- Leave enough clearances and take cooling measures.
- Avoid places where the inverter is subjected to direct sunlight, high temperature and high humidity.
- Install the inverter on a non-combustible wall surface.

2 OUTLINE DIMENSION DRAWING

FR-A720-00030 to
03460-NA
FR-A740-00015 to 02600-NA
FR-A720-00030 to 00330-N4

FR-A740-00015 to 00170-N4
FR-A760-00017 to 01520-NA

FR-A740-03250 to 06830-NA FR-A760-02020 to 04020-NA

FR-A740-07700 to 09620-NA FR-A760-04960, 06630-NA

(Unit:mm(inches))

- 200 V class

Inverter Model	W	W1	H	H1	D
FR-A720-00030-NA	110 (4.33)	95 (3.74)	260 (10.24)	245 (9.65)	110 (4.33)
FR-A720-00050-NA					125 (4.92)
FR-A720-00080-NA	150 (5.91)	125 (4.92)			140 (5.51)
FR-A720-00110-NA					
FR-A720-00175-NA					
FR-A720-00240-NA	220 (8.66)	195 (7.68)			170 (6.69)
FR-A720-00330-NA					
FR-A720-00460-NA			300 (11.81)	285 (11.22)	190 (7.48)
FR-A720-00610-NA	250 (9.84)	230 (9.06)	400 (15.75)	380 (14.96)	
FR-A720-00760-NA					
FR-A720-00900-NA					
FR-A720-01150-NA	325 (12.8)	270 (10.63)	550 (21.65)	530 (20.87)	195 (7.68)
FR-A720-01450-NA	435 (17.13)	380 (14.96)		525 (20.67)	250 (9.84)
FR-A720-01750-NA					
FR-A720-02150-NA	465 (18.31)	410 (16.14)	700 (27.56)	675 (26.57)	
FR-A720-02880-NA		400 (15.75)	740 (29.13)	715 (28.15)	360 (14.17)
FR-A720-03460-NA					
FR-A720-00030-N4	110 (4.33)	95 (3.74)	260 (10.24)	245 (9.65)	122 (4.80)
FR-A720-00050-N4					137 (5.39)
FR-A720-00080-N4	150 (5.91)	125 (4.92)			152 (5.98)
FR-A720-00110-N4					
FR-A720-00175-N4					
FR-A720-00240-N4	220 (8.66)	195 (7.68)			182 (7.17)
FR-A720-00330-N4					

OUTLINE DIMENSION DRAWING
-400V class

Inverter Model	W	W1	H	H1	D
FR-A740-00015-NA	150 (5.91)	125 (4.92)	260 (10.24)	245 (9.65)	140 (5.51)
FR-A740-00025-NA					
FR-A740-00040-NA					
FR-A740-00060-NA					
FR-A740-00090-NA					
FR-A740-00120-NA	220 (8.66)	195 (7.68)			170 (6.69)
FR-A740-00170-NA					
FR-A740-00230-NA			300 (11.81)	285 (11.22)	190 (7.48)
FR-A740-00310-NA					
FR-A740-00380-NA	250 (9.84)	230 (9.06)	400 (15.75)	380 (14.96)	190 (7.48)
FR-A740-00440-NA					
FR-A740-00570-NA	325 (12.8)	270 (10.63)	550 (21.65)	530 (20.87)	195 (7.68)
FR-A740-00710-NA	435 (17.13)	380 (14.96)	550 (21.65)	525 (20.67)	250 (9.84)
FR-A740-00860-NA					
FR-A740-01100-NA					
FR-A740-01440-NA	465 (18.31)	400 (15.75)	620 (24.41)	595 (23.43)	300 (11.81)
FR-A740-01800-NA					
FR-A740-02160-NA			740 (29.13)	715 (28.15)	360 (14.17)
FR-A740-02600-NA					
FR-A740-03250-NA	498 (19.6)	200 (7.87)	1010 (39.76)	985 (38.78)	380 (14.96)
FR-A740-03610-NA					
FR-A740-04320-NA	680 (26.77)	300 (11.81)			
FR-A740-04810-NA					
FR-A740-05470-NA					
FR-A740-06100-NA	790 (31.1)	315 (12.4)	1330 (52.36)	1300 (51.18)	440 (17.32)
FR-A740-06830-NA					
FR-A740-07700-NA	995 (39.17)	300 (11.81)	1580 (62.2)	1550 (61.02)	
FR-A740-08660-NA					
FR-A740-09620-NA					
FR-A740-00015-N4	150 (5.91)	125 (4.92)	260 (10.24)	245 (9.65)	152 (5.98)
FR-A740-00025-N4					
FR-A740-00040-N4					
FR-A740-00060-N4					
FR-A740-00090-N4					
FR-A740-00120-N4	220 (8.66)	195 (7.68)			182 (7.17)
FR-A740-00170-N4					

-600V class

Inverter Model	W	W1	H	H1	D
FR-A760-00017-NA	150 (5.91)	125 (4.92)	260 (10.24)	245 (9.65)	140 (5.51)
FR-A760-00040-NA					
FR-A760-00061-NA					
FR-A760-00120-NA	220 (8.66)	195 (7.68)			170 (6.69)
FR-A760-00220-NA			300 (11.81)	285 (11.22)	190 (7.48)
FR-A760-00330-NA	250 (9.84)	230 (9.06)	400 (15.75)	380 (14.96)	190 (7.48)
FR-A760-00550-NA	435 (17.13)	380 (14.96)	550 (21.65)	525 (20.67)	250 (9.84)
FR-A760-00840-NA					
FR-A760-01040-NA	465 (18.31)	400 (15.75)	620 (24.41)	595 (23.43)	300 (11.81)
FR-A760-01310-NA					
FR-A760-01520-NA					
FR-A760-02210-NA	498 (19.6)	200 (7.87)	1010 (39.76)	985 (38.78)	380 (14.96)
FR-A760-02550-NA					
FR-A760-03040-NA	680 (26.77)	300 (11.81)			
FR-A760-04020-NA	790 (31.1)	315 (12.4)	1330 (52.36)	1300 (51.18)	440 (17.32)
FR-A760-04960-NA	995 (39.17)	300 (11.81)	1580 (62.20)	1550 (61.02)	
FR-A760-06630-NA					

-When an enclosed brake resistor is used (FR-A760 only)

3 WIRING

3.1 Terminal connection diagram (FR-A720/740)

CAUTION

To prevent a malfunction due to noise, keep the signal cables more than 10 cm (3.94inches) away from the power cables. Also separate the main circuit wire of the input side and the output side.
After wiring, wire offcuts must not be left in the inverter.
Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take care not to allow chips and other foreign matter to enter the inverter
Set the voltage/current input switch correctly. Different setting may cause a fault, failure or malfunction

3.2 Terminal connection diagram (FR-A760)

CAUTION

To prevent a malfunction due to noise, keep the signal cables more than 10 cm (3.94inches) away from the power cables. Also separate the main circuit wire of the input side and the output side.
After wiring, wire offcuts must not be left in the inverter.
Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean.
When drilling mounting holes in an enclosure etc., take care not to allow chips and other foreign matter to enter the inverter.
Set the voltage/current input switch correctly. Different setting may cause a fault, failure or malfunction.

3.3 Connection of provided brake resistor (FR-A760 only)

Connecting the brake resistor enclosed with the unit to the FR-A760-00017 to 00061 will improve regeneration capability.

(1) Installation procedure

Connect the brake resistor to the inverter with provided screws.

REMARKS

Connecting the brake resistor changes the protective structure to OPEN type (NEMA1).

(2) Connection

Wiring cover and Handling (FR-A760-00061 or less)

1) Remove the wiring cover of the inverter. Punch out a knockout by firmly tapping it with such as a hammer. Remove any sharp edges and burrs from knockout holes of the wiring cover.

2)Attach protective bushes provided to the wiring cover and cut with nippers or a cutter before running the cables. Connect the wire with red sleeve to PR terminal. Connect the wire with transparent sleeve to P/+.

(3) Installation of the inverter

CAUTION

When handling the wiring cover, care must be taken not to cut fingers or hands with sharp edges and burrs. Avoid wire offcuts and other foreign matter from entering the inverter.

© WARNING

Do not wire without using protective bushes. Otherwise, the cable sheathes may be scratched by the wiring cover edges, resulting in a short circuit or ground fault.

3.4 Main circuit terminal

(1) Terminal layout and wiring

200V class

FR-A720-00030, 00050-NA/N4 As this is an inside cover fixing screw, do not remove it.	
* Screw size of terminal R1/L11, S1/L21, PR, and PX is M4.	

FR-A720-02150-NA

* When using the inverter with LD or SLD set, remove a jumper between P/+ and P1 and connect a DC reactor (FR-HEL-75K option).

FR-A720-02880, 03460-NA

400 V class

FR-A740-00015 to 00090-NA/N4	
	FR-A740-00380, 00440-NA

	* When using the inverter with LD or SLD set, remove a jumper between P/+ and P1 and connect a DC reactor (FR-HEL-H 90K option).

FR-A740-04320 to 09620-NA

600 V class

FR-A760-00017 to 00061-NA	
	FR-A760-00330-NA

FR-A760-00550-NA	* When using the inverter with LD or SLD set, remove a jumper between P/+ and P1 and connect a DC reactor.

CAUTION

- The power supply cables must be connected to R/L1, S/L2, T/L3. (Phase sequence needs not to be matched.) Never connect the power cable to the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ of the inverter. Doing so will damage the inverter.
- Connect the motor to U, V, W. At this time, turning on the forward rotation switch (signal) rotates the motor in the counterclockwise direction when viewed from the motor shaft.
. When wiring the inverter main circuit conductor of the FR-A740-04320 (FR-A760-03040) or more, tighten a nut from the right side of the conductor. When wiring two wires, place wires on both sides of the conductor. (Refer to the drawing below.) For wiring, use bolts (nuts) provided with the inverter.

(2) Applicable cable size

Select the recommended cable size to ensure that a voltage drop will be 2% max.
If the wiring distance is long between the inverter and motor, a main circuit cable voltage drop will cause the motor torque to decrease especially at the output of a low frequency.
The following table indicates a selection example for the wiring length of 20 m (65.62 feet).
$\mathbf{2 0 0 V}$ class (when input power supply is 220 V)

Applicable Inverter Model	TerminalScrewSize ${ }^{4}$	Tightening Torque $\mathrm{N} \cdot \mathrm{m}$	Crimping Terminal		Cable Sizes								
					HIV, etc. (mm^{2}) *1				AWG/MCM *2		PVC, etc. (mm^{2}) *3		
			R/L1, S/L2, T/L3	U, V, W	$\begin{aligned} & \text { R/L1, } \\ & \text { S/L2, } \\ & \text { T/L3 } \end{aligned}$	U, V, W	P/+, P1	$\begin{array}{\|c\|} \hline \text { Earth } \\ \hline \text { (Ground) } \\ \text { cable } \end{array}$	$\begin{aligned} & \text { R/L1, } \\ & \text { S/L2, } \\ & \text { T/L3 } \end{aligned}$	U, V, W	$\begin{aligned} & \text { R/L1, } \\ & \text { S/L2, } \\ & \text { T/L3 } \end{aligned}$	U, V, W	$\begin{array}{\|c\|} \hline \text { Earth } \\ \hline \begin{array}{c} \text { (Ground) } \\ \text { cable } \end{array} \\ \hline \end{array}$
$\begin{aligned} & \text { FR-A720-00030 to } \\ & \text { O0110-NA/N4 } \end{aligned}$	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
$\begin{aligned} & \text { FR-A720-00175-NA/ } \\ & \text { N4 } \\ & \hline \end{aligned}$	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
$\begin{aligned} & \text { FR-A720-00240-NA/ } \\ & \text { N4 } \end{aligned}$	M5(M4)	2.5	5.5-5	5.5-5	5.5	5.5	5.5	5.5	10	10	6	6	6
$\begin{aligned} & \text { FR-A720-00330-NA/ } \\ & \text { N4 } \\ & \hline \end{aligned}$	M5(M4)	2.5	14-5	8-5	14	8	14	5.5	6	8	16	10	16
FR-A720-00460-NA	M5	2.5	14-5	14-5	14	14	14	14	6	6	16	16	16
FR-A720-00610-NA	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
FR-A720-00760-NA	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
FR-A720-00900-NA	M8(M6)	7.8	38-8	38-8	38	38	38	22	2	2	35	35	25
FR-A720-01150-NA	M8(M6)	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
FR-A720-01450-NA	M10(M8)	14.7	80-10	80-10	80	80	80	22	3/0	3/0	70	70	35
FR-A720-01750-NA	M10(M8)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
FR-A720-02150-NA	M12(M8)	24.5	100-12	100-12	100	100	100	38	4/0	4/0	95	95	50
FR-A720-02880-NA	M12(M10)	24.5	150-12	150-12	125	125	125	38	250	250	-	-	-
FR-A720-03460-NA	M12(M10)	24.5	150-12	150-12	150	150	150	38	300	300	-	-	-

*1 For the 02150 or less, the cable size is that of the cable (HIV cable (600 V class 2 vinyl-insulated cable) etc.) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$. Assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ or less and the wiring distance is 20 m (65.62feet) or less.

For the 02880 or more, the recommended cable size is that of the cable (LMFC (heat resistant flexible cross-linked polyethylene insulated cable) etc.) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. Assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ or less and wiring is performed in an enclosure.
*2 The recommended cable size is that of the cable (THHW cable) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ ($167^{\circ} \mathrm{F}$). Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less and the wiring distance is 20 m (65.62 feet) or less. (Selection example for use mainly in the United States.)
*3 For the 00610 or less, the recommended cable size is that of the cable (PVC cable) with continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$ $\left(158^{\circ} \mathrm{F}\right)$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less and the wiring distance is 20 m (65.62 feet) or less.
For the 00760 or more, the recommended cable size is that of the cable (XLPE cable) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ $\left(194^{\circ} \mathrm{F}\right)$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less and wiring is performed in an enclosure. (Selection example for use mainly in Europe.)
*4 The terminal screw size indicates the terminal size for R/L1, S/L2, T/L3, U, V, W, and a screw for earthing (grounding). For the 00240 and 00330 , screw size of terminal R1/L11, S1/L21, PR, and PX is indicated in () A screw for earthing (grounding) of the 00760 or more is indicated in ().

400 V class (when input power supply is 440 V)

Applicable Inverter Model	Terminal Screw Size *4	Tightening Torque $\mathrm{N} \cdot \mathrm{m}$	Crimping Terminal		Cable Sizes								
					HIV, etc. (mm ${ }^{\text {2 }}$ *1				AWG/MCM *2		PVC, etc. $\left(\mathrm{mm}^{2}\right)^{* 3}$		
			R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth (Ground) Cable	R/L1, S/L2, T/L3	U, V, W	R/L1, S/L2, T/L3	U, V, W	Earth (Ground) Cable
FR-A740-00015 to 00090-NA/N4	M4	1.5	2-4	2-4	2	2	2	2	14	14	2.5	2.5	2.5
$\begin{aligned} & \text { FR-A740-00120-NA/ } \\ & \text { N4 } \end{aligned}$	M4	1.5	2-4	2-4	2	2	3.5	3.5	12	14	2.5	2.5	4
$\begin{aligned} & \text { FR-A740-00170-NA/ } \\ & \text { N4 } \end{aligned}$	M4	1.5	5.5-4	5.5-4	3.5	3.5	3.5	3.5	12	12	4	4	4
FR-A740-00230-NA	M5	2.5	5.5-5	5.5-5	5.5	5.5	5.5	8	10	10	6	6	10
FR-A740-00310-NA	M5	2.5	8-5	8-5	8	8	8	8	8	8	10	10	10
FR-A740-00380-NA	M6	4.4	14-6	8-6	14	8	14	14	6	8	16	10	16
FR-A740-00440-NA	M6	4.4	14-6	14-6	14	14	22	14	6	6	16	16	16
FR-A740-00570-NA	M6	4.4	22-6	22-6	22	22	22	14	4	4	25	25	16
FR-A740-00710-NA	M8	7.8	22-8	22-8	22	22	22	14	4	4	25	25	16
FR-A740-00860-NA	M8	7.8	38-8	38-8	38	38	38	22	1	2	50	50	25
FR-A740-01100-NA	M8	7.8	60-8	60-8	60	60	60	22	1/0	1/0	50	50	25
FR-A740-01440-NA	M10	14.7	60-10	60-10	60	60	60	38	1/0	1/0	50	50	25
FR-A740-01800-NA	M10	14.7	60-10	60-10	60	60	80	38	3/0	3/0	50	50	25
FR-A740-02160-NA	M10(M12)	14.7	80-10	80-10	80	80	80	38	3/0	3/0	70	70	35
FR-A740-02600-NA	M10(M12)	14.7	100-10	100-10	100	100	100	38	4/0	4/0	95	95	50
FR-A740-03250-NA	M12(M10)	24.5	150-12	150-12	125	150	150	38	250	250	120	120	70
FR-A740-03610-NA	M12(M10)	24.5	150-12	150-12	150	150	150	38	300	300	150	150	95
FR-A740-04320-NA	M12(M10)	24.5	100-12	100-12	2×100	2×100	2×100	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
FR-A740-04810-NA	M12(M10)	24.5	100-12	100-12	2×100	2×100	2×125	60	$2 \times 4 / 0$	$2 \times 4 / 0$	2×95	2×95	95
FR-A740-05470-NA	M12(M10)	24.5	150-12	150-12	2×125	2×125	2×125	60	2×250	2×250	2×120	2×120	120
FR-A740-06100-NA	M12(M10)	24.5	150-12	150-12	2×150	2×150	2×150	100	2×300	2×300	2×150	2×150	150
FR-A740-06830-NA	M12(M10)	24.5	C2-200	C2-200	2×200	2×200	2×200	100	2×350	2×350	2×185	2×185	2×95
FR-A740-07700-NA	M12(M10)	24.5	C2-200	C2-200	2×200	2×200	2×200	100	2×400	2×400	2×185	2×185	2×95
FR-A740-08660-NA	M12(M10)	24.5	C2-250	C2-250	2×250	2×250	2×250	100	2×500	2×500	2×240	2×240	2×120
FR-A740-09620-NA	M12(M10)	24.5	C2-200	C2-250	3×200	2×250	3×200	2×100	2×500	2×500	2×240	2×240	2×120

*1 For the 01100 or less, the cable size is that of the cable (HIV cable (600 V class 2 vinyl-insulated cable) etc.) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$. Assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ or less and the wiring distance is 20 m (65.62feet) or less.

For the 01440 or more, the recommended cable size is that of the cable (LMFC (heat resistant flexible cross-linked polyethylene insulated cable) etc.) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. Assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ or less and wiring is performed in an enclosure.
*2 For the 00860 or less, the recommended cable size is that of the cable (THHW cable) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$ $\left(167^{\circ} \mathrm{F}\right)$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less and the wiring distance is 20 m ($65.62 f e e t$) or less.
For the 01100 or more, the recommended cable size is that of the cable (THHN cable) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less and wiring is performed in an enclosure.
(Selection example for use mainly in the United States.)
*3 For the 00860 or less, the recommended cable size is that of the cable (PVC cable) with continuous maximum permissible temperature of $70^{\circ} \mathrm{C}$ ($158^{\circ} \mathrm{F}$). Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less and the wiring distance is 20 m ($65.62 f e e t$) or less.
For the 01100 or more, the recommended cable size is that of the cable (XLPE cable) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$ ($194^{\circ} \mathrm{F}$). Assumes that the surrounding air temperature is $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or less and wiring is performed in an enclosure. (Selection example for use mainly in Europe.)
*4 The terminal screw size indicates the terminal size for R/L1, S/L2, T/L3, U, V, W, and a screw for earthing (grounding). A screw for P/+ terminal for option connection of the 02160 and 02600 is indicated in ().
A screw for earthing (grounding) of the 03250 or more is indicated in ().

600 V class (when input power supply is 575 V)

Applicable Inverter Model	Terminal Screw Size *2	Tightening Torque $\mathrm{N} \cdot \mathrm{m}$	Crimping Terminal				Cable Sizes *1							
							HIV, etc. (mm^{2})				AWG			
			R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth (Ground) Cable	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth (Ground) Cable	R/L1, S/L2, T/L3	U, V, W	P/+, P1	Earth (Ground) Cable
FR-A760-00017-NA	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2	14	14	14	14
FR-A760-00040-NA	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2	14	14	14	14
FR-A760-00061-NA	M4	1.5	2-4	2-4	2-4	2-4	2	2	2	2	14	14	14	14
FR-A760-00120-NA	M4	1.5	3.5-4	2-4	3.5-4	3.5-4	3.5	2	3.5	3.5	12	14	10	12
FR-A760-00220-NA	M5	2.5	5.5-5	5.5-5	8-5	5.5-4	5.5	5.5	8	5.5	10	10	8	10
FR-A760-00330-NA	M6	4.4	14-6	14-6	14-6	14-6	14	14	14	14	6	6	4	6
FR-A760-00550-NA	M8	7.8	22-8	22-8	22-8	22-8	22	22	22	22	4	4	2	4
FR-A760-00840-NA	M8	7.8	38-8	38-8	38-8	22-8	38	38	38	22	2	2	1/0	4
FR-A760-01040-NA	M10	14.7	60-10	60-10	60-10	38-10	60	60	60	38	2	2	1/0	1
FR-A760-01310-NA	M10	14.7	60-10	60-10	60-10	38-10	60	60	60	38	1/0	1/0	2/0	1
FR-A760-01520-NA	M10	14.7	60-10	60-10	60-10	38-10	60	60	60	38	2/0	2/0	3/0	1
FR-A760-02210-NA	M12(M10)	24.5	80-12	80-12	80-12	38-10	80	80	80	38	4/0	250	300	1
FR-A760-02550-NA	M12(M10)	24.5	100-12	100-12	125-12	38-10	100	100	125	38	250	300	$2 \times 2 / 0$	1
FR-A760-03040-NA	M12(M10)	24.5	125-12	125-12	150-12	60-10	125	125	150	60	$2 \times 2 / 0$	$2 \times 3 / 0$	$2 \times 4 / 0$	1/0
FR-A760-04020-NA	M12(M10)	24.5	2×80-12	2×80-12	2×100-12	100-10	2×80	2×80	2×100	100	$2 \times 4 / 0$	2×250	2×300	4/0
FR-A760-04960-NA	M12(M10)	24.5	2×125-12	2×125-12	2×150-12	100-10	2×125	2×125	2×150	100	2×300	2×300	2×350	300
FR-A760-06630-NA	M12(M10)	24.5	2×200-12	2×200-12	2×250-12	100-10	2×200	2×200	2×250	100	2×400	2×400	2×500	300

*1 The cables used should be $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ copper cables.
*2 The terminal screw size indicates the terminal size for R/L1, S/L2, T/L3, U, V, W, a screw for earthing (grounding), and P/+ for option connection. A screw for earthing (grounding) of the 02210 or more is indicated in ().

The line voltage drop can be calculated by the following formula:
line voltage drop $[\mathrm{V}]=\frac{\sqrt{3} \times \text { wire resistance }[\mathrm{m} \Omega / \mathrm{m}] \times \text { wiring distance }[\mathrm{m}] \times \text { current }[\mathrm{A}]}{1000}$
Use a larger diameter cable when the wiring distance is long or when it is desired to decrease the voltage drop (torque reduction) in the low speed range.

CAUTION

- Tighten the terminal screw to the specified torque.

A screw that has been tighten too loosely can cause a short circuit or malfunction.
A screw that has been tighten too tightly can cause a short circuit or malfunction due to the unit breakage.
Use crimping terminals with insulation sleeve to wire the power supply and motor.
（3）Total wiring length（FR－A720／A740）
The overall wiring length for connection of a single motor or multiple motors should be within the value in the table below． （The wiring length should be 100 m （ 328.08 feet ）maximum for vector control．）

Pr． 72 PWM frequency selection setting （carrier frequency）	$\begin{aligned} & \text { FR-A720-00030 } \\ & \text { FR-A740-00015 } \end{aligned}$	$\begin{aligned} & \text { FR-A720-00050 } \\ & \text { FR-A740-00025 } \end{aligned}$	FR－A720－00080 or more FR－A740－00040 or more
$2(2 \mathrm{kHz})$ or less	300 m $(984.25$ feet）	$\begin{gathered} 500 \mathrm{~m} \\ (1640.42 \text { feet }) \end{gathered}$	$\begin{gathered} 500 \mathrm{~m} \\ (1640.42 \text { feet }) \end{gathered}$
3 to $15(3 \mathrm{kHz}$ to 14.5 kHz$)$	$\begin{gathered} 200 \mathrm{~m} \\ \text { (656.19 feet) } \end{gathered}$	$\begin{gathered} 300 \mathrm{~m} \\ (984.25 \text { feet) } \end{gathered}$	$\begin{gathered} 500 \mathrm{~m} \\ (1640.42 \text { feet }) \end{gathered}$

When driving a 400 V class motor by the inverter，surge voltages attributable to the wiring constants may occur at the motor terminals，deteriorating the insulation of the motor
Take the following measures 1 ）or 2 ）in this case．
1）Use a＂ 400 V class inverter－driven insulation－enhanced motor＂and set frequency in Pr ． 72 PWM frequency selection according to wiring length

	Wiring Length		
	50 m （164．04feet）or less	50m（164．04feet）to $100 \mathrm{~m}(328.08 f e e t)$	exceeding 100m （328．08feet）
Carrier frequency	14.5 kHz or less	9 kHz or less	4 kHz or less

2）Connect the surge voltage suppression filter（FR－ASF－H）to the FR－A720－02150（FR－A740－01100）or less and the sine wave filter（MT－BSL／BSC）to the FR－A720－02880（FR－A740－01440）or more on the inverter output side．

CAUTION

－Especially for long－distance wiring，the inverter may be affected by a charging current caused by the stray capacitances of the wiring，leading to a malfunction of the overcurrent protective function or fast response current limit function or a malfunction or fault of the equipment connected on the inverter output side．If fast response current limit function malfunctions，disable this function．（For Pr． 156 Stall prevention operation selection，refer to Instruction Manual．）
－For details of Pr： 72 PWM frequency selection，refer to［⿴囗玉国 Instruction Manual．（When using an option sine wave filter（MT－BSL／ BSC）for the FR－A720－02880（FR－A740－01440）or more，set＂25＂（2．5kHz）in Pr．72．）
For explanation of surge voltage suppression filter（FR－ASF－H）and sine wave filter（MT－BSL／BSC），refer to the manual of each option．
Do not perform vector control with a surge voltage suppression filter（FR－ASF－H）or sine wave filer（MT－BSL／BSC）connected．
(4) Total wiring length (FR-A760)

The overall wiring length for connection of a single motor or multiple motors should be within the value in the table below.
(The wiring length should be 100 m (328.08feet) maximum for vector control.)

- When fast response current limit is enabled, the wiring length should be within the value in the table below (${ }^{*}$ Pr. 156 = 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30).
- ND/HD Rated

| Pr. 72 PWM frequency selection setting |
| :---: | :---: | :---: | :---: | :---: |
| (carrier frequency) | FR-A760-00017 \quad FR-A760-00040 \quad FR-A760-00061 | FR-A760-00120 |
| :---: |
| or more |

- LD/SLD Rated

$\begin{aligned} & \hline \text { Pr. } 72 \text { PWM frequency } \\ & \text { selection setting } \\ & \text { (carrier frequency) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { FR-A760- } \\ & 00017 \end{aligned}$	$\begin{aligned} & \text { FR-A760- } \\ & 00040 \end{aligned}$	$\begin{aligned} & \text { FR-A760- } \\ & 00061 \end{aligned}$	FR-A760-00120		FR-A760-00220 or more
$2(2 \mathrm{kHz})$ or less	$\begin{gathered} 100 \mathrm{~m} \\ (328.08 \mathrm{feet}) \\ \hline \end{gathered}$	$\begin{gathered} 200 \mathrm{~m} \\ (656.16 \text { feet }) \end{gathered}$	300 m (984.25feet)	$\begin{gathered} 500 \mathrm{~m} \\ \text { (1640.42feet) } \end{gathered}$		$\begin{gathered} 500 \mathrm{~m} \\ \text { (1640.42feet) } \\ \hline \end{gathered}$
3 to 15 (3kHz to 14.5 kHz$)$	$\begin{gathered} 100 \mathrm{~m} \\ (328.08 \mathrm{feet}) \end{gathered}$	$\begin{gathered} 100 \mathrm{~m} \\ (328.08 \mathrm{feet}) \end{gathered}$	$\begin{gathered} 200 \mathrm{~m} \\ (656.16 \mathrm{feet}) \end{gathered}$	ND, HD	$\begin{gathered} \hline 500 \mathrm{~m} \\ \text { (1640.42feet) } \end{gathered}$	$\begin{gathered} 500 \mathrm{~m} \\ (1640.42 \mathrm{feet}) \end{gathered}$
				LD, SLD	$\begin{gathered} \hline 400 \mathrm{~m} \\ \text { (1312.33feet) } \end{gathered}$	

- When fast response current limit is disabled, the wiring length should be within the value in the table below ($\left.{ }^{*} \operatorname{Pr} .156=1,3,5,7,9,11,13,15,17,19,21,23,25,27,29\right)$.

FR-A760-00017	FR-A760-00040	FR-A760-00061	FR-A760-00120 or more
100 m $(328.08 \mathrm{feet})$	300 m $(984.25 f e e t)$	500 m $(1640.42 \mathrm{feet})$	500 m $(1640.42 \mathrm{feet})$

CAUTION

[^0](5) Cable size of the control circuit power supply (terminal R1/L11, S1/L21)

- Terminal screw size: M4
- Cable size: $0.75 \mathrm{~mm}^{2}$ to $2 \mathrm{~mm}^{2}$
- Tightening torque: $1.5 \mathrm{~N} \cdot \mathrm{~m}$

3.5 Control circuit terminals

(1) Terminal layout

Terminal screw size: M3.5
Tightening torque: $1.2 \mathrm{~N} \cdot \mathrm{~m}$

(2) Instructions for wiring of the control circuit terminal

1) Terminals 5 , SD and SE are common to the I/O signals and isolated from each other. Do not earth (ground). Avoid connecting the terminal SD and 5 and the terminal SE and 5.
2) Use shielded or twisted cables for connection to the control circuit terminals and run them away from the main and power circuits (including the 200 V relay sequence circuit).
3) Use two or more parallel micro-signal contacts or twin contacts to prevent a contact faults when using contact inputs since the control circuit input signals are micro-currents.

Micro signal contacts

Twin contacts
4) Do not apply a voltage to the contact input terminals (e.g. STF) of the control circuit.
5) Always apply a voltage to the fault output terminals (A, B, C) via a relay coil, lamp, etc.
6) It is recommended to use the cables of $0.75 \mathrm{~mm}^{2}$ gauge for connection to the control circuit terminals. If the cable gauge used is $1.25 \mathrm{~mm}^{2}$ or more, the front cover may be lifted when there are many cables running or the cables are run improperly, resulting in an operation panel contact fault.
7) The wiring length should be 30 m (98.43 feet) maximum.

4 PRECAUTIONS FOR USE OF THE INVERTER

The FR-A700 series is a highly reliable product, but incorrect peripheral circuit making or operation/handling method may shorten the product life or damage the product.
Before starting operation, always recheck the following items.
(1) Use crimping terminals with insulation sleeve to wire the power supply and motor.
(2) Application of power to the output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the inverter will damage the inverter. Never perform such wiring.
(3) After wiring, wire offcuts must not be left in the inverter.

Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter clean. When drilling mounting holes in an enclosure etc., take care not to allow chips and other foreign matter to enter the inverter.
(4) Use cables of the size to make a voltage drop 2% maximum.

If the wiring distance is long between the inverter and motor, a main circuit cable voltage drop will cause the motor torque to decrease especially at the output of a low frequency.
Refer to page 16 for the recommended cable sizes.
(5) The overall wiring length should be 500 m (1640.4 feet) maximum.
(The wiring length should be 100 m (328.1 feet) maximum for vector control.)
Especially for long distance wiring, the fast response current limit function may decrease or the equipment connected to the secondary side may malfunction or become faulty under the influence of a charging current due to the stray capacity of the wiring. Therefore, note the overall wiring length. (Refer to page 19.)
(6) Electromagnetic wave interference

The input/output (main circuit) of the inverter includes high frequency components, which may interfere with the communication devices (such as AM radios) used near the inverter. In this case, set the EMC filter valid to minimize interference. (Only the FR-A720/A740 are provided with an EMC filter.)
(7) Do not install a power factor correction capacitor, surge suppressor or radio noise filter on the inverter output side. This will cause the inverter to trip or the capacitor, and surge suppressor to be damaged. If any of the above devices is installed, immediately remove it.
(8) Before starting wiring or other work after the inverter is operated, wait for at least 10 minutes after the power supply has been switched off, and check that there are no residual voltage using a tester or the like. The capacitor is charged with high voltage for some time after power off and it is dangerous.
(9) A short circuit or earth (ground) fault on the inverter output side may damage the inverter modules.

- Fully check the insulation resistance of the circuit prior to inverter operation since repeated short circuits caused by peripheral circuit inadequacy or an earth (ground) fault caused by wiring inadequacy or reduced motor insulation resistance may damage the inverter modules.
- Fully check the to-earth (ground) insulation and phase to phase insulation of the inverter output side before power-on. Especially for an old motor or use in hostile atmosphere, securely check the motor insulation resistance etc.
(10) Do not use the inverter input side magnetic contactor to start/stop the inverter.

Always use the start signal (ON/OFF of STF and STR signals) to start/stop the inverter.
(11) Across $P /+$ and $P R$ terminals, connect only an external regenerative brake discharge resistor. Do not connect a mechanical brake.
(12) Do not apply a voltage higher than the permissible voltage to the inverter I/O signal circuits.

Application of permissible voltage to the inverter I/O signal circuit and incorrect polarity may damage the I/O terminal. Especially check the wiring to prevent the speed setting potentiometer from being connected incorrectly to short terminals 10E-5.
(13) Provide electrical and mechanical interlocks for MC1 and MC2 which are used for bypass operation.
When the wiring is incorrect and if there is a bypass operation circuit as shown right, the inverter will be damaged when the power supply is connected to the inverter U, V, W terminals, due to arcs generated at the time of switch-over or chattering caused by a sequence error.
(Commercial operation can not be performed with the vector dedicated motor (SF-V5RU, SF-THY).)

(14) If the machine must not be restarted when power is restored after a power failure, provide a magnetic contactor in the inverter's input side and also make up a sequence which will not switch on the start signal. If the start signal (start switch) remains on after a power failure, the inverter will automatically restart as soon as the power is restored.
(15) Instructions for overload operation

When performing an operation of frequent start/stop with the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a continuous flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Decreasing current may increase the life. However, decreasing current will result in insufficient torque and the inverter may not start. Therefore, choose the inverter which has enough allowance for current (up to 2 rank larger in capacity).
(16) Make sure that the specifications and rating match the system requirements.
(17) A motor with encoder is necessary for vector control. In addition, connect the encoder directly to the backlash-free motor shaft. An encoder is not necessary for real sensorless vector control.
(18) When the motor signal is unstable, due to change in the frequency setting signal caused by noises from the inverter, take the following measures to change the motor speed by the analog signal.

- Do not run the signal cables and power cables (inverter I/O cables) in parallel with each other and do not bundle them.
- Run signal cables as far away as possible from power cables (inverter I/O cables).
- Use shield cables as signal cables.
- Install a ferrite core on the signal cable (Example: ZCAT3035-1330 TDK).

5 FAILSAFE OF THE SYSTEM WHICH USES THE INVERTER

When a fault occurs, the inverter trips to output a fault signal. However, a fault output signal may not be output at an inverter fault occurrence when the detection circuit or output circuit fails, etc. Although Mitsubishi assures best quality products, provide an interlock which uses inverter status output signals to prevent accidents such as damage to machine when the inverter fails for some reason and at the same time consider the system configuration where failsafe from outside the inverter, without using the inverter, is enabled even if the inverter fails.
(1) Interlock method which uses the inverter status output signals

By combining the inverter status output signals to provide an interlock as shown below, an inverter alarm can be detected.

No	Interlock Method	Check Method	Used Signals	Refer to Page
1)	Inverter protective function operation	Operation check of an alarm contact Circuit error detection by negative logic	Fault output signal (ALM signal)	Refer to the chapter 4 of the Instruction Manual.
2)	Inverter running status	Operation ready signal check	Operation ready signal (RY signal)	Refer to the chapter 4 of the Instruction Manual.
3)	Inverter running status	Logic check of the start signal and running signal	Start signal (STF signal, STR signal) Running signal (RUN signal)	Refer to the chapter 4 of the Instruction Manual.
4)	Inverter running status	Logic check of the start signal and output current	Start signal (STF signal, STR signal) Output current detection signal (Y12 signal)	Refer to the chapter 4 of the Instruction Manual.

(2) Backup method outside the inverter

Even if the interlock is provided by the inverter status signal, enough failsafe is not ensured depending on the failure status of the inverter itself. For example, when the inverter CPU fails, even if the interlock is provided using the inverter fault output signal, start signal and RUN signal output, there is a case where a fault output signal is not output and RUN signal is kept output even if an inverter fault occurs.
Provide a speed detector to detect the motor speed and current detector to detect the motor current and consider the backup system such as checking up as below according to the level of importance of the system.

1) Start signal and actual operation check

Check the motor running and motor current while the start signal is input to the inverter by comparing the start signal to the inverter and detected speed of the speed detector or detected current of the current detector. Note that the motor current runs as the motor is running for the period until the motor stops since the inverter starts decelerating even if the start signal turns off. For the logic check, configure a sequence considering the inverter deceleration time. In addition, it is recommended to check the three-phase current when using the current detector.
2) Command speed and actual operation check

Check if there is no gap between the actual speed and commanded speed by comparing the inverter speed command and detected speed of the speed detector.

6 PARAMETER LIST

6.1 Parameter list

For simple variable-speed operation of the inverter, the initial setting of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be made from the operation panel (FR-DU07).

REMARKS

- (0) indicates simple mode parameters. (initially set to extended mode)
- The shaded parameters in the table allow its setting to be changed during operation even if " 0 " (initial value) is set in Pr. 77 Parameter write selection.

Parameter	Name	Setting Range	Initial Value
(0) 0	Torque boost	0 to 30\%	$\begin{aligned} & \hline 6 / 5 / 4 / 3 / \\ & 2 / 1 \% * 1 \end{aligned}$
(0) 1	Maximum frequency	0 to 120 Hz	$\begin{array}{\|c\|} \hline 120 / \\ 60 \mathrm{~Hz} * 2 \end{array}$
(0) 2	Minimum frequency	0 to 120 Hz	OHz
(0) 3	Base frequency	0 to 400 Hz	60 Hz
(0) 4	Multi-speed setting (high speed)	0 to 400 Hz	60 Hz
(0) 5	Multi-speed setting (middle speed)	0 to 400 Hz	30 Hz
(0) 6	Multi-speed setting (low speed)	0 to 400 Hz	10Hz
(0) 7	Acceleration time	0 to 3600/360s	5/15s *3
(0) 8	Deceleration time	0 to 3600/360s	5/15s *3
(0) 9	Electronic thermal O/L relay	$\begin{aligned} & 0 \text { to } 500 / \\ & 0 \text { to } 3600 \mathrm{~A} * 2 \end{aligned}$	Rated inverter current
10	DC injection brake operation frequency	$\begin{aligned} & \hline 0 \text { to } 120 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	3 Hz
11	DC injection brake operation time	0 to 10s, 8888	0.5s
12	DC injection brake operation voltage	0 to 30\%	$\underset{* 4}{4 / 2 / 1 \%}$
13	Starting frequency	0 to 60 Hz	0.5 Hz
14	Load pattern selection	0 to 5	0
15	Jog frequency	0 to 400 Hz	5 Hz
16	Jog acceleration/ deceleration time	0 to 3600/360s	0.5s
17	MRS input selection	0, 2, 4	0
18	High speed maximum frequency	120 to 400 Hz	$\begin{gathered} 120 / \\ 60 \mathrm{~Hz} * 2 \\ \hline \end{gathered}$
19	Base frequency voltage	$\begin{aligned} & \hline 0 \text { to } 1000 \mathrm{~V}, \\ & 8888,9999 \end{aligned}$	9999
20	Acceleration/deceleration reference frequency	1 to 400 Hz	60 Hz
21	Acceleration/deceleration time increments	0, 1	0
22	Stall prevention operation level (torque limit level)	0 to 400\%	150\%
23	Stall prevention operation level compensation factor at double speed	$\begin{aligned} & 0 \text { to } 200 \% \text {, } \\ & 9999 \end{aligned}$	9999
24 to 27	Multi-speed setting (4 speed to 7 speed)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
28	Multi-speed input compensation selection	0, 1	0
29	Acceleration/deceleration pattern selection	0 to 5	0
30	Regenerative function selection	$\begin{aligned} & 0,1,2,10,11, \\ & 20,21 \end{aligned}$	0

Parameter	Name	Setting Range	Initial Value
31	Frequency jump 1A	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
32	Frequency jump 1B	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
33	Frequency jump 2A	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
34	Frequency jump 2B	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
35	Frequency jump 3A	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
36	Frequency jump 3B	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
37	Speed display	0, 1 to 9998	0
41	Up-to-frequency sensitivity	0 to 100\%	10\%
42	Output frequency detection	0 to 400Hz	6 Hz
43	Output frequency detection for reverse rotation	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
44	Second acceleration/ deceleration time	0 to 3600/360s	5s
45	Second deceleration time	$\begin{aligned} & 0 \text { to } 3600 / \\ & 360 \text { s, } 9999 \end{aligned}$	9999
46	Second torque boost	0 to 30\%, 9999	9999
47	Second V/F (base frequency)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
48	Second stall prevention operation current	0 to 220\%	150\%
49	Second stall prevention operation frequency	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	OHz
50	Second output frequency detection	0 to 400 Hz	30 Hz
51	Second electronic thermal O/L relay	$\begin{aligned} & 0 \text { to } 500 \mathrm{~A} \text {, } \\ & 9999 / \\ & 0 \text { to } 3600 \mathrm{~A} \text {, } \\ & 9999{ }^{2} 2 \end{aligned}$	9999
52	DU/PU main display data selection	$\begin{aligned} & 0,5 \text { to } 14,17 \\ & \text { to } 20,22 \text { to } 25 \text {, } \\ & 32 \text { to } 35, \\ & 50 \text { to } 57,100 \end{aligned}$	0
54	FM terminal function selection	$\begin{aligned} & 1 \text { to } 3,5 \text { to } 14 \text {, } \\ & 17,18,21,24 \text {, } \\ & 32 \text { to } 34,50 \text {, } \\ & 52,53,70 \end{aligned}$	1
55	Frequency monitoring reference	0 to 400 Hz	60 Hz
56	Current monitoring reference	0 to $500 / 0$ to 3600A *2	Rated inverter current
57	Restart coasting time	$\begin{aligned} & 0,0.1 \text { to } 5 \mathrm{~s}, \\ & 9999 / \\ & 0,0.1 \text { to } 30 \mathrm{~s}, \\ & 9999 * 2 \end{aligned}$	9999
58	Restart cushion time	0 to 60s	1s
59	Remote function selection	0, 1, 2, 3	0

Parameter	Name	Setting Range	Initial Value
60	Energy saving control selection	0, 4	0
61	Reference current	$\begin{aligned} & \hline 0 \text { to } 500 \mathrm{~A} \text {, } \\ & 9999 / \\ & 0 \text { to } 3600 \mathrm{~A} \text {, } \\ & 9999 * 2 \end{aligned}$	9999
62	Reference value at acceleration	$\begin{aligned} & 0 \text { to } 220 \% \text {, } \\ & 9999 \end{aligned}$	9999
63	Reference value at deceleration	$\begin{aligned} & 0 \text { to } 220 \% \text {, } \\ & 9999 \end{aligned}$	9999
64	Starting frequency for elevator mode	$\begin{aligned} & 0 \text { to } 10 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
65	Retry selection	0 to 5	0
66	Stall prevention operation reduction starting frequency	0 to 400 Hz	60 Hz
67	Number of retries at fault occurrence	$\begin{aligned} & \hline 0 \text { to } 10, \\ & 101 \text { to } 110 \end{aligned}$	0
68	Retry waiting time	0 to 10s	1s
69	Retry count display erase	0	0
70	Special regenerative brake duty	$\begin{aligned} & 0 \text { to } 30 \% / \\ & 0 \text { to } 10 \%{ }^{2} 2 \end{aligned}$	0\%
71	Applied motor	0 to 8,13 to $18,20,23,24$, $30,33,34,40$, $43,44,50,53$, 54 /0 to 8, 13 to $18,30,33,34$ *5	0
72	PWM frequency selection	$\begin{aligned} & 0 \text { to } 15 / \\ & 0 \text { to } 6,25 * 2 \\ & \hline \end{aligned}$	2
73	Analog input selection	0 to 7, 10 to 17	1
74	Input filter time constant	0 to 8	1
75	```Reset selection/ disconnected PU detection/ PU stop selection```	$\begin{aligned} & 0 \text { to } 3,14 \text { to } \\ & 17,100 \text { to } 103, \\ & 114 \text { to } 117 \end{aligned}$	14
76	Fault code output selection	0, 1, 2	0
77	Parameter write selection	0, 1, 2	0
78	Reverse rotation prevention selection	0, 1, 2	0
(0) 79	Operation mode selection	$\begin{aligned} & 0,1,2,3,4,6, \\ & 7 \end{aligned}$	0
80	Motor capacity	$\begin{aligned} & 0.4 \text { to } 55 \mathrm{~kW} \text {, } \\ & 9999 / \\ & 0 \text { to } 3600 \mathrm{~kW} \text {, } \\ & 9999{ }^{*} 2 \end{aligned}$	9999
81	Number of motor poles	$\begin{aligned} & 2,4,6,8,10, \\ & 12,14,16,18, \\ & 20,9999 \end{aligned}$	9999
82	Motor excitation current	$\begin{aligned} & 0 \text { to } 500 \mathrm{~A}, \\ & 9999 / \\ & 0 \text { to } 3600 \mathrm{~A}, \\ & 9999 * 2 \end{aligned}$	9999
83	Rated motor voltage	0 to 1000V	$\begin{array}{\|c\|} \hline 200 / 400 \mid \\ 575 \mathrm{~V} \cdot 6 \end{array}$
84	Rated motor frequency	10 to 120 Hz	60 Hz
89	Speed control gain (Advanced magnetic flux vector)	$\begin{aligned} & 0 \text { to } 200 \% \text {, } \\ & 9999 \end{aligned}$	9999
90	Motor constant (R1)	$\begin{aligned} & 0 \text { to } 50 \Omega \text {, } \\ & 9999 / \\ & 0 \text { to } 400 \mathrm{~m} \Omega \text {, } \\ & 9999 * 2 \end{aligned}$	9999
91	Motor constant (R2)	$\begin{aligned} & 0 \text { to } 50 \Omega \text {, } \\ & 9999 / \\ & 0 \text { to } 400 \mathrm{~m} \Omega \text {, } \\ & 9999 * 2 \end{aligned}$	9999

Parameter	Name	Setting Range	Initial Value
92	Motor constant (L1)	0 to 50Ω (0 to 1000 mH), 9999/ 0 to $3600 \mathrm{~m} \Omega$ (0 to 400 mH), 9999 *2	9999
93	Motor constant (L2)	$\begin{aligned} & 0 \text { to } 50 \Omega \\ & (0 \text { to } 1000 \mathrm{mH} \text {), } 9999 / \\ & 0 \text { to } 3600 \mathrm{~m} \Omega \\ & (0 \text { to } 400 \mathrm{mH}), 9999 \\ & \text { *2 } \\ & \hline \end{aligned}$	9999
94	Motor constant (X)	0 to 500Ω (0 to 100\%), 9999/ 0 to 100 Ω (0 to 100\%), 9999 *2	9999
95	Online auto tuning selection	0 to 2	0
96	Auto tuning setting/status	0, 1, 101	0
100	V/F1(first frequency)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
101	V/F1(first frequency voltage)	0 to $1,000 \mathrm{~V}$	0V
102	V/F2(second frequency)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
103	V/F2(second frequency voltage)	0 to 1,000V	OV
104	V/F3(third frequency)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
105	V/F3(third frequency voltage)	0 to 1,000V	OV
106	V/F4(fourth frequency)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
107	V/F4(fourth frequency voltage)	0 to 1,000V	OV
108	V/F5(fifth frequency)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
109	V/F5(fifth frequency voltage)	0 to $1,000 \mathrm{~V}$	OV
110	Third acceleration/ deceleration time	$\begin{aligned} & \hline 0 \text { to } 3600 / \\ & 360 \text { s, } 9999 \end{aligned}$	9999
111	Third deceleration time	$\begin{aligned} & 0 \text { to } 3600 / \\ & 360 \text { s, } 9999 \end{aligned}$	9999
112	Third torque boost	0 to 30\%, 9999	9999
113	Third V/F (base frequency)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
114	Third stall prevention operation current	0 to 220\%	150\%
115	Third stall prevention operation frequency	0 to 400 Hz	0
116	Third output frequency detection	0 to 400 Hz	60 Hz
117	PU communication station number	0 to 31	0
118	PU communication speed	$\begin{aligned} & 48,96,192, \\ & 384 \end{aligned}$	192
119	PU communication stop bit length	0, 1, 10, 11	1
120	PU communication parity check	0, 1, 2	2
121	Number of PU communication retries	0 to 10, 9999	1
122	PU communication check time interval	$\begin{aligned} & \hline 0,0.1 \text { to } \\ & 999.8 \mathrm{~s}, 9999 \end{aligned}$	9999
123	PU communication waiting time setting	$\begin{aligned} & 0 \text { to } 150 \mathrm{~ms}, \\ & 9999 \end{aligned}$	9999
124	PU communication CR/LF selection	0, 1, 2	1
(0) 125	Terminal 2 frequency setting gain frequency	0 to 400 Hz	60 Hz
(0) 126	Terminal 4 frequency setting gain frequency	0 to 400 Hz	60 Hz

Parameter	Name	Setting Range	Initial Value
127	PID control automatic switchover frequency	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
128	PID action selection	$\begin{aligned} & 10,11,20,21, \\ & 50,51,60,61, \\ & 70,71,80,81, \\ & 90,91,100, \\ & 101 \end{aligned}$	10
129	PID proportional band	$\begin{aligned} & 0.1 \text { to } 1000 \% \text {, } \\ & 9999 \end{aligned}$	100\%
130	PID integral time	$\begin{aligned} & 0.1 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	1s
131	PID upper limit	$\begin{aligned} & 0 \text { to 100\%, } \\ & 9999 \end{aligned}$	9999
132	PID lower limit	$\begin{aligned} & 0 \text { to } 100 \%, \\ & 9999 \end{aligned}$	9999
133	PID action set point	$\begin{aligned} & 0 \text { to } 100 \% \text {, } \\ & 9999 \end{aligned}$	9999
134	PID differential time	$\begin{aligned} & 0.01 \text { to } 10.00 \mathrm{~s}, \\ & 9999 \end{aligned}$	9999
135	Electronic bypass sequence selection	0,1	0
136	MC switchover interlock time	0 to 100s	1s
137	Start waiting time	0 to 100s	0.5 s
138	Bypass selection at a fault	0,1	0
139	Automatic switchover frequency from inverter to bypass operation	$\begin{aligned} & 0 \text { to } 60 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
140	Backlash acceleration stopping frequency	0 to 400 Hz	1Hz
141	Backlash acceleration stopping time	0 to 360s	0.5 s
142	Backlash deceleration stopping frequency	0 to 400 Hz	1Hz
143	Backlash deceleration stopping time	0 to 360s	0.5s
144	Speed setting switchover	$\begin{aligned} & 0,2,4,6,8, \\ & 10,102,104, \\ & 106,108,110 \end{aligned}$	4
145	PU display language selection	0 to 7	1
148	Stall prevention level at 0 V input	0 to 220\%	150\%
149	Stall prevention level at 10 V input	0 to 220\%	200\%
150	Output current detection level	0 to 220\%	150\%
151	Output current detection signal delay time	0 to 10s	Os
152	Zero current detection level	0 to 220\%	5\%
153	Zero current detection time	0 to 1s	0.5 s
154	Voltage reduction selection during stall prevention operation	0, 1	1
155	RT signal function validity condition selection	0, 10	0
156	Stall prevention operation selection	$\begin{aligned} & 0 \text { to } 31,100 \text {, } \\ & 101 \end{aligned}$	0
157	OL signal output timer	0 to 25s, 9999	Os
158	AM terminal function selection	$\begin{aligned} & 1 \text { to } 3,5 \text { to } 14, \\ & 17,18,21,24, \\ & 32 \text { to } 34,50, \\ & 52,53,70 \end{aligned}$	1
159	Automatic switchover frequency range from bypass to inverter operation	$\begin{aligned} & 0 \text { to } 10 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
(0) 160	User group read selection	0, 1, 9999	0
161	Frequency setting/key lock operation selection	0, 1, 10, 11	0

Parameter	Name	Setting Range	Initial Value
162	Automatic restart after instantaneous power failure selection	$\begin{aligned} & 0,1,2,10,11 \\ & 12 \end{aligned}$	0
163	First cushion time for restart	0 to 20s	Os
164	First cushion voltage for restart	0 to 100\%	0\%
165	Stall prevention operation level for restart	0 to 220\%	150\%
166	Output current detection signal retention time	0 to 10s, 9999	0.1s
167	Output current detection operation selection	0, 1	0
168	Parameter for manufacturer setting. Do not set.		
169			
170	Watt-hour meter clear	0, 10,9999	9999
171	Operation hour meter clear	0,9999	9999
172	User group registered display/batch clear	9999, (0 to 16)	0
173	User group registration	0 to 999, 9999	9999
174	User group clear	0 to 999, 9999	9999
178	STF terminal function selection	$\begin{aligned} & \hline 0 \text { to } 20,22 \text { to } \\ & 28,42 \text { to } 44 \text {, } \\ & 50,60,62,64 \\ & \text { to } 71,74,9999 \\ & \hline \end{aligned}$	60
179	STR terminal function selection	$\begin{aligned} & 0 \text { to } 20,22 \text { to } \\ & 28,42 \text { to } 44 \text {, } \\ & 50,61,62,64 \\ & \text { to } 71,74,9999 \end{aligned}$	61
180	RL terminal function selection	0 to 20, 22 to 28, 42 to 44, 50, 62, 64 to 71, 74, 9999	0
181	RM terminal function selection		1
182	RH terminal function selection		2
183	RT terminal function selection		3
184	AU terminal function selection	$\begin{aligned} & 0 \text { to } 20,22 \text { to } \\ & 28,42 \text { to } 44, \\ & 50,62 \text { to } 71, \\ & 74,9999 \end{aligned}$	4
185	JOG terminal function selection	$\begin{aligned} & 0 \text { to } 20,22 \text { to } \\ & 28,42 \text { to } 44, \\ & 50,62,64 \text { to } \\ & 71,74,9999 \end{aligned}$	5
186	CS terminal function selection		6
187	MRS terminal function selection		24
188	STOP terminal function selection		25
189	RES terminal function selection		62

Parameter	Name	Setting Range	Initial Value
190	RUN terminal function selection	0 to 8,10 to 20, 25 to 28 , 30 to 36,39 , 41 to 47,64 , $70,84,85,90$ to 99 , 100 to 108, 110 to 116 , 120, 125 to 128, 130 to 136, 139, 141 to 147,164 , 170, 184, 185, 190 to 199, 9999	0
191	SU terminal function selection		1
192	IPF terminal function selection		2
193	OL terminal function selection		3
194	FU terminal function selection		4
195	$A B C 1$ terminal function selection	0 to 8,10 to 20,25 to 28 , 30 to 36,39 , 41 to 47,64 , $70,84,85,90$, 91, 94 to 99 , 100 to 108, 110 to 116 , 120, 125 to 128, 130 to 136, 139, 141 to 147,164 , 170, 184, 185, 190, 191, 194 to 199, 9999	99
196	$A B C 2$ terminal function selection		9999
$\begin{gathered} 232 \text { to } \\ 239 \end{gathered}$	Multi-speed setting (8 speed to 15 speed)	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
240	Soft-PWM operation selection	0, 1	1
241	Analog input display unit switchover	0, 1	0
242	Terminal 1 added compensation amount (terminal 2)	0 to 100\%	100\%
243	Terminal 1 added compensation amount (terminal 4)	0 to 100\%	75\%
244	Cooling fan operation selection	0, 1	1
245	Rated slip	0 to 50\%, 9999	9999
246	Slip compensation time constant	0.01 to 10s	0.5s
247	Constant-power range slip compensation selection	0,9999	9999
250	Stop selection	$\begin{aligned} & \hline 0 \text { to } 100 \mathrm{~s}, 1000 \\ & \text { to } 1100 \mathrm{~s} \\ & 8888,9999 \end{aligned}$	9999
251	Output phase loss protection selection	0, 1	1
252	Override bias	0 to 200\%	50\%
253	Override gain	0 to 200\%	150\%
255	Life alarm status display	(0 to 15)	0
256	Inrush current limit circuit life display	(0 to 100\%)	100\%
257	Control circuit capacitor life display	(0 to 100\%)	100\%
258	Main circuit capacitor life display	(0 to 100\%)	100\%
259	Main circuit capacitor life measuring	0, 1	0
260	PWM frequency automatic switchover	0, 1	1

Parameter	Name	Setting Range	Initial Value
261	Power failure stop selection	0, 1, 2, 11, 12	0
262	Subtracted frequency at deceleration start	0 to 20Hz	3 Hz
263	Subtraction starting frequency	$\begin{aligned} & 0 \text { to } 120 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	60 Hz
264	Power-failure deceleration time 1	0 to 3600/360s	5s
265	Power-failure deceleration time 2	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} / \\ & 360 \mathrm{~s}, 9999 \end{aligned}$	9999
266	Power failure deceleration time switchover frequency	0 to 400 Hz	60 Hz
267	Terminal 4 input selection	0, 1, 2	0
268	Monitor decimal digits selection	0,1, 9999	9999
269	Parameter for manufacturer setting. Do not set.		
270	Stop-on contact/load torque high-speed frequency control selection	0, 1, 2, 3	0
271	High-speed setting maximum current	0 to 220\%	50\%
272	Middle-speed setting minimum current	0 to 220\%	100\%
273	Current averaging range	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
274	Current averaging filter time constant	1 to 4000	16
275	Stop-on contact excitation current low-speed multiplying factor	$\begin{aligned} & 0 \text { to } 1000 \% \text {, } \\ & 9999 \end{aligned}$	9999
276	PWM carrier frequency at stop-on contact	$\begin{aligned} & 0 \text { to } 9,9999 / \\ & 0 \text { to } 4,9999{ }^{* 2} \end{aligned}$	9999
278	Brake opening frequency	0 to 30 Hz	3 Hz
279	Brake opening current	0 to 220\%	130\%
280	Brake opening current detection time	0 to 2s	0.3 s
281	Brake operation time at start	0 to 5s	0.3 s
282	Brake operation frequency	0 to 30 Hz	6 Hz
283	Brake operation time at stop	0 to 5s	0.3s
284	Deceleration detection function selection	0, 1	0
285	Overspeed detection frequency (Excessive speed deviation detection frequency)	$\begin{aligned} & 0 \text { to } 30 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	9999
286	Droop gain	0 to 100\%	0\%
287	Droop filter time constant	0 to 1s	0.3 s
288	Droop function activation selection	0, 1, 2, 10, 11	0
291	Pulse train I/O selection	$\begin{aligned} & 0,1,10,11, \\ & 20,21,100 \end{aligned}$	0
292	Automatic acceleration/ deceleration	$\begin{aligned} & 0,1,3,5 \text { to } 8, \\ & 11 \end{aligned}$	0
293	Acceleration/deceleration separate selection	0 to 2	0
294	UV avoidance voltage gain	0 to 200\%	100\%
299	Rotation direction detection selection at restarting	0, 1, 9999	0
331	RS-485 communication station number	$\begin{aligned} & \hline 0 \text { to } 31 \\ & (0 \text { to } 247) \\ & \hline \end{aligned}$	0
332	RS-485 communication speed	$\begin{aligned} & 3,6,12,24, \\ & 48,96,192, \\ & 384 \end{aligned}$	96

Parameter	Name	Setting Range	Initial Value
333	RS-485 communication stop bit length	0, 1, 10, 11	1
334	RS-485 communication parity check selection	0, 1, 2	2
335	RS-485 communication retry count	0 to 10, 9999	1
336	RS-485 communication check time interval	$\begin{aligned} & 0 \text { to } 999.8 \mathrm{~s}, \\ & 9999 \end{aligned}$	Os
337	RS-485 communication waiting time setting	$\begin{aligned} & 0 \text { to } 150 \mathrm{~ms} \text {, } \\ & 9999 \end{aligned}$	9999
338	Communication operation command source	0, 1	0
339	Communication speed command source	0,1,2	0
340	Communication startup mode selection	0, 1, 2, 10, 12	0
341	RS-485 communication CR/ LF selection	0, 1, 2	1
342	Communication EEPROM write selection	0, 1	0
343	Communication error count	-	0
350 *7	Stop position command selection	0, 1, 9999	9999
351 *7	Orientation speed	0 to 30Hz	2 Hz
352 *7	Creep speed	0 to 10 Hz	0.5 Hz
353 *7	Creep switchover position	0 to 16383	511
354 *7	Position loop switchover position	0 to 8191	96
355 *	DC injection brake start position	0 to 255	5
356 *7	Internal stop position command	0 to 16383	0
357 *7	Orientation in-position zone	0 to 255	5
358 *7	Servo torque selection	0 to 13	1
359 *7	Encoder rotation direction	0,1	1
360 *7	16 bit data selection	0 to 127	0
361 *7	Position shift	0 to 16383	0
362 *7	Orientation position loop gain	0.1 to 100	1
363 *7	Completion signal output delay time	0 to 5s	0.5 s
364 *7	Encoder stop check time	0 to 5s	0.5 s
365 *7	Orientation limit	0 to 60s, 9999	9999
366 *7	Recheck time	0 to 5s, 9999	9999
367 *7	Speed feedback range	$\begin{aligned} & 0 \text { to } 400 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
368 *7	Feedback gain	0 to 100	1
369 *7	Number of encoder pulses	0 to 4096	1024
374	Overspeed detection level	0 to 400 Hz	140 Hz
376 *7	Encoder signal loss detection enable/disable selection	0, 1	0
380	Acceleration S-pattern 1	0 to 50\%	0
381	Deceleration S-pattern 1	0 to 50\%	0
382	Acceleration S-pattern 2	0 to 50\%	0
383	Deceleration S-pattern 2	0 to 50\%	0
384	Input pulse division scaling factor	0 to 250	0
385	Frequency for zero input pulse	0 to 400 Hz	0
386	Frequency for maximum input pulse	0 to 400 Hz	60 Hz
393 *7	Orientation selection	0, 1, 2	0
396 *7	Orientation speed gain (\mathbf{P} term)	0 to 1000	60
397 *7	Orientation speed integral time	0 to 20s	0.333s

Parameter	Name	Setting Range	Initial Value
398 *7	Orientation speed gain (D term)	0 to 100	1
399 *7	Orientation deceleration ratio	0 to 1000	20
414	PLC function operation selection	0, 1	0
415	Inverter operation lock mode setting	0, 1	0
416	Pre-scale function selection	0 to 5	0
417	Pre-scale setting value	0 to 32767	1
419 *7	Position command source selection	0, 2	0
420 *7	Command pulse scaling factor numerator	0 to 32767	1
421 *7	Command pulse scaling factor denominator	0 to 32767	1
422 *7	Position loop gain	0 to $150 \mathrm{sec}^{-1}$	$25 \mathrm{sec}^{-1}$
423 *7	Position feed forward gain	0 to 100\%	0
424 *7	Position command acceleration/deceleration time constant	0 to 50s	Os
425 * 7	Position feed forward command filter	0 to 5s	Os
426 *7	In-position width	$\begin{aligned} & \hline 0 \text { to } \\ & 32767 \text { pulse } \\ & \hline \end{aligned}$	100
427 *7	Excessive level error	$\begin{aligned} & 0 \text { to } 400 \mathrm{~K}, \\ & 9999 \end{aligned}$	40K
428 *7	Command pulse selection	0 to 5	0
429 *7	Clear signal selection	0,1	1
430 *7	Pulse monitor selection	0 to 5,9999	9999
450	Second applied motor	0 to 8,13 to 18, 20, 23, 24, 30, 33, 34, 40, $43,44,50,53$, 54, 9999/0 to 8, 13 to 18,30 , 33, 34, 9999 *5	9999
451	Second motor control method selection	$\begin{aligned} & 10,11,12,20, \\ & 9999 \end{aligned}$	9999
453	Second motor capacity	$\begin{aligned} & 0.4 \text { to } 55 \mathrm{~kW} \text {, } \\ & 9999 / \\ & 0 \text { to } 3600 \mathrm{~kW} \text {, } \\ & 9999{ }^{2} 2 \end{aligned}$	9999
454	Number of second motor poles	$\begin{aligned} & 2,4,6,8,10, \\ & 9999 \end{aligned}$	9999
455	Second motor excitation current	$\begin{aligned} & 0 \text { to } 500 \mathrm{~A}, \\ & 9999 / \\ & 0 \text { to } 3600 \mathrm{~A}, \\ & 9999{ }^{2} 2 \end{aligned}$	9999
456	Rated second motor voltage	0 to 1000V	$\begin{array}{\|c\|} \hline 200 / 400 / \\ 575 \mathrm{~V} \cdot 6 \end{array}$
457	Rated second motor frequency	10 to 120 Hz	60 Hz
458	Second motor constant (R1)	$\begin{aligned} & \hline 0 \text { to } 50 \Omega \text {, } \\ & 9999 / \\ & 0 \text { to } 400 \mathrm{~m} \Omega \text {, } \\ & 9999{ }^{2} 2 \end{aligned}$	9999
459	Second motor constant (R2)	$\begin{aligned} & 0 \text { to } 50 \Omega \text {, } \\ & 9999 / \\ & 0 \text { to } 400 \mathrm{~m} \Omega \text {, } \\ & 9999 * 2 \end{aligned}$	9999
460	Second motor constant (L1)	0 to 50Ω (0 to 1000 mH), $9999 /$ 0 to $3600 \mathrm{~m} \Omega$ (0 to 400 mH), 9999 *2	9999

Parameter	Name	Setting Range	Initial Value
461	Second motor constant (L2)	$\begin{aligned} & 0 \text { to } 50 \Omega \\ & (0 \text { to } 1000 \mathrm{mH}), 9999 / \\ & 0 \text { to } 3600 \mathrm{~m} \Omega \\ & (0 \text { to } 400 \mathrm{mH}), 9999 \\ & \text { "2 } \end{aligned}$	9999
462	Second motor constant (X)	$\begin{aligned} & \hline 0 \text { to } 500 \Omega \\ & (0 \text { to } 100 \%), 9999 / \\ & 0 \text { to } 100 \Omega \\ & (0 \text { to } 100 \%), 9999 \\ & =2 \\ & \hline \end{aligned}$	9999
463	Second motor auto tuning setting/status	0, 1, 101	0
464 *7	Digital position control sudden stop deceleration time	0 to 360.0s	0
465 *7	First position feed amount lower 4 digits	0 to 9999	0
466 *7	First position feed amount upper 4 digits	0 to 9999	0
467 *7	Second position feed amount lower 4 digits	0 to 9999	0
468 *7	Second position feed amount upper 4 digits	0 to 9999	0
469 *7	Third position feed amount lower 4 digits	0 to 9999	0
470 * 7	Third position feed amount upper 4 digits	0 to 9999	0
471 *7	Fourth position feed amount lower 4 digits	0 to 9999	0
472 *7	Fourth position feed amount upper 4 digits	0 to 9999	0
473 *7	Fifth position feed amount lower 4 digits	0 to 9999	0
474 *7	Fifth position feed amount upper 4 digits	0 to 9999	0
475 *7	Sixth position feed amount lower 4 digits	0 to 9999	0
476 * 7	Sixth position feed amount upper 4 digits	0 to 9999	0
477 *7	Seventh position feed amount lower 4 digits	0 to 9999	0
478 *7	Seventh position feed amount upper 4 digits	0 to 9999	0
479 *7	Eighth position feed amount lower 4 digits	0 to 9999	0
480 *7	Eighth position feed amount upper 4 digits	0 to 9999	0
481 *7	Ninth position feed amount lower 4 digits	0 to 9999	0
482 *7	Ninth position feed amount upper 4 digits	0 to 9999	0
483 *7	Tenth position feed amount lower 4 digits	0 to 9999	0
484 *7	Tenth position feed amount upper 4 digits	0 to 9999	0
485 *7	Eleventh position feed amount lower 4 digits	0 to 9999	0
486 *7	Eleventh position feed amount upper 4 digits	0 to 9999	0
487 *7	Twelfth position feed amount lower 4 digits	0 to 9999	0
488 *7	Twelfth position feed amount upper 4 digits	0 to 9999	0
489 *7	Thirteenth position feed amount lower 4 digits	0 to 9999	0
490 *7	Thirteenth position feed amount upper 4 digits	0 to 9999	0
491 *7	Fourteenth position feed amount lower 4 digits	0 to 9999	0
492 *7	Fourteenth position feed amount upper 4 digits	0 to 9999	0

Parameter	Name	Setting Range	Initial Value
493 *7	Fifteenth position feed amount lower 4 digits	0 to 9999	0
494 *7	Fifteenth position feed amount upper 4 digits	0 to 9999	0
495	Remote output selection	0, 1, 10, 11	0
496	Remote output data 1	0 to 4095	0
497	Remote output data 2	0 to 4095	0
498	PLC function flash memory clear	0 to 9999	0
503	Maintenance timer	0 (1 to 9998)	0
504	Maintenance timer alarm output set time	$\begin{aligned} & 0 \text { to } 9998 \text {, } \\ & 9999 \end{aligned}$	9999
505	Speed setting reference	1 to 120 Hz	60 Hz
506	Parameter 1 for user	0 to 65535	0
507	Parameter 2 for user	0 to 65535	0
508	Parameter 3 for user	0 to 65535	0
509	Parameter 4 for user	0 to 65535	0
510	Parameter 5 for user	0 to 65535	0
511	Parameter 6 for user	0 to 65535	0
512	Parameter 7 for user	0 to 65535	0
513	Parameter 8 for user	0 to 65535	0
514	Parameter 9 for user	0 to 65535	0
515	Parameter 10 for user	0 to 65535	0
516	S-pattern time at a start of acceleration	0.1 to 2.5 s	0.1s
517	S-pattern time at a completion of acceleration	0.1 to 2.5 s	0.1s
518	S-pattern time at a start of deceleration	0.1 to 2.5 s	0.1s
519	S-pattern time at a completion of deceleration	0.1 to 2.5 s	0.1s
539	Modbus-RTU communication check time interval	$\begin{aligned} & 0 \text { to } 999.8 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	9999
547	USB communication station number	0 to 31	0
548	USB communication check time interval	$\begin{aligned} & 0 \text { to } 999.8 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	9999
549	Protocol selection	0, 1	1
550	NET mode operation command source selection	0, 1, 9999	9999
551	PU mode operation command source selection	1,2,3	2
555	Current average time	0.1 to 1.0 s	1s
556	Data output mask time	0.0 to 20.0s	Os
557	Current average value monitor signal output reference current	$\begin{aligned} & 0 \text { to } 500 / \\ & 0 \text { to } 3600 \mathrm{~A} * 2 \end{aligned}$	Rated inverter current
563	Energization time carryingover times	(0 to 65535)	0
564	Operating time carrying-over times	(0 to 65535)	0
569	Second motor speed control gain	$\begin{aligned} & 0 \text { to 200\%, } \\ & 9999 \end{aligned}$	9999
570	Multiple rating setting	0 to 3	2
571	Holding time at a start	$\begin{aligned} & 0.0 \text { to } 10.0 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	9999
573	4mA input check selection	1,9999	9999

Parameter	Name	Setting Range	Initial Value
574	Second motor online auto tuning	0,1	0
575	Output interruption detection time	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	1s
576	Output interruption detection level	0 to 400 Hz	0 Hz
577	Output interruption cancel level	900 to 1100\%	1000\%
611	Acceleration time at a restart	$\begin{aligned} & 0 \text { to } 3600 \mathrm{~s} \text {, } \\ & 9999 \end{aligned}$	5/15s *2
665	Regeneration avoidance frequency gain	0 to 200\%	100
684	Tuning data unit switchover	0,1	0
800	Control method selection	$\begin{aligned} & 0 \text { to } 5,9 \text { to } 12, \\ & 20 \end{aligned}$	20
802 *7	Pre-excitation selection	0,1	0
803	Constant power range torque characteristic selection	0, 1	0
804	Torque command source selection	0, 1, 3 to 6	0
805	Torque command value (RAM)	600 to 1400\%	1000\%
806	Torque command value (RAM,EEPROM)	600 to 1400%	1000\%
807	Speed limit selection	0,1,2	0
808	Forward rotation speed limit	0 to 120 Hz	60 Hz
809	Reverse rotation speed limit	$\begin{aligned} & 0 \text { to } 120 \mathrm{~Hz}, \\ & 9999 \end{aligned}$	9999
810	Torque limit input method selection	0, 1	0
811	Set resolution switchover	0, 1, 10, 11	0
812	Torque limit level (regeneration)	$\begin{aligned} & \hline 0 \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
813	Torque limit level (3rd quadrant)	$\begin{aligned} & \hline 0 \text { to } 400 \%, \\ & 9999 \end{aligned}$	9999
814	Torque limit level (4th quadrant)	$\begin{aligned} & \hline 0 \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
815	Torque limit level 2	$\begin{aligned} & 0 \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
816	Torque limit level during acceleration	$\begin{aligned} & \hline 0 \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
817	Torque limit level during deceleration	$\begin{aligned} & \hline 0 \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
818	Easy gain tuning response level setting	1 to 15	2
819	Easy gain tuning selection	0 to 2	0
820	Speed control P gain 1	0 to 1000\%	60\%
821	Speed control integral time 1	0 to 20s	0.333s
822	Speed setting filter 1	0 to 5s, 9999	9999
823 *7	Speed detection filter 1	0 to 0.1s	0.001s
824	Torque control P gain 1	0 to 200\%	100\%
825	Torque control integral time 1	0 to 500 ms	5 ms
826	Torque setting filter 1	0 to 5s, 9999	9999
827	Torque detection filter 1	0 to 0.1s	0s
828	Model speed control gain	0 to 1000\%	60\%
830	Speed control P gain 2	$\begin{aligned} & 0 \text { to } 1000 \% \text {, } \\ & 9999 \end{aligned}$	9999
831	Speed control integral time 2	0 to 20s, 9999	9999
832	Speed setting filter 2	0 to 5s, 9999	9999
833 *7	Speed detection filter 2	0 to 0.1s, 9999	9999
834	Torque control P gain 2	$\begin{aligned} & 0 \text { to } 200 \% \text {, } \\ & 9999 \end{aligned}$	9999

Parameter	Name	Setting Range	Initial Value
835	Torque control integral time 2	0 to 500 ms , 9999	9999
836	Torque setting filter 2	0 to 5s, 9999	9999
837	Torque detection filter 2	0 to 0.1s, 9999	9999
840 *7	Torque bias selection	0 to 3,9999	9999
841 *7	Torque bias 1	$\begin{aligned} & 600 \text { to } 1400 \% \text {, } \\ & 9999 \end{aligned}$	9999
842 *7	Torque bias 2	$\begin{aligned} & 600 \text { to } 1400 \%, \\ & 9999 \end{aligned}$	9999
843 *7	Torque bias 3	$\begin{aligned} & 600 \text { to } 1400 \% \text {, } \\ & 9999 \end{aligned}$	9999
844 *7	Torque bias filter	0 to 5s, 9999	9999
845 *7	Torque bias operation time	0 to 5s, 9999	9999
846 *7	Torque bias balance compensation	0 to 10V, 9999	9999
847 *7	Fall-time torque bias terminal 1 bias	$\begin{aligned} & 0 \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
848 *7	Fall-time torque bias terminal 1 gain	$\begin{aligned} & 0 \text { to } 400 \% \text {, } \\ & 9999 \end{aligned}$	9999
849	Analog input offset adjustment	0 to 200\%	100\%
850	Brake operation selection	0,1	0
853	Speed deviation time	0 to 100s	1s
854	Excitation ratio	0 to 100\%	100\%
858	Terminal 4 function assignment	0, 1, 4, 9999	0
859	Torque current	$\begin{aligned} & 0 \text { to 500A, } \\ & 9999 / \\ & 0 \text { to } 3600 \mathrm{~A}, \\ & 9999{ }^{2} 2 \end{aligned}$	9999
860	Second motor torque current	$\begin{aligned} & 0 \text { to } 500 \mathrm{~A}, \\ & 9999 / \\ & 0 \text { to } 3600 \mathrm{~A}, \\ & 9999{ }^{2} 2 \end{aligned}$	9999
862	Notch filter time constant	0 to 60	0
863	Notch filter depth	0, 1, 2, 3	0
864	Torque detection	0 to 400\%	150\%
865	Low speed detection	0 to 400 Hz	1.5 Hz
866	Torque monitoring reference	0 to 400\%	150\%
867	AM output filter	0 to 5s	0.01s
868	Terminal 1 function assignment	0 to 6, 9999	0
872	Input phase loss protection selection	0,1	0
873	Speed limit	0 to 120 Hz	20 Hz
874	OLT level setting	0 to 200\%	150\%
875	Fault definition	0, 1	0
877	Speed feed forward control/ model adaptive speed control selection	0, 1, 2	0
878	Speed feed forward filter	0 to 1s	Os
879	Speed feed forward torque limit	0 to 400\%	150\%
880	Load inertia ratio	0 to 200 times	7
881	Speed feed forward gain	0 to 1000\%	0\%
882	Regeneration avoidance operation selection	0, 1, 2	0
883	Regeneration avoidance operation level	300 to $800 \mathrm{~V} /$ 300 to 1000 V *5	$380 /$ $760 /$ 940 VDC $* 6$

Parameter	Name	Setting Range	Initial Value
884	Regeneration avoidance at deceleration detection sensitivity	0 to 5	0
885	Regeneration avoidance compensation frequency limit value	$\begin{aligned} & 0 \text { to } 10 \mathrm{~Hz} \text {, } \\ & 9999 \end{aligned}$	6 Hz
886	Regeneration avoidance voltage gain	0 to 200\%	100\%
888	Free parameter 1	0 to 9999	9999
889	Free parameter 2	0 to 9999	9999
891	Cumulative power monitor digit shifted times	0 to 4,9999	9999
892	Load factor	30 to 150\%	100\%
893	Energy saving monitor reference (motor capacity)	$\begin{aligned} & 0.1 \text { to } 55 / \\ & 0 \text { to } 3600 \mathrm{~kW} \cdot 2 \end{aligned}$	Inverter rated capacity
894	Control selection during commercial power-supply operation	0, 1, 2, 3	0
895	Power saving rate reference value	0, 1, 9999	9999
896	Power unit cost	0 to 500, 9999	9999
897	Power saving monitor average time	$\begin{aligned} & 0,1 \text { to } 1000 \mathrm{~h}, \\ & 9999 \end{aligned}$	9999
898	Power saving cumulative monitor clear	0, 1, 10, 9999	9999
899	Operation time rate (estimated value)	$\begin{array}{\|l\|} \hline 0 \text { to } 100 \%, \\ 9999 \\ \hline \end{array}$	9999
$\begin{gathered} \text { C0 } \\ (900) \\ \hline \end{gathered}$	FM terminal calibration	-	-
$\begin{gathered} \hline \text { C1 } \\ (901) \\ \hline \end{gathered}$	AM terminal calibration	-	-
$\begin{gathered} \text { C2 } \\ (902) \end{gathered}$	Terminal 2 frequency setting bias frequency	0 to 400 Hz	OHz
$\begin{gathered} \text { C3 } \\ (902) \end{gathered}$	Terminal 2 frequency setting bias	0 to 300\%	0\%
$\begin{array}{r} 125 \\ (903) \end{array}$	Terminal 2 frequency setting gain frequency	0 to 400 Hz	60 Hz
$\begin{gathered} \text { C4 } \\ (903) \end{gathered}$	Terminal 2 frequency setting gain	0 to 300\%	100\%
$\begin{gathered} \text { C5 } \\ (904) \end{gathered}$	Terminal 4 frequency setting bias frequency	0 to 400 Hz	OHz
$\begin{gathered} \text { C6 } \\ (904) \\ \hline \end{gathered}$	Terminal 4 frequency setting bias	0 to 300\%	20\%
$\begin{gathered} 126 \\ (905) \end{gathered}$	Terminal 4 frequency setting gain frequency	0 to 400 Hz	60 Hz
$\begin{gathered} \text { C7 } \\ (905) \\ \hline \end{gathered}$	Terminal 4 frequency setting gain	0 to 300\%	100\%
$\begin{gathered} \text { C12 } \\ (917) \\ \hline \end{gathered}$	Terminal 1 bias frequency (speed)	0 to 400 Hz	OHz
$\begin{gathered} \text { C13 } \\ \text { (917) } \\ \hline \end{gathered}$	Terminal 1 bias (speed)	0 to 300\%	0\%
$\begin{gathered} \text { C14 } \\ (918) \\ \hline \end{gathered}$	Terminal 1 gain frequency (speed)	0 to 400 Hz	60 Hz
$\begin{gathered} \text { C15 } \\ \text { (918) } \\ \hline \end{gathered}$	Terminal 1 gain (speed)	0 to 300\%	100\%
$\begin{gathered} \text { C16 } \\ \text { (919) } \\ \hline \end{gathered}$	Terminal 1 bias command (torque/magnetic flux)	0 to 400\%	0\%
$\begin{gathered} \text { C17 } \\ (919) \end{gathered}$	Terminal 1 bias (torque/ magnetic flux)	0 to 300\%	0\%
$\begin{gathered} \text { C18 } \\ \text { (920) } \\ \hline \end{gathered}$	Terminal 1 gain command (torque/magnetic flux)	0 to 400\%	150\%
$\begin{gathered} \text { C19 } \\ \text { (920) } \\ \hline \end{gathered}$	Terminal 1 gain (torque/ magnetic flux)	0 to 300\%	100\%
$\begin{array}{r} \text { C38 } \\ \text { (932) } \\ \hline \end{array}$	Terminal 4 bias command (torque/magnetic flux)	0 to 400\%	0\%
$\begin{array}{r} \text { C39 } \\ \text { (932) } \\ \hline \end{array}$	Terminal 4 bias (torque/ magnetic flux)	0 to 300\%	20\%
$\begin{gathered} \text { C40 } \\ \text { (933) } \\ \hline \end{gathered}$	Terminal 4 gain command (torque/magnetic flux)	0 to 400\%	150\%

Parameter	Name	Setting Range	Initial Value
C41 $\mathbf{(9 3 3)}$	Terminal 4 gain (torque/ magnetic flux)	0 to 300%	100%
989	Parameter copy alarm release	$10 / 100$	$10 / 100$ ${ }^{2}$
990	PU buzzer control	0,1	1
991	PU contrast adjustment	0 to 63	58
Pr. CL	Parameter clear	0,1	0
ALLC	All parameter clear	0,1	0
Er.CL	Faults history clear	0,1	0
PCPY	Parameter copy	$0,1,2,3$	0

*1 Differ according to capacities
6\%: FR-A720-00030, 00050 (FR-A740-00015, 00025)
5\%: FR-A760-00017
4\%: FR-A720-00080 to 00175 (FR-A740-00040 to 00090)
3\%: FR-A720-00240, 00330(FR-A740-00120, 00170)(FR-A760-00040)
2\%: FR-A720-00460 to 02150(FR-A740-00230 to 01100)
(FR-A760-00061, 00120)

1\%: FR-A720-02880(FR-A740-01440)(FR-A760-00220) or more
*2 Differ according to capacities. (FR-A720-02150(FR-A740-01100, FR-A760-00840) or less/FR-A720-02880(FR-A740-01440, FR-A760-01040) or more)
*3 Differ according to capacities. (FR-A720-00330(FR-A740-00170, FR-A760-00120) or less/FR-A720-00460(FR-A740-00230, FR-A760-00220) or more)
*4 Differ according to capacities
4\%: FR-A720-00330 (FR-A740-00170) or less
2\%: FR-A720-00460 to 02150 (FR-A740-00230 to 01100)
1\%: FR-A720-02880 (FR-A740-01440) or more, FR-A760
*5 Differs according to the voltage class. (200 V class, 400 V class $/ 600 \mathrm{~V}$ class)
*6 Differs according to the voltage class. (200 V class $/ 400 \mathrm{~V}$ class $/ 600 \mathrm{~V}$ class)
*7 Setting can be made only when the FR-A7AP is mounted.

7 TROUBLESHOOTING

When a fault occurs in the inverter, the inverter trips stop and the PU display automatically changes to any of the following fault or alarm indications.
If the fault does not correspond to any of the following faults or if you have any other problem, please contact your sales representative.

- Retention of alarm output signal When the magnetic contactor (MC) provided on the input side of the inverter is opened at the activation of the protective function, the inverter's control power will be lost and the alarm output will not be held.
- Alarm displayWhen the protective function is activated, the operation panel display automatically switches to the above indication.
- Resetting method...............................When the protective function is activated, the inverter output is kept stopped. Unless reset, therefore, the inverter cannot restart. (Refer to page 33.)
- When the protective function is activated, take the corresponding corrective action, then reset the inverter, and resume operation.
Not doing so may lead to the inverter fault and damage.
Inverter alarm displays are roughly divided as below.
(1) Error Message

A message regarding operational fault and setting fault by the operation panel (FR-DU07) and parameter unit (FRPU04 /FR-PU07) is displayed.
The inverter does not trip.
(2) Warnings

The inverter does not trip even when a warning is displayed. However, failure to take appropriate measures will lead to a major fault.
(3) Alarm

The inverter does not trip. You can also output a minor fault signal by making parameter setting.
(4) Fault

When a fault occurs, the inverter trips and a fault signal is output.

7.1 Reset method of protective function

(1) Resetting the inverter

The inverter can be reset by performing any of the following operations. Note that the internal thermal integrated value of the electronic thermal relay function and the number of retries are cleared (erased) by resetting the inverter. Inverter recovers about 1s after the reset is released.

Operation 1: Using the operation panel, press $\left.\frac{\text { STOP }}{\text { RISEII }}\right)$ to reset the inverter.
(This may only be performed when a fault occurs. ((Refer to the Instruction Manual) for major fault.)

Operation 2: Switch power off once, then switch it on again.

Operation 3:Turn on the reset signal (RES) for more than 0.1 s . (If the RES signal is kept on, "Err." appears (flickers) to indicate that the inverter is in a reset status.)

TROUBLESHOOTING

7．2 List of fault or alarm display

Operation Panel Indication			Name
	E－－	E－－－	Faults history
	Hiciod	HOLD	Operation panel lock
	Er i to	Er1 to 4	Parameter write error
	$\begin{aligned} & \hline r E \text { to } \\ & r E G \end{aligned}$	rE1 to 4	Copy operation error
	Err．	Err．	Error
	P12	OL	Stall prevention（overcurrent）
	Oi	oL	Stall prevention（overvoltage）
	$r 6$	RB	Regenerative brake prealarm
	＇H＇	TH	Electronic thermal relay function prealarm
	95	PS	PU stop
	717	MT	Maintenance signal output
	1%	CP	Parameter copy
	51	SL	Speed limit indication （Output during speed limit）
\％	$F 6$	FN	Fan alarm
	E．Oi	E．OC1	Overcurrent trip during acceleration
	ERİ	E．OC2	Overcurrent trip during constant speed
	ERİ	E．OC3	Overcurrent trip during deceleration or stop
	E．OU	E．OV1	Regenerative overvoltage trip during acceleration
	E．Oいで	E．OV2	Regenerative overvoltage trip during constant speed
	ERーコ	E．OV3	Regenerative overvoltage trip during deceleration or stop
	E． Hi°	E．THT	Inverter overload trip （electronic thermal relay function）
	E．Hin	E．THM	Motor overload trip （electronic thermal relay function）
	E．F！	E．FIN	Fin overheat
	E． FF	E．IPF	Instantaneous power failure
	E． $6 E$	E．BE	Brake transistor alarm detection
	E．Lıí	E．UVT	Undervoltage
	E．i 2	E．ILF＊	Input phase loss
	E．BLi	E．OLT	Stall prevention

Operation Panel Indication			Name
	E．E\％	E．GF	Output side earth（ground）fault overcurrent
	$E .15$	E．LF	Output phase loss
	E．BHi	E．OHT	External thermal relay operation
	EFi\％	E．PTC＊	PTC thermistor operation
	E．BF\％	E．OPT	Option fault
	Eイロコ	E．OP3	Communication option fault
	$E . \quad \text { ito }$	$\begin{aligned} & \text { E. } 1 \text { to } \\ & \text { E. } 3 \end{aligned}$	Option fault
	E．PE	E．PE	Parameter storage device fault
	EFig	E．PUE	PU disconnection
	ErE	E．RET	Retry count excess
	EOE	E．PE2＊	Parameter storage device fault
	E．$\sigma 1$ E． 7 E．PG	E． $6 /$ E． 7 ／ E．CPU	CPU fault
	EFE	E．CTE	Operation panel power supply short circuit，RS－485 terminal power supply short circuit
	E．Fロー	E．P24	24VDC power output short circuit
	ELdic	E．CDO＊	Output current detection value exceeded
	E．	E． $10 \mathrm{H}^{*}$	Inrush current limit circuit fault
	E．Er	E．SER＊	Communication fault（inverter）
	E．FiE	E．AIE＊	Analog input fault
	E． 5	E．OS	Overspeed occurrence
	E．Gロ́	E．OSD	Speed deviation excess detection
	EEF	E．ECT	Signal loss detection
	E．Ró	E．OD	Excessive position error
	$\begin{array}{r} E .76: \text { to } \\ E .767 \end{array}$	E．MB1 to E．MB7	Brake sequence fault
	E．EF	E．EP	Encoder phase error
	E EG	E．BE	Brake transistor alarm detection
	E．Gら6	E．USB＊	USB communication fault
	$E .11$	E． 11	Opposite rotation deceleration fault
	E． 3	E． 13	Internal circuit fault

＊If an error occurs when using the FR－PU04，＂Fault 14＂is displayed on the FR－PU04．

Appendix 1 Instructions for Compliance with the EU Directives (FR-A720/A740 only)

The EU Directives are issued to standardize different national regulations of the EU Member States and to facilitate free movement of the equipment, whose safety is ensured, in the EU territory.
Since 1996, compliance with the EMC Directive that is one of the EU Directives has been legally required. Since 1997, compliance with the Low Voltage Directive, another EU Directive, has been also legally required. When a manufacturer confirms its equipment to be compliant with the EMC Directive and the Low Voltage Directive, the manufacturer must declare the conformity and affix the CE marking.

- The authorized representative in the EU

The authorized representative in the EU is shown below.
Name: Mitsubishi Electric Europe BV
Address: Gothaer strase 8, 40880 Ratingen, Germany

- Note

We declare that this inverter conforms with the EMC Directive in industrial environments and affix the CE marking on the inverter. When using the inverter in a residential area, take appropriate measures and ensure the conformity of the inverter used in the residential area.

(1) EMC Directive

We declare that this inverter conforms with the EMC Directive and affix the CE marking on the inverter.

- EMC Directive: 2004/108/EC
- Standard(s): EN61800-3:2004 (Second environment / PDS Category "C3")

Note: First environment
Environment including residential buildings. Includes buildings directly connected without a transformer to the low voltage power supply network which supplies power to residential buildings.
Second environment
Environment including all buildings except buildings directly connected without a transformer to the low voltage power supply network which supplies power to residential buildings.

- Note

Set the EMC filter valid and install the inverter and perform wiring according to the following instructions.

* The inverter is equipped with a built-in EMC filter. Set the EMC filter valid. (The EMC filter is invalid when shipped from the factory. (The FR-A720-00030 and 00050 are always valid.))
* Connect the inverter to an earthed power supply.
* Install a motor and a control cable written in the EMC Installation Manual (BCN-A21041-204) according to the instruction.
* The cable length between the inverter and the motor is 5 m (16.4 feet) maximum.
* Confirm that the inverter conforms with the EMC Directive as the industrial drives application for final installation.

(2) Low Voltage Directive

We have self-confirmed our inverters as products compliant to the Low Voltage Directive (Conforming standard EN 50178) and affix the CE marking on the inverters.

- Outline of instructions
* Do not use an earth leakage current breaker as an electric shock protector without connecting the equipment to the earth. Connect the equipment to the earth securely.
* Wire the earth terminal independently. (Do not connect two or more cables to one terminal.)
* Use the cable sizes on page 16 under the following conditions.
. Surrounding air temperature: $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ maximum
If conditions are different from above, select appropriate wire according to EN60204 Appendix C TABLE 5.
* Use a tinned (plating should not include zinc) crimping terminal to connect the earth (ground) cable. When tightening the screw, be careful not to damage the threads.
For use as a product compliant with the Low Voltage Directive, use PVC cable whose size is indicated on page 16.
* Use the moulded case circuit breaker and magnetic contactor which conform to the EN or IEC Standard.
* When using an earth leakage current breaker, use a residual current operated protective device (RCD) of type B (breaker which can detect both $A C$ and DC). If not, provide double or reinforced insulation between the inverter and other equipment, or put a transformer between the main power supply and inverter.
* Use the inverter under the conditions of overvoltage category II (usable regardless of the earth (ground) condition of the power supply), overvoltage category III (usable with the earthed-neutral system power supply, 400 V class only) and pollution degree 2 or lower specified in IEC664.
- To use the inverter of FR-A720-01150 (FR-A740-00570) or more (IP00) under the conditions of pollution degree 2 , install it in the enclosure of IP 2 X or higher.
- To use the inverter under the conditions of pollution degree 3, install it in the enclosure of IP54 or higher.
- To use the inverter of FR-A720-00900 (FR-A740-00440) or less (IP20) outside of an enclosure in the environment of pollution degree 2 , fix a fan cover with fan cover fixing screws enclosed.

Fan cover | fixing screw |
| :---: |
| FR-A720-00080 to 00175 |
| FR-A740-00060, 00090 |

* On the input and output of the inverter, use cables of the type and size set forth in EN60204 Appendix C.
* The operating capacity of the relay outputs (terminal symbols A1, B1, C1, A2, B2, C2) should be 30VDC, 0.3A. (Relay outputs are basically isolated from the inverter internal circuit.)
* Control circuit terminals on page 6 are safely isolated from the main circuit.
* Environment

	During Operation	In Storage	During Transportation
Surrounding air temperature	LD, ND (initial setting), HD:		
SLD: $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ to $\left(14^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$	$-20^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{C}\right.$ to to $\left.104^{\circ} \mathrm{F}\right)$	$\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+149^{\circ} \mathrm{C}\right)$	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Ambient humidity	$90 \% \mathrm{RH}$ or less	$90 \% \mathrm{RH}$ or less	$\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+149^{\circ} \mathrm{F}\right)$
Maximum altitude	$1000 \mathrm{~m}(3280.80 f e e t)$	$90 \% \mathrm{RH}$ or less	

Details are given in the technical information "Low Voltage Directive Conformance Guide" (BCN-A21041-203). Please contact your sales representative.

Appendix 2 Instructions for UL and cUL Compliance

（Conforming standard UL 508C，CSA C22．2 No．14）

（1）Installation

This inverter is a UL／cUL Listed open type device for use inside an enclosure or enclosed Type 1 device with a suitably rated enclosure．
For open type，design an enclosure so that the inverter surrounding air temperature，humidity and atmosphere satisfy the specifications．（Refer to page 2．）
The following UL／cUL Listed FR－A700 Series Inverters employ a UL Type 1 Enclosure－Suitable for Installation in a Compartment Handling Conditioned Air（Plenum）：
Models FR－A720－00030，－00050，－00080，－00110，$-00175,-00240,-00330$ ，followed by -N 4 suffix．
Models FR－A720－00460，－00610，－00760，－00900（＊1），followed by－NA suffix．
Models FR－A740－00015，－00025，－00040，－00060，$-00090,-00120,-00170$ ，followed by $-N 4$ suffix．
Models FR－A740－00230，－00310，－00380，－00440，followed by－NA suffix．
Models FR－A760－00220，－00330，followed by－NA suffix．
（＊1）－Denotes suitable for Normal Duty and Heavy Duty Current Ratings only．

Wiring protection

For installation in the United States，branch circuit protection must be provided in accordance with the National Electrical Code and any applicable provincial codes．
For installation in Canada，branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes．
Provide the appropriate UL and cUL listed Class RK5，Class T or Class L type fuse or UL489 molded case circuit breaker（MCCB）that is suitable for branch circuit protection in accordance with the table below．
Note，the Class L fuses can be used if the applicable current rating is larger than 600A．

FR－A720－पロपロロ－NA／N4		00030	00050	00080	00110	00175	00240	00330	00460	00610	00760	00900	01150	01450	01750	02150
Rated fuse voltage（V）		240 V or more														
Fuse Maximum allowable rating（A）	Without power factor improving reactor	15	20	30	40	60	80	150	175	200	225	300	350	400	500	500
	With power factor improving reactor	15	20	20	30	50	70	125	150	200	200	250	300	350	400	500
Molded cas Maximum	circuit breaker（MCCB） owable rating（A）＊	15	15	25	40	60	80	110	150	175	225	300	350	450	500	700

FR－A720－पㅁㅁㅁㅁ－NA		02880	03460
Rated fuse voltage（V）		$\begin{gathered} 240 \mathrm{~V} \text { or } \\ \text { more } \end{gathered}$	
Fuse Maximum	Without power factor improving reactor		
allowable rating（A）	With power factor improving reactor	600	700
Molded ca Maximum	rcuit breaker（MCCB） wable rating（A）＊	900	1000

FR－A7	－पロロ－NA／N4	00015	00025	00040	00060	00090	00120	00170	00230	00310	00380	00440	00570	00710	00860	01100
Rated fuse voltage（V）		480 V or more														
Fuse Maximum allowable rating（A）	Without power factor improving reactor	6	10	15	20	30	40	70	80	90	110	150	175	200	250	300
	With power factor improving reactor	6	10	10	15	25	35	60	70	90	100	125	150	175	200	250
Molded case circuit breaker（MCCB） Maximum allowable rating（A）＊		15	15	15	20	30	40	60	70	90	100	150	175	225	250	450
FR－A740－■ $\square \square \square \square-$－NA		01440	01800	02160	02600	03250	03610	04320	04810	05470	06100	06830	07700	08660	09620	
Rated fuse voltage（V）		500 V or more														
Fuse Maximum allowable rating（A）	Without power factor improving reactor	－	－	－	－	－	－	－	－	－	－	－	－	－	－	
	With power factor improving reactor	300	350	400	500	600	700	800	900	1000	1100	1200	1350	1500	1800	
Molded case circuit breaker（MCCB） Maximum allowable rating（A）＊		500	600	800	900	1000	1200	1200	1200	1600	1600	2000	2000	2500	3000	

＊Maximum allowable rating by US National Electrical Code at SLD rating．
Exact size must be chosen for each installation．

Provide the appropriate UL and cUL listed Class T or Class L type fuse that is suitable for branch circuit protection in accordance with the table below.
Note, the Class L fuses can be used if the applicable current rating is larger than 600A.

FR-A760-ㅁㅁㅁㅁ		00017	00040	00061	00120	00220	00330	00550	00840	01040	01310	01520	02210	02550	03040	04020	04960	06630
Rated fuse voltage(V)		575 V or more																
Fuse Maximum	Without power factor improving reactor	10	20	30	40	80	125	125	175	-	-	-	-	-	-	-	-	-
allowable rating (A)	With power factor improving reactor	6	10	15	25	40	60	100	150	200	250	300	400	450	600	700	800	1000

(2) Wiring of the power supply and motor

For wiring the input (R/L1, S/L2, T/L3) and output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) terminals of the inverter, use the UL Listed copper, stranded wires (rated at $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$) and round ring crimping terminals. Crimp the crimping terminals with the crimping tool recommended by the terminal maker.

(3) Instruction for UL and cUL for FR-A760-01040 or larger models.

- The R1/L11, S1/L21 terminals are only used for factory wiring. Do not remove the jumper to R1/L11 and S1/L21 terminals. Do not connect wires to R1/L11 and S1/L21 terminals.
- Only bare ended, solid copper wire, size 16-18 AWG may be employed on all control terminals.

(4) Short circuit ratings

- 200V class

Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes, 264V Maximum.

- 400 V class

Model 01100 or less
Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes, 528V Maximum. Model 01440 or more
Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes, 550V Maximum.

- 600 V class

Suitable For Use in A Circuit Capable Of Delivering Not More Than 100kA rms Symmetrical Amperes, 660V Maximum.

(5) Motor overload protection (FR-A720/740)

This inverter is certified as a motor overload protection device by UL.
When using the electronic thermal relay function as motor overload protection, set the rated motor current to Pr. 9 Electronic thermal O/L relay.

Electronic thermal relay function operation characteristic

This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output.
(The operation characteristic is shown on the left)
When using the Mitsubishi constant-torque motor

1) Set "1" or any of "13" to "18", " 50 ", " 53 ", " 54 " in Pr. 71. (This provides a 100\% continuous torque characteristic in the low-speed range.)
2) Set the rated current of the motor in Pr. 9.
*1 When a value 50% of the inverter rated output current (current value) is set in $\operatorname{Pr} .9$
*2 The \% value denotes the percentage to the inverter rated output current. It is not the percentage to the motor rated current.
*3 When you set the electronic thermal relay function dedicated to the Mitsubishi constant-torque motor, this characteristic curve applies to operation at 6 Hz or higher.

CAUTION

- Protective function by electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and power-off.
- When multiple motors are operated by a single inverter, protection cannot be provided by the electronic thermal relay function. Install an external thermal relay to each motor.
- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use the external thermal relay. Electronic thermal relay may not function when 5% or less of inverter rated current is set to electronic thermal relay setting.

(6) Motor overload protection (FR-A760)

This inverter is certified as a motor overload protection device by UL.
When using the electronic thermal relay function as motor overload protection, set the rated motor current to Pr. 9 Electronic thermal O/L relay.

Electronic thermal relay function operation characteristic

This function detects the overload (overheat) of the motor, stops the operation of the inverter's output transistor, and stops the output.
(The operation characteristic is shown on the left)
*1 When a value 50% of the inverter rated output current (current value) is set in Pr .9
*2 The \% value denotes the percentage to the inverter rated output current. It is not the percentage to the motor rated current.

CAUTION

- Protective function by electronic thermal relay function is reset by inverter power reset and reset signal input. Avoid unnecessary reset and power-off.
- When multiple motors are operated by a single inverter, protection cannot be provided by the electronic thermal relay function. Install an external thermal relay to each motor.
- When the difference between the inverter and motor capacities is large and the setting is small, the protective characteristics of the electronic thermal relay function will be deteriorated. In this case, use an external thermal relay.
- A special motor cannot be protected by the electronic thermal relay function. Use the external thermal relay. Electronic thermal relay may not function when 5% or less of inverter rated current is set to electronic thermal relay setting
*The manual number is given on the bottom left of the back cover.

Print Date	*Manual Number	Revision
Sep. 2005	IB-0600254ENG-A	First edition
Oct. 2006	IB-0600254ENG-B	\|Additions FR-A720-00030 to 00330-N4 FR-A740-00015 to 00170-N4
Feb. 2007	IB-0600254ENG-C	Additions Breaker selection when using the inverter as UL or cUL listed product FR-A760-00017 to 00840-NA
Apr. 2007	IB-0600254ENG-D	Additions FR-A760-01040 to 04020-NA
Sep. 2007	IB-0600254ENG-E	Additions - Failsafe - Instruction for UL and cUL for FR-A760-01040 or larger models.
Jul. 2008	IB-0600254ENG-F	Additions - FR-A760-04960, 06630-NA
Jul. 2009	IB-0600254ENG-G	Partial modification - Appendix1 Instructions for Compliance with the EU Directives

1. For Maximum Safety

- Mitsubishi inverters are not designed or manufactured to be used in equipment or systems in situations that can affect or endanger human life.
- When considering this product for operation in special applications such as machinery or systems used in passenger transportation, medical, aerospace, atomic power, electric power, or submarine repeating applications, please contact your nearest Mitsubishi sales representative.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product are likely to cause a serious accident.
- Please do not use this product for loads other than three-phase induction motors.

Before using this CD-ROM

- The copyright and other rights of this CD-ROM all belong to Mitsubishi Electric Corporation.
- No part of this CD-ROM may be copied or reproduced without the permission of Mitsubishi Electric Corporation.
- Specifications of this CD-ROM are subject to change for modification without notice.
- We are not responsible for any damages and lost earnings, etc. from use of this CD-ROM.
- Microsoft, Windows, Microsoft WindowsNT are registered trademarks of Microsoft Corporation in the United States and/or other countries. Adobe and Acrobat are registered trademarks of Adobe Systems Incorporated.
Pentium is a registered trademark of Intel Corporation of the United States and/or other countries.
Other company and product names herein are the trademarks and registered trademarks of their respective owners.
- Warranty
- We do not provide a warranty against defects in this CD-ROM and related documents.
- Acrobat Reader
- For use of Acrobat Reader, please follow use conditions established by Adobe Systems Incorporated.

Warning: This is a personal computer dedicated CD-ROM. Do not attempt to play it on ordinary audio devices. The loud volume may damage hearing and speakers.

When playing this CD-ROM on Windows OS

- Operating environment
- The following system is required to read instruction manuals contained in this CD-ROM.

Item	Specifications
OS	Microsoft Windows 95 OSR 2.0, Windows 98 Second Edition, Windows Millennium Edition, Windows NT 4.0 with Service Pack 6, Windows 2000 with Service Pack 2, Windows XP Professional or Home Edition, Windows XP Tablet PC Edition
CPU	Intel Pentium processor
Memory	64MB of RAM
Hard disk	24MB of available hard-disk space
CD-ROM drive	Double speed or more (more than quadruple speed is recommended)
Monitor	800x600 dot or more
Application	Acrobat Reader 4.05 or more

- Operating method of this CD-ROM

How to read instruction manuals
Step 1. Start Windows and place this CD-ROM in the CD-ROM drive.
Step 2. "FR-A700 series documentation" PDF automatically opens.
Step 3. Click a manual you want to read in the "INSTRUCTION MANUAL" list.
Step 4. PDF manual you clicked opens.

* Manual opening of this CD-ROM

Step 1. Start Windows and place this CD-ROM in the CD-ROM drive.
Step 2. Select a CD-ROM drive (example: D drive) of "My computer" and click the right mouse button. Then, click "open" in the context menu.
Step 3. Open "INDEX.PDF" in the opened folder.
Step 4. "FR-A700 series documentation" PDF opens. Operates according to the steps from "Step 3" of "How to read instruction manuals"

- PDF data of the instruction manual are stored in "MANUAL" folder on this CD-ROM.

[^0]: - Especially for long-distance wiring, the inverter may be affected by a charging current caused by the stray capacitances of the wiring, leading to a malfunction of the overcurrent protective function or fast response current limit function or a malfunction or fault of the equipment connected on the inverter output side. If fast-response current limit function malfunctions, disable this function. (For Pr: 156 Stall prevention operation selection, refer to Instruction Manual.) For details of Pr. 72 PWM frequency selection, refer to Instruction Manual.

