
HALMSTAD • CHICAGO • KARLSRUHE • TOKYO • BEIJING • MILANO • MULHOUSE • COVENTRY • PUNE • COPENHAGEN

HMS Industrial Networks
Mailing address: Box 4126, 300 04 Halmstad, Sweden
Visiting address: Stationsgatan 37, Halmstad, Sweden

Connecting DevicesTM

E-mail: info@hms-networks.com
 www.anybus.com

Parallel Interface Design Guide

Anybus®-S Slave & Master
Doc.Id. HMSI-27-275

Rev. 3.00

II
Hms
II

Important User Information

This document is intended to provide a good understanding of the functionality offered by a module in the Anybus-
S Slave & Master family.

The reader of this document is expected to be familiar with high level software design, and communication sys-
tems in general.

2.0.1 Liability

Every care has been taken in the preparation of this manual. Please inform HMS Industrial Networks AB of any
inaccuracies or omissions. The data and illustrations found in this document are not binding. We, HMS Industrial
Networks AB, reserve the right to modify our products in line with our policy of continuous product development.
The information in this document is subject to change without notice and should not be considered as a commit-
ment by HMS Industrial Networks AB. HMS Industrial Networks AB assumes no responsibility for any errors that
may appear in this document.

There are many applications of this product. Those responsible for the use of this device must ensure that all the
necessary steps have been taken to verify that the applications meet all performance and safety requirements in-
cluding any applicable laws, regulations, codes, and standards.

HMS Industrial Networks AB will under no circumstances assume liability or responsibility for any problems that
may arise as a result from the use of undocumented features, timing, or functional side effects found outside the
documented scope of this product. The effects caused by any direct or indirect use of such aspects of the product
are undefined, and may include e.g. compatibility issues and stability issues.

The examples and illustrations in this document are included solely for illustrative purposes. Because of the many
variables and requirements associated with any particular implementation, HMS Industrial Networks AB cannot
assume responsibility for actual use based on these examples and illustrations.

2.0.2 Intellectual Property Rights

HMS Industrial Networks AB has intellectual property rights relating to technology embodied in the product de-
scribed in this document. These intellectual property rights may include patents and pending patent applications
in the US and other countries.

2.0.3 Trademark Acknowledgements

Anybus ® is a registered trademark of HMS Industrial Networks AB. All other trademarks are the property of their
respective holders.

Warning: This is a class A product. In a domestic environment this product may cause radio interference in
which case the user may be required to take adequate measures.

ESD Note: This product contains ESD (Electrostatic Discharge) sensitive parts that may be damaged if ESD
control procedures are not followed. Static control precautions are required when handling the prod-
uct. Failure to observe this may cause damage to the product.

Anybus-S Slave & Master Network Guide

Rev 3.00

Copyright© HMS Industrial Networks AB

Oct 2014 Doc Id HMSI-27-275

Preface About This Manual

Related Documentation .. 7

Document History ... 7

Conventions Used in This Manual .. 8

Support .. 8

Chapter 1 Introduction

Key Features ... 9

Internals ... 10

External View ... 11

Chapter 2 Application Connector

Connector Pinout... 13

Control Signals.. 13

Asynchronous Serial Interface ... 15

Chapter 3 Memory Map

Chapter 4 Control Register Area

Registers... 18

Chapter 5 Handshaking & Indication Registers

Application Indication Register (7FEh, R/W) .. 26

Anybus Indication Register (7FFh, RO)... 27

Collisions ... 28

Area Allocation/De-allocation... 29
Unsynchronized Data Exchange .. 29
Synchronised Data Exchange... 30
Requesting/Releasing Multiple Areas Simultaneously .. 31
Application Example, Cyclic Access Method ... 32

Chapter 6 Interrupts

Hardware Interrupt (IRQ) .. 34

Event Notification (Software Interrupt)... 35

Table of Contents

Table of Contents

Chapter 7 Fieldbus Data Exchange

Basics.. 36

Dual Port Memory vs. Internal Memory .. 37

Data types .. 37

Data Composition.. 38

Chapter 8 Mailbox Interface

General... 39

Message Types .. 39

Mailbox Notification Bits.. 40
Sending a Mailbox Message... 41
Receiving a Mailbox Message ... 41

Mailbox Message Structure ... 42

Message Header.. 42

Chapter 9 Mailbox Messages

Application Messages .. 44
Start Initialization (START_INIT) .. 45
Anybus Initialization (Anybus_INIT) ... 46
End Initialization (END_INIT)... 48
Save to FLASH (SAVE_TO_FLASH).. 49
Load from FLASH (LOAD_FROM_FLASH).. 50
Hardware Check (HW_CHK) ... 51

Fieldbus Messages .. 52

Internal Memory Messages ... 52
Read Internal Input Area (RD_INT_IN) ... 53
Write Internal Input Area (WR_INT_IN) ... 54
Clear Internal Input Area (CLR_INT_IN) .. 55
Read Internal Output Area (RD_INT_OUT) .. 56

Reset Messages ... 57
Software Reset (SW_RESET) ... 57

Chapter 10 Start Up and Initialization

Introduction .. 58

Hardware Initialization .. 59
Startup Sequence.. 59
Dual Port Memory Check (Optional) .. 59
Hardware Check (Optional) .. 60

Software Initialization.. 60
Prepare Initialization Data.. 60
Start Initialization ... 60
Initialise Parameter Values.. 61
Set Initial Fieldbus Data ... 61
End Initialization.. 61
Basic Initialization Sequence Example 1 ... 62
Basic Initialization Sequence Example 2 ... 62
Advanced Initialization Example .. 63

Chapter 11 Indication LEDs

Fieldbus Status Indicators ... 64

Anybus-S Watchdog LED.. 64

Chapter 12 Firmware Upgrade

Chapter 13 Driver Example

Interrupt Handler ... 67

Interface Handler ... 68

Mailbox Handler... 69

Chapter 14 Mechanical Aspects

PCB Measurements.. 70

Height Restrictions... 70

Mounting Holes.. 71

Application Connector .. 71

Fieldbus Connector(s) ... 71

Fieldbus Status Indication LED’s.. 72

Appendix A Extended Memory Mode (4K DPRAM)

Appendix B Deviances

General... 74

Locked Release Behavior .. 74

Application Interface Hardware Deviances ... 75

Appendix C Interrupt Line and Hardware Reset

Recommended Solution .. 77

Appendix D Electrical Specification

Power Supply Requirements... 78

Signal Characteristics ... 79

PE & Shielding Recommendations ... 79

Appendix E Environmental Specification

Temperature .. 80

Relative Humidity... 80

EMC compliance.. 80

Appendix F Conformance with Predefined Standards

Fieldbus Certification... 81

CE-Mark .. 81

UL/cUL-Certificate ... 81

Appendix G Troubleshooting

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Preface

P. About This Manual

For more information, documentation etc., please visit the HMS website, ‘www.anybus.com’.

P.1 Related Documentation

P.2 Document History

Summary of Recent Changes (2.08...3.00)

Revision List

Document Author

Anybus-S API Reference Manual HMS (www.hms-networks.com)

Anybus-S Fieldbus Appendices (one for each fieldbus)

Data sheet for dual port memory (CY7C136) Cypress (www.cypress.com)

Understanding Asynchronous Dual-Port RAMs (application note)

Change Page(s)

Updated Firmware Upgrade chapter 65

Updated Electric Signal Characteristics 79

Rev. Date Author Chapter Description

2.00 2004-02-19 PeP All Second major release

2.01 2004-06-17 ToT 4 Corrected online/offline indication for ‘Module Status Register’

2.02 2005-07-19 PeP 9
D
2

Corrected Anybus_INIT response (Fault Information)
Corrected signal levels (Reset signal)
Corrected pull-up resistance & decoupling (Reset signal)

2.03 2008-10-14 HeS 2
10
14
1,9

Renamed /CS, /RD, /WR to CE, OE, R/W
Updated exclusions during Dual Port Memory Check
Corrected DCP measures in drawing
Misc. minor updates

2.04 2009-09-10 KeL 6, 8,D,12,4,
5, B

Misc. minor updates

2.05 2009-11-13 KeL 4, 5, A Misc. minor updates

2.06 2010-01-12 KeL 6, 7, D Misc. minor updates

2.07 2010-04-16 KeL 4 Minor update

2.08 2010-12-17 KeL P, 4 Minor update

3.00 2014-09-19 KeL 12, D Updated template, misc. minor updates

Preface 8

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

P.3 Conventions Used in This Manual

The following conventions are used throughout this manual:

• Numbered lists provide sequential steps

• Bulleted lists provide information, not procedural steps

• The term ‘module’ is used when referring to the Anybus module

• The term ‘application’ is used when referring to the hardware that is connected to the Anybus
Application Connector

• Hexadecimal values are written in the format NNNNh, where NNNN is the hexadecimal value.

• All measurements expressed in this document have a tolerance of ±0.25mm unless otherwise
stated.

• 16/32 bit values are generally stored in Motorola (big endian) format unless otherwise stated.

P.4 Support

For general contact information and support, please refer to the contact and support pages at
www.anybus.com.

http://www.hms-networks.com
http://www.hms-networks.com
http://www.hms-networks.com

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 1

1. Introduction

The Anybus-S/Anybus-M is a series of interchangeable fieldbus communication modules featuring on
board memory and processing power. All software and hardware functionality required to communicate
on the fieldbus is incorporated in the module itself, allowing the application to focus on other tasks.

The interface towards the application is based on a dual port memory architecture, where the host ap-
plication and the Anybus module exchange data via a shared memory area. This allows for very efficient
data exchange, and generally produces very little overhead for the host application.

Standardisation of mechanical, electrical and software interfaces ensures that the different Anybus-S/
Anybus-M models are fully interchangeable. This also means that the same PCB layout can be used for
different fieldbus systems.

Typical applications are frequency inverters, HMI and visualization devices, instruments, scales, robot-
ics, PLC’s and intelligent measuring devices.

Note: The application interface of the Anybus-M is identical to that of the Anybus-S. Therefore, all fur-
ther references in this manual will be made to the Anybus-S; The information does however apply equal-
ly to the Anybus-M.

1.1 Key Features

• Interchangeable (Uniform software interface regardless of fieldbus type)

• Slave and Master versions available

• All major fieldbus systems supported through a common application interface

• On board CPU relieves host system from time consuming network related tasks

• Pre-certified for all fieldbus networks (where applicable)1

• Mailbox interface

• 2KB Dual Port Ram (DPRAM)2 architecture

• Up to 2048 bytes of Input / Output data2

• On board configuration switches (where applicable)

• On board LED indications

• Galvanically isolated fieldbus interface (where applicable)

• CE, UL & cUL certified

1. See “Fieldbus Certification” on page 81.
2. Some Anybus-S versions offer more DPRAM and I/O data. For more information, see “Extended Mem-

ory Mode (4K DPRAM)” on page 73

Introduction 10

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

1.2 Internals

Below is a schematic overview of a typical Anybus-S module; the application interface, the internal data
path, and the fieldbus interface.

Application Interface

From an external point of view, the application interface is a common 8 bit parallel slave port interface
that can easily be incorporated into any microprocessor based system that has an address/data type bus.
Additionally, the application interface also features a reset pin, a busy signal, and an interrupt request
signal.

Fieldbus Interface

The fieldbus interface of an Anybus-S module is galvanically isolated, and is designed according to each
fieldbus standard. The fieldbus protocol is handled entirely by the Anybus-S and requires no interaction
by the application. However, to utilize the full potential of the fieldbus, additional fieldbus specific sup-
port is included in all Anybus-S modules. It is then up to the application to exploit these features.

The Anybus-S is tested standalone and found to comply with each fieldbus standard. For more infor-
mation, see “Fieldbus Certification” on page 81.

Data Exchange

Internally, the application interface is based on a dual port memory (DPRAM) architecture. This enables
the application to exchange data with the Anybus-S module via a shared memory area. Basically, in order
to exchange data on the fieldbus, all the application has to do is to read/write data from/to this area.
The data is then forwarded from/to the fieldbus by the on board CPU, i.e. all fieldbus activity is handled
completely by the Anybus-S and generally requires no interaction by the host application.

DC
DC

Isolation

Fieldbus Control

SwitchesLED's

Application Connector

Dual Port Memory (DPRAM)

RESET
IRQ
BUSY

A0..A11

D0..D7

OE
R/W
CE Fi

eld
bu

s

Physical Network
LayerAd

dr
es

s/D
at

ab
us

Application Interface Fieldbus Interface

CPU

Internal
Mem

ory

FLASH

Introduction 11

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

1.3 External View

The figure below shows a typical Anybus-S module. For more information about the mechanical aspects
of the Anybus-S, see “Mechanical Aspects” on page 70.

1. Application Connector

The Anybus-S is accessed through a 34-pin connector (2mm strip header). This connector fea-
tures various control signals, address/databus signals and power supply. For more information,
see “Application Connector” on page 12 and Appendix “Application Connector” on page 71.

2. Fieldbus Connector(s)

The Anybus-S provides fieldbus connectors according to each fieldbus specification.1

3. Configuration Switches

Some Anybus-S modules features on board configuration switches for fieldbus settings such as
baud rate, node address, fieldbus termination etc.

4. Fieldbus Status Indication LED’s

All Anybus-S modules features LED indications according to the fieldbus standard. For more
information, see “Fieldbus Status Indicators” on page 64 and Appendix “Fieldbus Status Indi-
cation LED’s” on page 72.

5. Anybus-S Watchdog Led

For more information, see “Anybus-S Watchdog LED” on page 64.

1. See “Fieldbus Certification” on page 81

1

2

3

5

4

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 2

2. Application Connector

The Anybus-S application connector features a parallel slave port
type interface. Implementing this type of interface is comparable
to implementing an 8 bit wide SRAM. This makes it easy to in-
corporate the module directly on the host application address/
databus.

The application connector also features an asynchronous serial
interface. Generally, this interface is used for firmware upgrades
etc., but in some cases it may be used to enable external config-
uration / monitoring purposes.

For mechanical details, measurements etc. see “Application
Connector” on page 71. For further information about signal
levels, power requirements etc. see “Electrical Specification” on
page 78.

(To
p v

iew
)

32 RESET

BUSY
OE
CE

+5V 2 GND

34 A11A10

30 R/W
28 IRQ
26 D7D6
24 D5D4
22 D3D2
20 D1D0
18 A9A8
16 A7A6
14 A5A4
12 A3A2
10 A1A0
8 RXTX
6 GND+5V
4 NCNC

1

33
31
29
27
25
23
21
19
17
15
13
11
9
7
5
3

• • ·:5
• • 0

•

a 0 0

Application Connector 13

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

2.1 Connector Pinout

Note: All signals are TTL level unless otherwise stated.

Note: Since the first release of the Anybus-S, several minor changes have been made to the application
interface. The information in the table above applies only to the most recent Anybus-S versions. For
more information, see “Application Interface Hardware Deviances” on page 75.

2.2 Control Signals

Address Inputs (A0 ... A11)

Address input pins. Selects the target location in the dual port memory. A0 contains the least significant
bit, A11 contains the most significant bit. A4, A10 and A11 is internally pulled up with 10k.

The use of A11 is optional, however it is recommended to implement it on the application as it is used
on some Anybus modules for extended memory features. If not implemented, it must be left uncon-
nected or pulled to VCC. For more information, see “Extended Memory Mode (4K DPRAM)” on page
73. See also “Application Interface Hardware Deviances” on page 75.

Pin Name Description Direction Note

1 +5V VCC Input Power Supply, bus interface. See “Power Supply Require-
ments” on page 78.2 GND Ground -

3, 4 NC Isolation distance - (Not connected)

5 +5V VCC Input Power Supply, module electronics. See “Power Supply
Requirements” on page 78.6 GND Ground -

7 TxD Transmit Dataa

a. Internally pulled up with 10k.

Output Asynchronous serial interface transmita.

8 RxD Receive Dataa. Input Asynchronous serial interface receivea.

9 - 12 A0 - A3 Address Inputs Input Address lines 0 ... 3

13 A4 Address Inputsa. Input Address line 4a.

14 - 18 A5 - A9 Address Inputs Input Address lines 5 ... 9

19 - 26 D0 - D7 Data Input / Output Bidirectional Databus, bits 0 ... 7

27 BUSY Busy Signala. Output Active low open collector outputa.

28 IRQ Interrupt Requesta. Output Active low open collector outputa.

29 OE Output Enable Input Active low input

30 R/W Read/Write Input Active low input

31 CE Chip Enablea. Input Active low inputa.

32 RESET Reset Input Active low input. Internally pulled up with 35 - 75k.

33 A10 Address Inputa. Input Address line 10a.

34 A11 Address Inputb

b. This signal is used on some Anybus modules to accommodate a larger dual port memory. On those modules,
this pin is internally pulled up with 10k. For more information, see “Extended Memory Mode (4K DPRAM)”
on page 73. Note that the use of this pin is optional. If not used, it must be left unconnected or pulled to VCC.

Input Address line 11b.

Application Connector 14

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Data Input / Output (D0 ... D7)

Data output pins during read operations, or data input pins during write operations. D0 is the least sig-
nificant bit, D7 is the most significant.

The target memory location is specified on the Address Inputs (A0 ... A11).

Busy Signal (BUSY)

Active low open collector output, internally pulled up with 10k.When low, this pin indicates that the
desired address is currently in use by the Anybus module, and can be used to insert wait states to stall
the current operation until the module is ready.

Interrupt Request (IRQ)

Active low open collector output, internally pulled up with 10k. When low, this pin indicates that new
information is available in the Anybus Indication Register (7FFh). It is strongly recommended to imple-
ment this signal on the host application.

Output Enable (OE)

Enables data output on D0 ... D7 when low.

Read/Write (R/W)

Enables data input on D0 ... D7 when low. Internally pulled up with 10k.

Chip Enable (CE)

Active low input (though pulled up on most modules); enables communication with the application in-
terface. CE must only be active during access of the DPRAM. Internally pulled up with 10k unless
otherwise stated in section ‘Application Interface Hardware Deviances’.

Reset (RESET)

If low, a system reset is initiated.

Internally pulled up with 10k - 75k and decoupled to ground with a 10 - 100nF capacitor.

Application Connector 15

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

2.3 Asynchronous Serial Interface

These pins are generally used for firmware upgrades etc., see “Firmware Upgrade” on page 65.

For signal characteristics etc., see “Signal Characteristics” on page 79.

Transmit Data (TxD)

Asynchronous serial data transmit signal. Internally pulled up with 10k. Anybus modules with 3,3 to
5V conversion of the Tx signal does not have the 10k resistor. The signal is driven high or low by the
buffer circuit instead. See also “Application Interface Hardware Deviances” on page 75.

Receive Data (RxD)

Asynchronous serial data receive signal. Internally pulled up with 10k.

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 3

3. Memory Map

The dual port memory is subdivided into several smaller areas based on their usage, see memory map
below.

Note: Implementing A11 in the application will affect the memory map. See “Extended Memory Mode
(4K DPRAM)” on page 73 for further information.

Address: Area: Access: Notes:

000h - 1FFh Input Data Area R/W See “Fieldbus Data Exchange” on page 36

200h - 3FFh Output Data Area RO See “Fieldbus Data Exchange” on page 36

400h - 51Fh Mailbox Input Area R/W See “Mailbox Interface” on page 39

520h - 63Fh Mailbox Output Area RO See “Mailbox Interface” on page 39

640h - 7BFh Fieldbus Specific Area - (Consult separate fieldbus appendix)

7C0h - 7FDh Control Register Area R/W See “Control Register Area” on page 17

7FEh - 7FFh
Handshake Registers

R/W
See “Handshaking & Indication Registers” on
page 25

These areas must be allocated before access. See “Handshaking & Indication Registers” on
page 25.

These areas can be accessed directly.
□
□

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 4

4. Control Register Area

This area contains information about the Anybus module; revision, initialization parameters, fieldbus
type and status etc. This area also contains registers for Watchdog handling and Event Notification han-
dling.

Note: Generally, the Control Register Area must be allocated by the application before access. Howev-
er, during module initialization, it is allowed to read static data such as software revision, fieldbus type,
module type etc. without handshaking.

Address: Register: Access: Notes:

7C0h - 7C1h Bootloader Version RO

7C2h - 7C3h Application Interface Software Versiona

a. On modules with application interface versions prior to 2.00, this register is reserved and should be zero.

RO

7C4h - 7C5h Fieldbus software versiona RO

7C6h - 7C9h Module Serial Number RO Unique serial number

7CAh - 7CBh Vendor ID RO Manufacturer ID number (HMS, other)

7CCh - 7CDh Fieldbus Type RO Fieldbus type identifier

7CEh - 7CFh Module Software Version RO Software revision

7D0h - 7D1h (reserved) -

7D2h - 7D3h Watchdog Counter Input R/W Application controlled Watchdog counter

7D4h - 7D5h Watchdog Counter Output RO Counter, incremented each 1ms

7D6h - 7D9h (reserved) -

7DAh - 7DDh LED Status RO Current status of each fieldbus status indicator

7DEh - 7DFh (reserved) -

7E0h - 7E1h Module Type RO Module type, master, slave, other.

7E2h - 7E3h Module Status RO Bit information; freeze, clear etc.

7E4h - 7EBh Changed Data Field RO Bit field, indicating changes in the Output Data
Area in the Dual Port Memory

7ECh - 7EDh Event Notification Cause R/W Event cause register

7EEh - 7EFh Event Notification Source RO Configuration register for Event Notification

7F0h - 7F1h Input I/O Length RO Input I/O size

7F2h - 7F3h Input DPRAM Length RO Number of input I/O bytes in dual port memory

7F4h - 7F5h Input Total Length RO Total Input Data size

7F6h - 7F7h Output I/O Length RO Output I/O size

7F8h - 7F9h Output DPRAM Length RO Number of output I/O bytes in dual port memory

7FAh - 7FBh Output Total Length RO Total Output Data size

7FCh - 7FDh (reserved) -

Control Register Area 18

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

4.1 Registers

Module Bootloader Version (7C0h - 7C1h, RO)

This register specifies the revision of the boot loader firmware within the module.

Application Interface Software Version (7C2h - 7C3h, RO)

This register specifies the revision of the application interface firmware in the module.

Note: On modules with application interface versions prior to 2.00, this register is reserved and set to 0.

Fieldbus Software Version (7C4h - 7C5h, RO)

This register specifies the revision of the fieldbus control firmware in the module.

Note: On modules with application interface versions prior to 2.00, this register is reserved and set to 0.

Module Serial Number (7C6h - 7C9h, RO)

This register contains a unique 32 bit serial number.

Vendor ID (7CAh - 7CBh, RO)

This register indicates the manufacturer of the module.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7C0h Major revision (BCD coded) Minor revision (BCD coded) 7C1h

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7C2h Major revision (BCD coded) Minor revision (BCD coded) 7C3h

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7C4h Major revision (BCD coded) Minor revision (BCD coded) 7C5h

ID # Vendor

0000h (not used)

0001h HMS

0002h - FFFFh Reserved for OEM customers

Control Register Area 19

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Fieldbus Type (7CCh - 7CDh, RO)

This register indicates the type fieldbus interface that is featured on the module.

Module Software Version (7CEh - 7CFh, RO)

This register specifies the revision of the system firmware within the module.

Watchdog Counter Input (7D2h - 7D3h, R/W)

This register is used to indicate to the fieldbus that the application is working properly. To accomplish
this, the application should read the contents of the Watchdog Counter Output and write it to this reg-
ister.

If the difference between these registers exceeds the value specified in the Anybus_Init command during
module initialization, the module will indicate that the application is not working properly to the field-
bus. This feature can be disabled during initialization by setting the difference value to zero.

Note: The implementation and behavior of this bit depends on the fieldbus type. Consult each separate
fieldbus appendix for more information. See also “Deviances” on page 74.

Type # Fieldbus

0001h PROFIBUS-DP

0005h PROFIBUS-DPV1

0010h Interbus-S

0011h Interbus 2Mbps (Copper & Fibre Optic)

0015h LonWorks

0020h CANopen

0025h DeviceNet

0035h FIP IO

0040h Modbus Plus

0045h Modbus RTU

0065h ControlNet

0082h Ethernet (Modbus/TCP + IT)

0083h Ethernet (EtherNet/IP + Modbus/TCP + IT)

0084h PROFINET

0086h FL-net

0087h EtherCAT

0089h PROFINET IRT

0090h CC-Link

0091h AS-Interface

0093h Ethernet (Modbus/TCP + IT) 2-port

0094h Ethernet (EtherNet/IP + Modbus/TCP + IT) 2-port

009Dh PROFINET IRT FO

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7CEh Major revision (BCD coded) Minor revision (BCD coded) 7CFh

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7D2h Counter (high byte) Counter (low byte) 7D3h

Control Register Area 20

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Watchdog Counter Output (7D4h - 7D5h, RO)

The Anybus-S firmware features an internal counter that is incremented each millisecond. This internal
counter is continuously written to this register to indicate to the application that the Anybus module is
working properly.

The maximum refresh time of this register is 50ms, i.e. the value can be updated by as much as 50 each
refresh cycle.

LED Status (7DAh - 7DDh, RO)

These registers contains the current status of each fieldbus status indicator LED, 1 byte per led.

Module Type (7E0h - 7E1h, RO)

This register indicates the type of the currently used module.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7D4h Counter (high byte) Counter (low byte) 7D5h

b7 b6 b5 b4 b3 b2 b1 b0

7DAh Led 1 (Top left)

7DBh Led 2 (Top right)

7DCh Led 4 (Bottom left)

7DDh Led 3 (Bottom right)

Value Description

00h LED off or not used by the module

01h LED greena

a. Due to the requirements of certain fieldbus systems, some versions of the Anybus-S may use other colours.
Consult each fieldbus appendix for more information,

02h LED reda

Type # Module Type

0001h Anybus DT (Obsolete)

0101h Anybus-S (a.k.a. Anybus-S Slave)

0102h Anybus-S Drive Profile

0201h Anybus-M (a.k.a Anybus-S Master)

Control Register Area 21

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Module Status (7E2h - 7E3h, RO)

This register contains various status bits. Most bits in this register corresponds to settings made in the
‘Anybus Init’ mailbox command., see “Anybus Initialization (Anybus_INIT)” on page 46.

• APRS1 (Application Run/Stop)

This bit indicates if the difference between the Watchdog Counter Output and Watchdog Count-
er Input has exceeded the Watchdog Timeout Value specified in Anybus_INIT.

0: Application has stopped (Watchdog Timeout Value exceeded)
1: Application is running

• CD (Changed Data Field Status)

0: Changed Data Field disabled
1: Changed Data Field enabled

• APFC1 (Application Stopped Freeze/Clear)

0: Input data is cleared if application has stopped
1: Input data is frozen if application has stopped

• RDR1 (Fieldbus Reset Device Request Notification)

0: No fieldbus reset device request received (or the feature is not used)
1: Fieldbus reset device request received

• FBS1, FBSPU1 & FBFC

• FBRS (Fieldbus On / Off Line)

1: Fieldbus online
0: Fieldbus offline

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7E2h (reserved) APRS CD APFC (reserved) RDR FBSPU FBS FBFC FBRS 7E3h

1. The implementation and behavior of this bit depends on the fieldbus type. Consult each separate fieldbus
appendix for more information. See also “Deviances” on page 74.

Bit value Fieldbus Offline Action
Notes

FBSPU1 FBS1 FBFC Output I/O Data Parameter Data

0 0 0 Clear Clear All data is cleared when the fieldbus
goes off line.

1 Freeze Freeze All data is frozen in it’s current state
when the fieldbus goes off line.

1 0 Set Set All data is set when the fieldbus goes
offline.

1 (reserved) (reserved) -

1 0 0 Clear Update On some fieldbus systems, parameter
data may still be updated via the field-
bus although the I/O data exchange is
not running.
Consult each separate fieldbus appen-
dix for further information.

1 Freeze Update

1 0 Set Update

1 (reserved) (reserved)

Control Register Area 22

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Changed Data Field (7E4h - 7EBh, R/W)

These registers form bit fields by which the application may determine what parts of the Output Data
Area contains changed data. Each bit in these registers represents 8 bytes in the Output Data Area.

Note 1: The use of these registers will reduce the overall performance of the module.

Note 2: This register is not implemented in some versions of the Anybus-M (a.k.a. Anybus-S Master).

Event Notification Cause (7ECh - 7EDh, R/W)

This register indicates the source of an Event Notification. The bits in this register are edge triggered,
i.e. the bits are set by the module when the event occurs. Default value is 0. The application should clear
the corresponding bit when the Event Notification has been handled.

For more information regarding interrupts and Event Notification, see “Interrupts” on page 34 and
“Event Notification (Software Interrupt)” on page 35.

• RST1

0: -
1: A reset request from the fieldbus has been issued.

• FBON

0: -
1: Fieldbus has gone on line

• FBOF

0: -
1: Fieldbus has gone off line

• DC

0: -
1: Data has been updated, see “Changed Data Field (7E4h - 7EBh, R/W)” on page 22.

b7 b6 b5 b4 b3 b2 b1 b0

7E4h 56-63 48-55 40-47 32-39 24-31 16-23 8-15 0-7

7E5h 120-127 112-119 104-111 96-103 88-95 80-87 72-79 64-71

7E6h 184-191 176-183 168-175 160-167 152-159 144-151 136-143 128-135

7E7h 248-255 240-247 232-239 224-231 216-223 208-215 200-207 192-199

7E8h 312-319 304-311 296-303 288-295 280-287 272-279 264-271 256-263

7E9h 376-383 368-375 360-367 352-359 344-351 336-343 328-335 320-327

7EAh 440-447 432-439 424-431 416-423 408-415 400-407 392-399 384-391

7EBh 504-511 496-503 488-495 480-487 472-479 464-471 456-463 448-455

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7ECh (reserved) RST FBON FBOF DC 7EDh

1. The implementation and behavior of this bit depends on the fieldbus type. Consult each separate fieldbus
appendix for more information. See also “Deviances” on page 74.

Control Register Area 23

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Event Notification Source (7EEh - 7EFh, RO)

This register indicates which events that will trigger an Event Notification. The contents of this register
is determined during module initialization in the mailbox command ‘Anybus Init’.

For more information regarding interrupts and Event Notification, see “Interrupts” on page 34 and
“Event Notification (Software Interrupt)” on page 35.

• RST1

0: -
1: An Event Notification will be issued each time “reset request” has been issued from the field-

bus

• FBON

0: -
1: An Event Notification will be issued when the fieldbus goes on line

• FBOF

0: -
1: An Event Notification will be issued when the fieldbus goes off line

• DC

0: -
1: An Event Notification will be issued each time the data in the Output Area has changed.

Note that this requires that the Changed Data Field has been enabled during module initial-
ization.

Input I/O Length (7F0h - 7F1h, RO)

This holds the Input I/O Length specified during module initialization.

Input DPRAM Length (7F2h - 7F3h, RO)

This holds the Input DPRAM Length specified during module initialization.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7EEh (reserved) RST FBON FBOF DC 7EFh

1. The implementation and behavior of this bit depends on the fieldbus type. Consult each separate fieldbus
appendix for more information. See also “Deviances” on page 74.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7F0h High byte Low byte 7F1h

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7F2h High byte Low byte 7F3h

Control Register Area 24

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Input Total Length (7F4h - 7F5h, RO)

This holds the Input Total Length specified during module initialization.

Output I/O Length (7F6h - 7F7h, RO)

This holds the Output I/O Length specified during module initialization.

Output DPRAM Length (7F8h - 7F9h, RO)

This holds the Output DPRAM Length specified during module initialization.

Output Total Length (7FAh - 7FBh, RO)

This holds the Output Total Length specified during module initialization.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7F4h High byte Low byte 7F5h

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7F6h High byte Low byte 7F7h

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7F8h High byte Low byte 7F9h

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

7FAh High byte Low byte 7FBh

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 5

5. Handshaking & Indication Registers

Memory locations 7FEh and 7FFh holds two important registers; the Application Indication Register
and the Anybus Indication Register. These registers serves three main purposes:

• Area allocation and de-allocation

This procedure is mandatory when accessing the Input-, Output-, Fieldbus Specific- and Control
Register Area. For more information, see “Area Allocation/De-allocation” on page 29.

• Event Notification

See “Event Notification (Software Interrupt)” on page 35.

• Sending & Receiving Mailbox Messages

See “Mailbox Interface” on page 39.

Generally, the Application Indication Register is used to instruct (command) the module to perform a
specific low level action. The Anybus Indication Register contains responses to previously issued com-
mands and indicates the overall status of the module.

Although these registers are often used in a com-
mand-response like fashion, the registers are inde-
pendent from each other and should be treated
accordingly. However, the application must not is-
sue a new command until the module has respond-
ed to the previous one., see figure on the right.

Each time a response or indication is sent by the
module, the UPDATED bit (bit 3 of the Anybus
Indication Register) is toggled and a hardware in-
terrupt is triggered. The application can then exam-
ine the Anybus Indication Register to detect the
cause of the hardware interrupt.

If the hardware interrupt feature is not implement-
ed, the application has to cyclically poll the Anybus
Indication Register in order to detect any changes.
It is however strongly recommended to utilize the
interrupt feature, as polling suffers from unneces-
sary overhead and is generally harder to implement.

AnyBus Indication
Register

AnyBus-S
SoftwareApplication Software

Application AnyBus-S

Application Indication
Register

WRONG!

Application
Indication Register

AnyBus
Indication Register

Command

Command

Command

Command

Response or Indication

Response or Indication

Response or Indication

Response or Indication

Response or Indication

1--------'- I~

A

Handshaking & Indication Registers 26

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

5.1 Application Indication Register (7FEh, R/W)

This register is used to perform the following tasks:

• Area allocation and de-allocation (a.k.a. Request / Release)

• Acknowledge Events (Event Notification)

• Send / Receive mailbox messages

The register consists of a bit field with the following layout:

Note 1: It is recommended not to access this register cyclically. It should only be used to respond to
incoming events and to make requests.

Note 2: When accessing this register, it is important to modify all bits related to the desired operation
using a single memory access, otherwise the operation might be misinterpreted as several operations by
the module.

b7 b6 b5 b4 b3 b2 b1 b0

AP_MIN AP_MOUT AP_EVNT ACTION LOCK AP_IN AP_OUT AP_FBCTRL

Bit Function Description Default

AP_MIN Mailbox Notification Used to send a mailbox message. See “Mailbox Notification Bits”
on page 40.

0

AP_MOUT Used to acknowledge a received mailbox message. See “Mailbox
Notification Bits” on page 40.

0

AP_EVNT Event Acknowledge This bit should be toggled to acknowledge that an Event Notifica-
tion event has been handled. See “Event Notification (Software
Interrupt)” on page 35.

0

ACTION

Area Request/Release.

These bits are used to
request or release one
or several areas within
the dual port memory.

For more information,
see “Area Allocation/
De-allocation” on page
29.

This bit indicates if the current action is a request or release:
1: Request
0: Release

0

LOCK This bit indicates if the action is locked or unlocked.
1: Locked
0: Unlocked

0

AP_IN This bit represents the Input Data Area
1: Action is affective for this area
0: Action is not affective for this area

0

AP_OUT This bit represents the Output Data Area
1: Action is affective for this area
0: Action is not affective for this area

0

AP_FBCTRL This bit represents the Fieldbus Specific Area and the Control
Registers
1: Action is affective for this area
0: Action is not affective for this area

0

Handshaking & Indication Registers 27

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

5.2 Anybus Indication Register (7FFh, RO)

This register contains responses to previously issued commands and indicates the status of different
functions/areas in the module. The following information can be extracted from this register:

• Ownership of the different areas within the dual port memory

• Event Notification status

• Mailbox Input & Output status

• initialization status

Each change in this register will trigger a hardware interrupt. The application can then examine the con-
tents of the register to detect the cause of the interrupt.

It is also possible to cyclically poll the contents of this register to detect any changes, however it is strong-
ly recommended to utilize the interrupt feature, as polling suffers from unnecessary overhead and is gen-
erally harder to implement. (For more information about interrupts, see “Hardware Interrupt (IRQ)”
on page 34).

Note: This register is read only. Do not attempt to write to this register as doing so may produce un-
predictable results.

b7 b6 b5 b4 b3 b2 b1 b0

AB_MIN AB_MOUT AB_EVNT INIT UPDATED AB_IN AB_OUT AB_FBCTRL

Bit Function Description Default

AB_MIN Mailbox Notification The module toggles this bit to acknowledge that it has received a
mailbox message. See “Mailbox Notification Bits” on page 40.

0

AB_MOUT The module toggles this bit to indicate that a new message is
available in the Mailbox Output area. See “Mailbox Notification
Bits” on page 40.

0

AB_EVNT Event Notification The module toggles this bit when a new Event Notification has
occurred

0

INIT Module initialised This bit indicates if the module has been initialised.
0: Module not initialised

1: Module initialiseda

a. Please note that due to the nature of certain fieldbus systems, this does not necessarily mean that the fieldbus
is fully initialised and exchanging data. Consult each separate fieldbus appendix for further information.

0

UPDATED Register updated This bit is toggled by the module each time the contents of this
register has been updated.

0

AB_IN

Area ownership.
These bits indicates the
owner of each area within
the dual port memory.

This bit represents the Input Data Area
1: Area owned by application
0: Area owned by Anybus

0

AB_OUT This bit represents the Output Data Area
1: Area owned by application
0: Area owned by Anybus

0

AB_FBCTRL This bit represents the Fieldbus Specific Area and the Control
Registers
1: Area owned by application
0: Area owned by Anybus

0

Handshaking & Indication Registers 28

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

5.3 Collisions

As mentioned earlier, the application interface is based on a dual port memory architecture, where both
sides are able to access the same memory location simultaneously.

An area allocation scheme (see “Area Allocation/De-allocation” on page 29) is used in order to prevent
collisions during runtime, however this does not cover the event of a collision occurring in the Anybus
and Application Indication Registers. If this is not handled correctly, the module might not get data writ-
ten to the Application Indication Register, and data read from the Application Indication Register may
be out of date and/or incorrect.

There are three ways of dealing with collisions: (Numbered in order of importance)

1. Multiple Write / Read (Mandatory)

While the IRQ and BUSY signals are used to prevent collisions (see below), this is a way of actually
dealing with them.

- When writing to the Application Indication Register...
... keep writing and verifying until the written data is known to be correct.

- When reading from the Anybus Indication Register...
... keep reading and comparing until two consecutive reads match.

Note: At first sight, it may appear as if this violates what is stated earlier on page 25 and in Note
1 on page 26, however as the accesses are carried out in rapid sequence the module will interpret
them as a single access.

2. Implement the IRQ signal in the application (Optional, but recommended)

This pin is drawn low each time the Anybus Indication Register has been updated. The applica-
tion can utilize this by accessing this register instantly upon receiving the interrupt, thus avoiding
a collision.

3. Implement the BUSY signal in the application (Optional, but recommended)

If this signal goes low, the application should stall the current memory access until the signal goes
high again e.g. by inserting wait states, thus avoiding a collision. (This may however not be pos-
sible with all architectures).

General Recommendation

Preferably, all three options should be implemented in the application. Either way, option 1 should be
considered mandatory, and it is strongly recommended to implement at least one of the other two.

Start

Done

Read register

Same value
read twice?

Yes

No

Read register

Start

Done

Write to register

Success?

Yes

No

Verify

Application Indication Register Access: AnyBus Indication Register Access:

Handshaking & Indication Registers 29

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

5.4 Area Allocation/De-allocation

As described earlier, the dual port memory is sub divided in several areas based on their function. In
order to avoid collisions and to ensure data consistency, the application has to allocate each area before
access. If the area is free to use, the module will indicate this to the application by setting the correspond-
ing bit in the Anybus Indication Register. The area is then considered to be “owned” by the application,
and can be accessed freely. When finished, the area must be returned, i.e. released, to the Anybus mod-
ule. The area is then considered to be “owned” by the Anybus module.

This allocation procedure is mandatory when accessing the following areas:

• Input Data Area

• Output Data Area

• Fieldbus Specific Area

• Control Register Area

The application can own an area for a maximum of 1000ms. If this time is
exceeded, i.e. the application does not release the area in time, the allocation
will be terminated automatically, i.e. the ownership of the area(s) will be
handed back to the Anybus module. It is important that the software rou-
tines within the application have the capability to recognize this and termi-
nate the access in a safe manner.

5.4.1 Unsynchronized Data Exchange

In it’s simplest form, an access sequence towards the module consists of the
following steps: (See also figure on the right)

1. Request access to an area

To accomplish this, the application should set the corresponding bit
for that area as well as the ACTION bit in the Application Indication
Register.

2. Wait for response1

3. Check response to see if access is granted

To know if the request was successful, the application should check
the ownership of the area in the Anybus Indication Register.

If the desired area is owned by the application, the application is free
to access that area.

4. Release the area

To do this, the application should set the corresponding bit for that
area as well as clearing the ACTION bit in the Application Indication
Register.

5. Wait for response1

1. This can either be waiting for an interrupt or polling the Anybus Indication Register, depending on how
the application is implemented. For more information, see “Anybus Indication Register (7FFh, RO)” on
page 27 and “Interrupts” on page 34.

Release Area

Start

Wait for response

Request Area

Wait for response

Access the area

End

Application
owns the area?

No

Yes

Handshaking & Indication Registers 30

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

5.4.2 Synchronised Data Exchange

The procedure described earlier will result in an unsynchronized data exchange. However, in some cases
it is desirable to synchronise the data exchange between the application and the Anybus-S module.

The LOCK bit in the Application Indication Register is used for this purpose, see table below.

Locked Request

A locked request ensures that the application will gain access to an area as soon as it is free.

1. Request access to the area (LOCK = 1)

2. Wait for the initial response1

3. Check the ownership of the area

Area owned by Application - the area is free to use. Proceed with step 6.

Area owned by Anybus - the area is currently in use. Proceed with step 4.

4. Wait for an additional response1

5. Check the ownership of the area

The ownership of the area is handed over to the application.2

6. Done

Action LOCK Result

Request 0 If the requested area is currently in use, the application will have to repeat the request until
access is granted.

1 If the requested area is currently in use, the module will first send a response indicating that the
area is still in use by the Anybus module. However, as soon as the area is free, the ownership of
the area will be handed over to the application (i.e. Area owned by Application).

Release 0 The area is released.

1 The area is released, and is reserved for the Anybus module. The application will not be granted
access again before the module has accessed the area.

1. This can either be waiting for an interrupt or polling the Anybus Indication Register, depending on how
the application is implemented. For more information, see “Anybus Indication Register (7FFh, RO)” on
page 27 and “Interrupts” on page 34.

2. If multiple areas are requested simultaneously, the module may send up to 3 additional responses, one for
each area. In these cases, the sequence of events may be slightly different from what is described above.
For more information, see “Requesting/Releasing Multiple Areas Simultaneously” on page 31.

Handshaking & Indication Registers 31

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Locked Release

In some cases, it makes no sense to gain access to an area unless the Anybus has accessed it first. For
example, there is no gain in polling the Output Data Area cyclically unless the application can be sure
that the data has been updated by the Anybus module between each poll.

By using the LOCK bit when releasing an area, the application can reserve the area for the Anybus mod-
ule, i.e. the application will not gain access to the area until the module has updated its contents.1

1. Release the area (LOCK = 1)

2. Wait for response2

3. Done

The area is now reserved for the Anybus module, i.e. the application will not gain access to the
area until the module has updated its contents.

5.4.3 Requesting/Releasing Multiple Areas Simultaneously

Multiple areas can be requested or released simultaneously. However, when doing this, it is important to
monitor the response in the Anybus Indication Register to see which areas that are actually free to use
(i.e. it is possible that one or more of the areas is in use at the time of the request). This is pretty straight
forward for unlocked requests, however special care has to be taken when performing locked requests
for multiple areas.

• Requesting multiple areas (LOCK = 0)

The module sends a single response.

• Requesting multiple areas (LOCK = 1)

The module may in theory send up to 4 responses depending on the situation:

- The initial response.

- Up to three additional responses will be sent as the ownership of the requested areas are
handed over to the application when an area is free to use.

• Releasing multiple areas (LOCK = 0)

The specified areas are released instantly. The module sends a single response to acknowledge
the release. “Locked Release Behavior” on page 74

• Releasing multiple areas (LOCK = 1)

The specified areas are released instantly. The module sends a single response to acknowledge
the release. The areas are then reserved for the Anybus module, i.e. the application cannot gain
ownership of them until the Anybus has updated their contents.

1. Please note that some modules update the Output Data Area only when there are changes to the output
data. This may cause the Output Data Area to stay locked, until an external event has caused changes in
the data. For further information see “Locked Release Behavior” on page 74

2. This can either be waiting for an interrupt or polling the Anybus Indication Register, depending on how
the application is implemented. For more information, see “Anybus Indication Register (7FFh, RO)” on
page 27 and “Interrupts” on page 34.

Handshaking & Indication Registers 32

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

5.4.4 Application Example, Cyclic Access Method

This example describes one method for an application that requires cyclic access to the DPRAM input
and output data areas.

Background Information

To better understand the example, here follows a description of what happens inside the module.

When the application releases the DPRAM input data area (data to fieldbus), it triggers the module to
take control of that area. The area will be owned by the module until it has finished its tasks. How long
time this will take varies according to the configuration. Once finished, the module will not require the
area until the next time the area is released by the application. The application can thus, immediately after
it has released the area (with a locked release), perform a locked request of the area. It will then gain
access to the area at once when the module releases it the next time. While waiting, it can execute other
tasks, as long as the total time does not exceed 1000 ms.

An internal OUT I/O data buffer is continuously updated by the module. When data from all slaves has
been updated, the module requests access to the DPRAM output data area (data from fieldbus). It copies
the data from the buffer to the DPRAM and then releases the output data area. The process is then re-
peated. The module’s access to the DPRAM output data area is thus not related to the application’s ac-
cess of the area. To make sure to read the latest data, the application must perform a request of the
DPRAM output data area only when it actually needs to read the data.

Suggested Access Method for a Cyclic Application

1. Locked request of OUT

2. Wait for access of IN (requested in previous cycle)

3. Write IN data

4. Wait for access of OUT1

5. Read OUT data

6. Locked release of IN + OUT

7. Wait for ACK (both areas will be released simultaneously)

8. Locked request of IN

9. Execute PLC-cycle

10.Repeat from 1

Note: This loop needs to be entered at step number 2 after an initial locked request of the DPRAM
input and output data areas, see flowchart next page.

1. Please note that some modules update the Output Data Area only when there are changes to the output
data. This may cause the Output Data Area to stay locked, until an external event has caused changes in
the data. For further information see “Locked Release Behavior” on page 74

Handshaking & Indication Registers 33

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Start

Locked request of
IN + OUT

Locked request of
OUT

Wait for access of
IN

Write IN data

Wait for access of
OUT

Read OUT data

Locked release of
IN + OUT

Wait for ACK
(Both areas will be

released
simultaneously)

Locked request of
IN

Execute
PLC-cycle

IN : DPRAM input data area (data to fieldbus)
OUT : DPRAM output data area (data from fieldbus)

Cyclic access method flowchart

l

l

j

j

j

j

l
I

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 6

6. Interrupts

6.1 Hardware Interrupt (IRQ)

The module features an interrupt request pin (IRQ, pin #28). If implemented, it can be used to notify
the application of any changes in the Anybus Indication Register. Generally, it is recommended to use
this feature as it can significantly reduce overhead compared to polling the register cyclically.

The following events will generate a hardware interrupt:

• Event Notification (Software interrupt, see below)

• Mailbox notification (See “Mailbox Notification Bits” on page 40)

• Module initialised (See “Anybus Indication Register (7FFh, RO)” on page 27)

• Startup interrupt (See “Startup Sequence” on page 59)

• Area allocation responses (See “Area Allocation/De-allocation” on page 29)

Once the application has read the contents of the Anybus Indication Register, the interrupt is automat-
ically cleared.

Interrupts 35

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

6.2 Event Notification (Software Interrupt)

Event Notification is a mechanism for signalling important events to the application. The following
events can generate an Event Notification:

• Fieldbus On/Off line

• Fieldbus reset requests

• Data changed1

Which of the above events that should cause an Event Notification is configured during module initial-
ization in the Event Notification Config parameter in the ‘Anybus Init’ mailbox message.

To signal that a new Event has occurred, the module will toggle bit 5 (AB_EVNT) in the Anybus Indi-
cation Register. The cause of the event can then be read in the Event Notification Cause Register, see
“Event Notification Cause (7ECh - 7EDh, R/W)” on page 22. When the event has been handled, the
application should clear the corresponding bits in this register and confirm the event by toggling bit 5
(AP_EVNT) in the Application indication Register.

While an event is unconfirmed by the application, all new events are queued within the module. This
eliminates the risk of an event being missed. The module will only toggle AB_EVNT, to indicate a new
event, if it is equal to AP_EVNT. Once the application returns a confirmation and toggles AP_EVNT
to be equal to AB_EVNT, the module can indicate the next event in the queue. It’s important that the
application does not toggle bit 5 (AP_EVNT) in the Application Indication Register, unless for confirm-
ing an event. If AB_EVNT and AP_EVNT are not equal, the module will be prohibited from indicating
a new event.

The following example describes how to check if a new event has occurred, and how to handle it.

1. AB_EVNT |= AP_EVNT?

2. If yes, an event has occurred.(If no, skip the remaining steps)

3. Examine the Event Cause register to find out what caused the
event. In this case, the fieldbus has gone off line (FBOF).

4. Clear the FBOF bit in the Event Cause Register2

5. Perform tasks associated with fieldbus off line events2.

6. Toggle AP_EVNT in the Application Indication Register to confirm the event.

Note: Event Notification is a software interrupt and should not be confused with the hardware interrupt
described earlier. However, as it uses the Anybus Indication Register, it will trigger a hardware interrupt.

1. Data change event notification does not work for I/O data mapped to Internal Memory.
2. This requires that the Fieldbus Specific / Control Register Area is owned by the application.

FB
OF

FB
ON

DC

0 1 0

0
RS

T

0

0 0 0

(Event Cause Register)

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 7

7. Fieldbus Data Exchange

7.1 Basics

The module exchanges data on the fieldbus via two data buffers:

• Input Data Buffer

Data written to this buffer will be sent to the fieldbus.

• Output Data Buffer

This buffer contains data received from the fieldbus.

Basically, in order to exchange data on the fieldbus, all the appli-
cation has to do is to read/write data from/to these two buffers.

Note: The size and composition of the data buffers is determined during module initialization. There-
fore, the module will not be able to exchange data on the fieldbus unless it has been properly initialised
first. For more information, see “Start Up and Initialization” on page 58.

Input Data Buffer
(up to 2048 bytes)

Output Data Buffer
(up to 2048 bytes)

AnyBus-S

Fi
eld

bu
s

Fieldbus Data Exchange 37

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

7.2 Dual Port Memory vs. Internal Memory

Each of the two data buffers can have a portion of
their data situated in dual port memory. The remain-
der is located in Internal Memory. The advantage of
having data situated in dual port memory is that it can
be accessed much faster than data situated in the In-
ternal Memory.

Internal Memory can only be accessed indirectly via
mailbox commands, and is thus better suited for less
time critical data. Data buffer data that is situated in
dual port memory can not be accessed using mailbox
messages in parallel.

It is possible to configure how much data that should
be reside in dual port memory, and how much that
should be located in Internal Memory. The maximum
size of each data buffer is 2kbytes, out of which up to
5121 bytes can be configured to reside in dual port
memory.

Note: Data change event notification (software interrupt) can not be used for I/O data mapped to the
Internal Memory.

7.3 Data types

Most fieldbus systems makes a distinction between fast cyclical data and slower parameter data. This is
reflected in the way data is treated by the Anybus-S module:

• I/O Data

This type of data is usually associated with fast fieldbus data (a.k.a. cyclic data).

• Parameter Data

This type of data is usually associated with slow fieldbus data (a.k.a. acyclic data).

How this data is treated for each fieldbus type is described in each separate fieldbus appendix.

1. Future Anybus versions may allow a larger amount of data to reside in dual port memory, see “Extended
Memory Mode (4K DPRAM)” on page 73.

Dual Port Memory

Data Buffer

Internal Memory

This part of each
data buffer can be
accessed directly

This part of each
data buffer can only

be accessed in-
directly using Mail-

box Commands

Fieldbus Data Exchange 38

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

7.4 Data Composition

As mentioned earlier, the maximum total size of each data buffer is 2048 bytes. Up to 5121 of these bytes
can reside in dual port memory, the remainder is located in Internal Memory and can only be accessed
indirectly using mailbox commands.

The composition of I/O and Parameter Data is determined during the module initialization phase in the
mailbox command ‘Anybus Init’, see “Anybus Initialization (Anybus_INIT)” on page 46.

The following parameters must be set for each (Input and Output) data buffer:

• Total Length2

This parameter defines the total amount of fieldbus data (I/O Data + Parameter Data) for the
data buffer. The maximum Total Length is 2048 bytes regardless of DPRAM and I/O Length
settings.

• DPRAM Length2

This parameter defines how much of data that should be located in dual port memory. The
DPRAM Length cannot exceed 5121 bytes.

• I/O Length2

This parameter defines how much of the data that should be treated as I/O Data. The remaining
data will be treated as Parameter Data.

The figure below illustrates the relationship between the parameters described above.

1. Future Anybus-S versions may allow a larger amount of data to reside in dual port memory, see “Extended
Memory Mode (4K DPRAM)” on page 73.

2. The maximum range of these parameters may be limited by the fieldbus. Consult each separate fieldbus
appendix for more information.

Dual Port Memory Internal Memory

Parameter Data

I/O Data

(Not used)

(Not used)

(Not used)

Parameter Data

Total Length

DPRAM
Length

I/O Length
{ _ ► -------

t-------tt-"'--------

►

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 8

8. Mailbox Interface

8.1 General

The mailbox interface is a message interface used to instruct the module to perform a specific task, or
to request data. It is also used by the module to indicate certain events and to respond to requests sent
by the application.

Mailbox communication is handled through the Mailbox Input and Output Areas (See figure below) and
generally does not interfere with fieldbus data exchange unless the mailbox message itself is related to
fieldbus activity.

The handshaking procedure for the Mailbox Input/Output Areas is slightly different than the one used
for the other areas. For more information, see “Mailbox Notification Bits” on page 40.

The mailbox interface supports the following types of communication:

• Command - Response

A message is sent by the message initiator, and the message recipient is required to respond. The
message initiator can be either the application or the Anybus-S.

• Indication

A message is sent by the message initiator, and no response is required. The message initiator can
be either the application or the Anybus-S.

The mailbox interface is designed to allow multiple messages to be sent to the module before receiving
a response (if applicable). To be able to distinguish which mailbox response that belong to which com-
mand, a unique Message ID is used for each message/response, see figure below.

8.2 Message Types

Mailbox Input Area

Mailbox Output Area

AnyBus-S
SoftwareApplication Software

Application AnyBus-S

AnyBus-S
SoftwareApplication Software

Application AnyBus-S

Mailbox Input Area

Mailbox Output Area

Command

Command

Response

Response

ID: 1

ID: 2

ID: 1

ID: 2

I

A
- C8:I ,_

,.-

~---=------~----, ~.----==---==--==:--r--- _ -__=:::;-'

' \
\

ir-----------M- ' : ',,
-.,.,'\

I
I , ,

Mailbox Interface 40

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

The mailbox messages can be grouped into five categories based on their functionality, see below.

• Application Messages

This category includes commands for accessing and controlling internal Anybus-S functions

• Fieldbus Specific Messages

This category includes commands for accessing fieldbus specific data and functions. For more
information, consult each separate fieldbus appendix.

• Internal Memory Messages

This category includes functions for accessing the Internal Memory.

• Reset Messages

This category includes functions to effect the module operation.

8.3 Mailbox Notification Bits

The Mailbox Notification bits in the Anybus- and Application Indication Registers are used to control
the mailbox interface. Both registers contains bits that are used to send and receive mailbox messages,
and to monitor the current mailbox status.

Before entering a new mailbox message in the Mailbox Input Area, or attempting to read a message from
the Mailbox Output Area, it is necessary to know the current status of the mailbox interface. This is done
by comparing the corresponding Mailbox Notification bits in the Anybus- and Application Indication
Registers, see table below.

Bit Function

AP_MIN Toggle this bit to post a message previously written to the Mailbox Input Area.

AP_MOUT Toggle this bit to acknowledge that a mailbox message has been read

AB_MIN This bit is toggled by the Anybus module when it has read a mailbox message

AB_MOUT This bit is toggled each time a new message is waiting in the Mailbox Output Area.

Expression Result Meaning

AP_MIN = AB_MIN True Mailbox Input Area is free

False Mailbox Input Area is currently in use

AP_MOUT = AB_MOUT True No message available in the Mailbox Output Area

False New message available in the Mailbox Output Area

Mailbox Interface 41

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

8.3.1 Sending a Mailbox Message

To send a mailbox message to the module, follow the procedure below.

 Start

1. Check if the Mailbox Input Area is free (If not, retry again later)

2. Write the message to the Mailbox Input Area

3. Toggle the AP_MIN bit in the Application Indication Register (7FEh)

 Done

8.3.2 Receiving a Mailbox Message

To receive a mailbox message, follow the procedure below.

 Start

1. Check if a message is waiting in the Mailbox Output Area (If not, retry again later)

2. Read the message from the Mailbox Output area

3. Toggle the AP_MOUT bit in the Application Indication Register (7FEh)

 Done

Mailbox Interface 42

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

8.4 Mailbox Message Structure

A mailbox message consists of a message header and message data, see below.

8.5 Message Header

The header consists of a series of 16bit registers that specifies the type of message and the length of the
message data.

Offset: Contents: Description:

000h - 01Fh Message Header
(32 bytes)

See “Message Header” on page 42

020h - 11Fh Message Data
(up to 256 bytes)

This section contains the data associ-
ated with the mailbox message.

Offset: Register:

000h Message ID

002h Message Information

004h Command Number

006h Data Size

008h (reserved, set to 0001h)

00Ah (reserved, set to 0001h)

00Ch (reserved, set to 0000h)

00Eh (reserved, set to 0000h)

010h Extended Word 1

012h Extended Word 2

014h Extended Word 3

016h Extended Word 4

018h Extended Word 5

01Ah Extended Word 6

01Ch Extended Word 7

01Eh Extended Word 8

Mailbox Interface 43

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Message ID

The Message ID register contains a 16-bit integer identifier for the command. When a response is sent
back to the message initiator, the same message ID is used in that message. Message ID:s can be selected
arbitrary, but messages currently being processed must all have unique ID’s.

Message Information

This register contains bit and code information about the mailbox message. The register is divided into
five areas according to the figure below:

Command Number

This register contains a 16 bit command identifier.

Data Size

This register specifies the size of the Message Data in bytes. The maximum Message Data size is 256
bytes.

Extended Words 1 ... 8

These registers are specific for each command. Consult the specification for each command for further
information.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

ERR C/R (reserved) Error Code Message Type

Bit / Field Description Contents

ERR This bit indicates if the received command
contained any errors.

0:Message OK
1:Error (See also ‘Error Code’ below)

C/R This bit specifies whether the message is
a command or a response.

0:Response Message
1:Command Message

Error Code If the ERR bit is set, this field contains
additional information about the error.

0h:Invalid Message ID
1h:Invalid Message Type
2h:Invalid Command
3h:Invalid Data Size
4h:Message header malformed (offset 008h)
5h:Message header malformed (offset 00Ah)
6h:Message header malformed (offset 00Ch - 00Dh)
7h: Invalid address
8h:Invalid Response
9h:Flash Config Error
Fh:Invalid Other
(All other values are reserved)

Message Type This field specifies the type of the mes-
sage.

1h:Application Message
2h:Fieldbus Specific Message
3h:Memory Message
5h:Reset Message
(All other values are reserved)

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 9

9. Mailbox Messages

9.1 Application Messages

General

This category includes commands for accessing and controlling internal Anybus-S functions

Messages in This Category

Message Abbreviation Description Page

Start initialization START_INIT Initiates the initialization process. 45

Anybus initialization Anybus_INIT Used to set up basic operational parameters. 46

End initialization END_INIT Ends the initialization process. 48

Save to FLASH SAVE_TO_FLASH Records a mailbox initialization sequence to flash. 49

Load from FLASH LOAD_FROM_FLASH Replays a previously recorded mailbox initialization
sequence from flash.

50

Hardware Check HW_CHK Performs a diagnostic test on the Anybus-S hardware. 51

Mailbox Messages 45

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.1.1 Start Initialization (START_INIT)

This command initiates the initialization process.

Command and response layout:

Message Initiator Application

Message Name START_INIT

Message Type 1. (Application Message)

Command Number 0001h

Extended Header -

Command Data -

Response Data -

Command Expected Response

Message ID (ID) (ID)

Message information 4001h 0001h Application Message

Command 0001h 0001h START_INIT

Data size 0000h 0000h No message data

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 - -

Extended word 2 - -

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - -

Mailbox Messages 46

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.1.2 Anybus Initialization (Anybus_INIT)

This command is used to configure the data composition of the data exchange buffers, and the way the
module should operate on the network. Sending this mailbox is mandatory, either directly or indirectly
using the mailbox command ‘Load from FLASH’.

Note that the application must monitor the response from the module and verify that the command was
accepted.

The initialization parameters passed in the command are parsed by the module. If any parameter exceeds
its limits, the response message will contain recommended values. The application will then have to re-
send the message with the corrected values.

Note: This command can only be send during module initialization, i.e. between START_INIT and
END_INIT.

Command and response layout:

Message Initiator Application

Message Name Anybus_INIT

Message Type 1. (Application Message)

Command Number 0002h

Extended Header The response header may contain fault information.

Command Data Initialization parameter data

Response Data Copy of command data, or suggested maximum values.

Command Expected Response

Message ID (ID) (ID)

Message information 4001h 0001h Application Message

Command 0002h 0002h Anybus_INIT

Data size 0012h 0012h 9 words of data (18 bytes)

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 - -

Extended word 2 - -

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - Fault Information

Command data word 1 Input I/O Length Input I/O Length

Command data word 2 Input DPRAM Length Input DPRAM Length

Command data word 3 Input Total Length Input Total Length

Command data word 4 Output I/O Length Output I/O Length

Command data word 5 Output DPRAM Length Output DPRAM Length

Command data word 6 Output Total Length Output Total Length

Command data word 7 Operation Mode Operation Mode

Command data word 8 Event Notification Config. Event Notification Config.

Command data word 9 Watchdog Timeout Value Watchdog Timeout Value

Mailbox Messages 47

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

• Fault Information

If the error code is ‘Invalid Other’ (Fh), extended error information is presented in this register
as follows:

• Input I/O Length, Input DPRAM Length & Input Total Length

These parameters determine the composition of the Input Data Buffer. For more information,
see “Data Composition” on page 38

• Output I/O Length, Output DPRAM Length & Output Total Length

These parameters determine the composition of the Output Data Buffer. For more information,
see “Data Composition” on page 38

• Operation Mode

This parameter is used to set various options in the module. The contents of this parameter is
reflected in the Module Status register in the Control Register Area.

• Event Notification Config.

This parameter is used to set which events that should trigger an Event Notification. For more
information about these bits, “Event Notification Source (7EEh - 7EFh, RO)” on page 23.

• Watchdog Timeout Value1

This parameter is used to set the maximum allowed difference between the Watchdog Counter
Input/Output registers (See “Watchdog Counter Input (7D2h - 7D3h, R/W)” on page 19 and

Bit Fault Description

0 Input I/O Length Incorrect length of input I/O

1 Input DPRAM Length Incorrect length of DPRAM input

2 Input Total Length Incorrect length of total input

3 (reserved)

4 Output I/O Length Incorrect length of output I/O

5 Output DPRAM Length Incorrect length of DPRAM output

6 Output Total Length Incorrect length of total output

7 (reserved)

8 Module Status Incorrect configuration of bits in Module Status register

9 Event Notification Incorrect configuration of bits in Event Notification register

10 Incorrect Watchdog Incorrect Watchdog Counter difference value

11 - 15 (reserved)

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
CD APFC RDR FBSPU FBS FBFC

Bit Description State

FBFC These bits defines the behaviour of the module when the
fieldbus goes off line. For more information, see “Module
Status (7E2h - 7E3h, RO)” on page 21

For more information, see
“Module Status (7E2h -
7E3h, RO)” on page 21

FBS1

FBSPU1

RDR1 Fieldbus Reset Device Request notification 0:Disable
1:Enable

APFC1 This bit defines how the module should behave when the
application has stopped (i.e. a Watchdog timeout)

0:Clear Input Data
1:Freeze Input Data

CD This bit enables/disables the Changed Data Field registers
in the Control Register Area.

0:Disable
1:Enable

1. The implementation and behavior of this bit depends on the fieldbus type. Consult each separate fieldbus
appendix for more information. See also “Deviances” on page 74.

Mailbox Messages 48

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

“Watchdog Counter Output (7D4h - 7D5h, RO)” on page 20). When this value is exceeded, the
module will signal to the fieldbus that the application is not functioning properly. The range of
this parameter is 100 to 30000, which corresponds to a 0.1 - 30 second timeout period. A value
of zero will disable this feature.

9.1.3 End Initialization (END_INIT)

This command ends the initialization process.

Note: It is not possible to re-initialise the module without making a software or hardware reset.

Command and response layout:

• Primary & Secondary Fault Information

Some modules can return fieldbus-specific error codes via these words during the modules in-
ternal initialization. Since these error codes are not generic, please refer to the applicable fieldbus
appendix for more information.

Message Initiator Application

Message Name END_INIT

Message Type 1. (Application Message)

Command Number 0003h

Extended Header -

Command Data -

Response Data -

Command Expected Response

Message ID (ID) (ID)

Message information 4001h 0001h Application Message

Command 0003h 0003h END_INIT

Data size 0000h 0000h No message data

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 - -

Extended word 2 - -

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - Secondary Fault Information

Extended word 8 - Primary Fault Information

Mailbox Messages 49

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.1.4 Save to FLASH (SAVE_TO_FLASH)

This command is sent to save the Anybus-S initialization in the FLASH. This command can only be sent
directly after the START_INIT command. Please observe that issuing this command will erase any pre-
viously stored configuration.

Command and response layout:

• Fault Information

If ‘Flash Config Error’ is returned in the Message Information word in the header of the re-
sponse, information about the fault can be found here.

0001h: Flash is full - the mailbox that responded with this message will be unable to save.

0002h: Store operation error - will not be able to load the configuration.

Message Initiator Application

Message Name SAVE_TO_FLASH

Message Type 1. (Application Message)

Command Number 0004h

Extended Header The response header may contain fault information.

Command Data -

Response Data -

Command Expected Response

Message ID (ID) (ID)

Message information 4001h 0001h Application Message

Command 0004h 0004h SAVE_TO_FLASH

Data size 0000h 0000h No message data

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 - -

Extended word 2 - -

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - Fault Information

Mailbox Messages 50

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.1.5 Load from FLASH (LOAD_FROM_FLASH)

This command is sent to load the Anybus-S initialization from the flash. This command can only be sent
directly after the START_INIT command, and a previously saved configuration must be present in the
FLASH.

Command and response layout:

• Fault Information

If ‘Flash Config Error’ is returned in the Message Information word in the header of the re-
sponse, information about the fault can be found here.

0003h: CRC mismatch or FLASH empty - responds directly and will not load the configuration.

0004h: LOAD failed - module cannot load the configuration, the module will be reset.

Message Initiator Application

Message Name LOAD_FROM_FLASH

Message Type 1. (Application Message)

Command Number 0005h

Extended Header The response header may contain fault information.

Command Data -

Response Data -

Command Expected Response

Message ID (ID) (ID)

Message information 4001h 0001h Application Message

Command 0005h 0005h LOAD_FROM_FLASH

Data size 0000h 0000h No message data

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 - -

Extended word 2 - -

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - Fault Information

Mailbox Messages 51

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.1.6 Hardware Check (HW_CHK)

This command instructs the module to perform a diagnostic test on the hardware. This includes the
RAM, DPRAM, FLASH (CRC test) and possibly the ASIC depending on fieldbus type.

If any errors are detected, the module will not respond to any command until a hardware reset is per-
formed. The Anybus-S Watchdog will indicate the type of error, for more information see “Anybus-S
Watchdog LED” on page 64.

Note: The command can only be sent before the START_INIT command.

Command and response layout:

Message Initiator Application

Message Name HW_CHK

Message Type 1. (Application Message)

Command Number 0006h

Extended Header -

Command Data -

Response Data -

Command Expected Response

Message ID (ID) (ID)

Message information 4001h 0001h Application Message

Command 0006h 0006h HW_CHK

Data size 0000h 0000h No message data

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 - -

Extended word 2 - -

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - -

Mailbox Messages 52

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.2 Fieldbus Messages

This category includes commands for accessing fieldbus specific data and functions, and are described
in each separate fieldbus appendix.

9.3 Internal Memory Messages

General

This category includes functions for accessing the Internal Memory.

Messages in This Category

Message Abbreviation Description Page

Read Internal Input Area RD_INT_IN Reads a block of data from the internal input area. 53

Write Internal Input Area WR_INT_IN Writes a block of data to the internal input area. 54

Clear Internal Input Area CLR_INT_IN Clears a block of data in the internal input area. 55

Read Internal Output Area RD_INT_OUT Reads a block of data from the internal output area. 56

Mailbox Messages 53

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.3.1 Read Internal Input Area (RD_INT_IN)

This command is used to read a block of data from the Internal Input Area. It is possible to read up to
256 bytes of data with each command.

Command and response layout:

• Block Offset

Address offset from the start of the Input Data Buffer.

• Block Size

Size of the block that should be read (in bytes).

• Data Block

The actual data block.

Message Initiator Application

Message Name RD_INT_IN

Message Type 3. (Internal Memory Message)

Command Number 0001h

Extended Header Contains the source offset address and size of the data block

Command Data -

Response Data Contents of read data block.

Command Expected Response

Message ID (ID) (ID)

Message information 4003h 0003h Internal Memory Message

Command 0001h 0001h RD_INT_IN

Data size 0000h (data size) (same as Block Size)

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 Block Offset Block Offset

Extended word 2 Block Size Block Size

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - -

Response data word 1

Data Block ...

Response data word n

Mailbox Messages 54

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.3.2 Write Internal Input Area (WR_INT_IN)

This command is used to write a data block to the Internal Input Area. It is possible to write up to 256
bytes of data with each command.

Command and response layout:

• Block Offset

Address offset from the start of the Input Data Buffer.

• Block Size

Size of the block that should be written (in bytes).

• Data Block

The actual data block.

Message Initiator Application

Message Name WR_INT_IN

Message Type 3. (Internal Memory Message)

Command Number 0002h

Extended Header Contains destination offset address and size of the data block

Command Data Data that should be written.

Response Data Copy of the written data.

Command Expected Response

Message ID (ID) (ID)

Message information 4003h 0003h Internal Memory Message

Command 0002h 0002h WR_INT_IN

Data size (data size) (data size) (same as Block Size)

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 Block Offset Block Offset

Extended word 2 Block Size Block Size

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - -

Command data word 1 Response data word 1

... Data Block Data Block ...

Command data word n Response data word n

Mailbox Messages 55

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.3.3 Clear Internal Input Area (CLR_INT_IN)

This command is used to clear blocks of data in the Internal Input Area. It is possible to clear up to 256
bytes of data with each command. Several commands are required to clear the whole area.

Command and response layout:

• Block Offset

Address offset from the start of the Input Data Buffer.

• Block Size

Size of the block that should be cleared (in bytes).

Message Initiator Application

Message Name CLR_INT_IN

Message Type 3. (Internal Memory Message)

Command Number 0003h

Extended Header Contains destination offset address and size of the data block that should be cleared

Command Data -

Response Data -

Command Expected Response

Message ID (ID) (ID)

Message information 4003h 0003h Internal Memory Message

Command 0003h 0003h CLR_INT_IN

Data size 0000h 0000h No message data

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 Block Offset Block Offset

Extended word 2 Block Size Block Size

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - -

Mailbox Messages 56

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.3.4 Read Internal Output Area (RD_INT_OUT)

This command is used to read a block of data from the Internal Output Area. It is possible to read up
to 256 bytes of data with each command.

Command and response layout:

• Block Offset

Address offset from the start of the Output Data Buffer.

• Block Size

Size of the block that should be read (in bytes).

• Data Block

The actual data block.

Message Initiator Application

Message Name RD_INT_OUT

Message Type 3. (Internal Memory Message)

Command Number 0004h

Extended Header Contains the source offset address and size of the data block

Command Data -

Response Data Contents of read data block.

Command Expected Response

Message ID (ID) (ID)

Message information 4003h 0003h Internal Memory Message

Command 0004h 0004h RD_INT_OUT

Data size 0000h (data size) (same as Block Size)

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 Block Offset Block Offset

Extended word 2 Block Size Block Size

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - -

Response data word 1

Data Block ...

Response data word n

Mailbox Messages 57

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

9.4 Reset Messages

General

This category includes reset related functions.

Messages in This Category

9.4.1 Software Reset (SW_RESET)

This command is used if a restart of the Anybus-S module for some reason is required, e.g. if some ini-
tialization data has to be changed. The application has 1 second to read the response before the reset
command is activated.

Note: This command only makes a software reset of the module, not a hardware reset.

Command and response layout:

Message Abbreviation Description Page

Software Reset SW_RESET Performs a software reset of the module. 57

Message Initiator Application

Message Name SW_RESET

Message Type 5. (Reset Message)

Command Number 0001h

Extended Header -

Command Data -

Response Data -

Command Expected Response

Message ID (ID) (ID)

Message information 4005h 0005h Reset Message

Command 0001h 0001h SW_RESET

Data size 0000h 0000h No message data

0001h 0001h

0001h 0001h

0000h 0000h

0000h 0000h

Extended word 1 - -

Extended word 2 - -

Extended word 3 - -

Extended word 4 - -

Extended word 5 - -

Extended word 6 - -

Extended word 7 - -

Extended word 8 - -

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 10

10. Start Up and Initialization

10.1 Introduction

At any given time, the Anybus-S module will be in one out of three possible states:

1. Hardware Initialization State

This is the initial state of the module after power on or reset. To get to the next state, various
diagnostic tests on the hardware should be performed, see “Hardware Initialization” on page 59.

 - No data exchange is possible in this state.

2. Software Initialization State

In this state, the basic operating parameters are set. In order to proceed to the next state, the
module must first successfully pass the software initialization sequence, see “Software Initializa-
tion” on page 60.

 - No data exchange is possible in this state.

3. Data Exchange State

In this state, the module is able to exchange data between the fieldbus and two I/O data buffers.
The only way to get to this state is to successfully go through the other states.

This chapter describes the steps involved in state 1 and 2. For more information about state 3 (Data
Exchange State), see “Fieldbus Data Exchange” on page 36.

Start Up and Initialization 59

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

10.2 Hardware Initialization

This procedure is mandatory and ensures that the module is working properly before the software ini-
tialization sequence. The procedure consists of the following steps:

• Startup Sequence

• Dual Port Memory Check (Optional)

• The Hardware Check mailbox message (Optional)

10.2.1 Startup Sequence

Depending on how the application has been implemented, the startup procedure differs slightly:

• Hardware Interrupt feature not implemented

After power on/reset, the application should poll the Watchdog Counter Out register (7D4h -
7D5h) approximately every 10ms to detect if it has been properly updated by the module. When
this register has been updated by the module at least 10 times, the module can be considered to
be up and running.

• Hardware Interrupt feature implemented

After power on/reset, the Anybus module generates an interrupt to indicate that it is ready. Be-
fore this interrupt, the application is not allowed to write any data in the dual port memory.

The interrupt line is managed entirely by the internal logic of the DPRAM; this logic is affected
by a power on reset but not by a hardware reset. Therefore, certain precautions are needed to
ensure proper functionality. For more information, see “Interrupt Line and Hardware Reset” on
page 76.

10.2.2 Dual Port Memory Check (Optional)

It is recommended to perform a read/write test of the dual port memory. This can be done in two ways,
depending on the nature of the application:

• Hardware Reset not implemented (Or not controlled by the application software)

The test should be carried out directly after the Startup Sequence described above. The test must
be non-destructive, i.e. the data in the dual port memory must be restored after the test.

Also, it is important to exclude the following from these tests as this would interfere with the
operation of the module:

- Watchdog Counter In register (7D2h - 7D3h)

- Watchdog Counter Out register (7D4h - 7D5h)

- Handshake Registers (7FEh - 7FFh)

- LED indication status (7DAh-7DFh)

- Module Status (7E2h-7E3h)

- Fieldbus Specific Area (640h - 7BFh)

• Hardware Reset implemented (And controlled by the application software)

The dual port memory test should be carried out while the reset line is held low by the applica-
tion, prior to the Startup Sequence described above. All memory locations can be tested, and the
test can be either destructive or non-destructive.

Start Up and Initialization 60

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

10.2.3 Hardware Check (Optional)

Note: This step can only be performed after the Startup Sequence and the Dual Port Memory Check.

By sending the mailbox command ‘Hardware Check’, the module will be instructed to perform a hard-
ware self-test. If the test is successful, the module will respond. If the module does not respond, the test
failed. For more information, see “Hardware Check (HW_CHK)” on page 51) and “Anybus-S Watch-
dog LED” on page 64.

10.3 Software Initialization

Before any fieldbus communication can take place, the
software in the Anybus-S module must be initialised.
This process is mandatory and decides how the mod-
ule should operate on the network.

The software initialization process basically consists of
the following steps:

1. Prepare Initialization Data (Optional)

2. Start Initialization

3. Initialise Parameter Values

4. Set Initial Fieldbus Data (Optional)

5. End Initialization

10.3.1 Prepare Initialization Data

This step is optional, but will enable the application to take advantage of advanced fieldbus specific fea-
tures without requiring multiple software versions. To accomplish this, the application needs to know
the type of Anybus module that is connected, and possibly other information such as software revisions
etc. During initialization, this information can be read directly from the Control Register Area without
handshaking.

The application can then modify the software initialization parameters to better exploit a specific Any-
bus model.

10.3.2 Start Initialization

This step is mandatory, and instructs the module to
start the software initialization sequence.

1. Send the mailbox message ‘Start Init’

This will instruct the module to start the soft-
ware initialization process.

2. Check response

The module is now ready to accept further con-
figuration mailbox messages.

Hardware
Initialisation

Prepare Init. Data

Start Initialisation

Fieldbus Data
Exchange

End Initialisation

Set Initial
FieldbusData

Initialise Parameter
Values

Prepare Init.
Data

Initialise Parameter
Values

Send 'Start Init'

Check response

Start Up and Initialization 61

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

10.3.3 Initialise Parameter Values

This step is mandatory, however the exact procedure may vary from case to case. The following steps
are involved.

• Send mailbox command ‘Save to FLASH’ (Optional)

This mailbox command works very much like a tape recorder that records the following mailbox
commands. The recording stops when the module receives the ‘End Init’ mailbox command.

• Send mailbox command ‘Load from FLASH’ (Optional)

This mailbox command replays a previously recorded mailbox sequence made using the ‘Save to
FLASH’ mailbox command.

• Send mailbox command ‘Anybus Init’

This mailbox command is used to configure the data composition of the data exchange buffers,
and the way the module should operate. Sending this mailbox is mandatory, either directly or in-
directly using the mailbox command ‘Load from FLASH’.

Note that the application must monitor the response from the module and verify that the com-
mand was accepted.

• Send fieldbus specific initialization commands (Optional)

This procedure usually involves sending fieldbus specific mailbox commands to the module,
consult each separate fieldbus appendix for more information. Note that some fieldbus specific
initialization commands must be sent before Anybus Init. This has to be accounted for in the
application software.

Note: Please note that using fieldbus specific initialization commands may void the fieldbus pre-
certification, see “Fieldbus Certification” on page 81.

10.3.4 Set Initial Fieldbus Data

This step is optional, but allows the application to have control over the contents of the Input Data Buf-
fer before the first bus cycle. Depending on the location of the data that should be written, the applica-
tion must either write the data to the Input Data Area in the DPRAM or send it to the module using
Internal Memory commands, see “Internal Memory Messages” on page 52.

10.3.5 End Initialization

This step signals to the module that the initialization is
done, and that the module should start exchanging
data on the fieldbus.

1. Send the mailbox message ‘End Init’

2. Check response

If the response is ok, the module will start ex-
changing data on the fieldbus.

Initialise Parameter
Values

Fieldbus Data
Exchange

Send 'End Init'

Check response

Start Up and Initialization 62

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

10.3.6 Basic Initialization Sequence
Example 1

(Note that procedure below assumes that the parame-
ters sent with the ‘Anybus Init’ command are valid.)

If only basic fieldbus functionality is required, a very
basic initialization sequence like the one below can be
used.

 Power On (Reset)

1. Send mailbox command ‘Start Init’

2. Check response

3. Send mailbox command ‘Anybus Init’

4. Check response

5. Send mailbox command ‘End Init’

6. Check response

 Ready

10.3.7 Basic Initialization Sequence
Example 2

In this example, the initialization mailbox sequence is
loaded from flash. Note that this requires that an ini-
tialization sequence has previously been stored in flash
using the ‘Save to FLASH’ mailbox command.

 Power On (Reset)

1. Send mailbox command ‘Start Init’

2. Check response

3. Send mailbox command ‘Load from flash’

4. Check response

5. Send mailbox command ‘End Init’

6. Check response

 Ready

Start

Ready

Send 'Start Init'

Check response

Send 'AnyBus Init'

Check response

Send 'End Init'

Check response

Start

Ready

Send 'Start Init'

Check response

Send 'AnyBus Init'

Check response

Send 'End Init'

Check response

Start

Ready

Send 'Start Init'

Check response

'Load from FLASH'

Check response

Send 'End Init'

Check response

Start Up and Initialization 63

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

10.3.8 Advanced Initialization Example

In this example, the initialization sequence is adapted
for the currently used Module/Fieldbus type, and the
Input Data Buffer is updated before the first bus cycle.

 Power On (Reset)

1. Check Module/Fieldbus Type

This information can be read without hand-
shaking from the Control Register Area.

2. Prepare Initialization Data

Based on the information from the Control
Register Area, the application can decide what
initialization parameters to use in the remainder
of the initialization process.

3. Send mailbox command ‘Start Init’

This step starts the initialization sequence.

4. Check response

5. Fieldbus Specific Initialization

The procedure for this step is different for each
fieldbus and is described in each separate field-
bus appendix.

6. Send mailbox command ‘Anybus Init’

‘Anybus Init’ is used to set up I/O sizes and
various configuration bits.

7. Check response

8. Response OK?

If not, modify the parameters for the Anybus
Init mailbox message and go to step 4.

9. Update the Input Area with initial values

10. Send mailbox command ‘End Init’

This step ends the initialization sequence.

11. Check response

 Ready

Start

Ready

Send 'Start Init'

Check responseModify 'AnyBus Init'
parameters

Response OK?

Yes

No

Send 'AnyBus Init'

Check response

Send 'End Init'

Update Input Data-
Buffer with

initial values

Check response

Fieldbus Specific
Initialisation

Check:
Module Type
Fieldbus Type

Prepare
Initialisation data

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 11

11. Indication LEDs

11.1 Fieldbus Status Indicators

The module features four front mounted status LED’s implemented in accordance with each fieldbus
standard. The function of these LED’s is fieldbus dependant and is described in each fieldbus appendix.

11.2 Anybus-S Watchdog LED

All Anybus-S modules features a surface mounted watchdog LED, indicating the status of the module.

Colour Frequency Indication

Red - Unspecified internal error, or running in bootloader mode

1Hz RAM failure

2Hz ASIC or FLASH failure

4Hz DPRAM failure

Green 2Hz Module not initialised

1Hz Module initialised and running OK

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 12

12. Firmware Upgrade

To be able to keep the continuous product development on the Anybus-S module and to be able to give
upgrades to our customers with more improved features, a FLASH memory is used in all Anybus-S
modules. This means that the firmware in the module can be updated in the field after production.

The module supports serial firmware download:

• Serial Download via Asynchronous Serial Interface

This method requires that the asynchronous serial interface pins on the Anybus application con-
nector is connected to a standard PC via RS232 line drivers. The firmware can then be down-
loaded using a Microsoft Windows application supplied by HMS.
This method may require access to the circuit board, depending on module. Please contact HMS
for more information.

A simple but fully functional implementation can be made by adding a four-pin connector that will con-
nect the VCC, GND, TX and RX pins in the application connector to an external RS232-to-TTL level
converter. The TX/RX pins are used for the communication and the VCC/GND supply the converter
with power, eliminating the need for an external supply.

The application software also needs some preparations since the module will only accept download
commands immediately after a reset. Once the application has begun any initialization of the module it
must be reset or power-cycled in order for a download to be possible.

On newer modules it may also be required to close a jumper on the module circuit board in order to be
able to download new firmware, contact HMS for more information.

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 13

13. Driver Example

The example driver is composed of three routines, called ‘Handlers’:

• Interrupt Handler

This routine handles interrupts received from the Anybus-S. For more information, see “Inter-
rupt Handler” on page 67.

• Interface Handler

This routine should be called cyclically from the main program. For more information, see “In-
terface Handler” on page 68.

• Mailbox Handler

This routine can be called cyclically from the main program, or when the need arises. For more
information, see “Mailbox Handler” on page 69.

Implementation Notes

Also, it is assumed that the code in these examples is executed in a multitasking environment. If the ap-
plication does not feature multitasking capability, the code should to be implemented as a state machine
or similar rather than linear code.

Important!

These example routines are far from optimal and is included for guidance only. Some essential functions
for Initialization, timeout, Event Notification and error handling etc. are left out and has to be imple-
mented in order to be able to operate the module properly.

Global Variables

The following global variables are used in the example routines:

Variable Type Description

INIT Boolean These variables corresponds to individual bits in the Anybus Indication Regis-
ter, see “Anybus Indication Register (7FFh, RO)” on page 27AB_IN Boolean

AB_OUT Boolean

AB_FBCTRL Boolean

AB_MOUT Boolean

AB_MIN Boolean

AB_EVNT Boolean

AP_MIN Boolean These variables corresponds to individual bits in the Application Indication Reg-
ister, see “Application Indication Register (7FEh, R/W)” on page 26AP_MOUT Boolean

AP_EVNT Boolean

ABS_INITIALISED Boolean This variable indicates that the module has been initialised.

IN_AREA_FREE Boolean These variables indicates if an area in the DPRAM is free to use. (Set = free)

OUT_AREA_FREE Boolean

FBCTRL_AREA_FREE Boolean

MBX_OUT_NEW Boolean This variable indicates that the Mailbox Output Area contains a new message.

MBX_IN_FREE Boolean This variable indicates that the Mailbox Input Area is free to use.

Driver Example 67

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

13.1 Interrupt Handler

The purpose of this routine is to interpret the contents of
the Anybus Indication Register upon receiving an inter-
rupt, and to make this information available to the Inter-
face/Mailbox Handlers and the main application program.

To provide fast interrupt handling, no further processing is
performed in this routine; i.e. all processing is performed in
the Interface Handler instead.

Note: Although this routine is called ‘Interrupt Handler’ it
can be used even if the interrupt pin is not implemented in
the application. In this case, the routine must be called pe-
riodically and/or when needed in order to refresh its status
variables. Exactly how this should be implemented is not
the scope of this chapter. Again, it is strongly recommend-
ed to use the interrupt feature whenever possible.

Step by Step

 Start

1. Read the Anybus Indication Register

2. Check if the module is initialised

(Store status in ABS_INITIALISED)

3. Check if the Input Area is free

(Store status in IN_AREA_FREE)

4. Check if the Output Area is free

(Store status in OUT_AREA_FREE)

5. Check if the Fieldbus Specific Area & Control
Register Area is free

(Store status in FBCTRL_AREA_FREE)

6. Check if the Mailbox Output Area contains a
new message

(Store status in MBX_OUT_NEW)

7. Check if the Mailbox Input Area is free

(Store status in MBX_IN_FREE)

8. Check if an Event Notification has occurred

(Store status in NEW_EVENT)

 Done

Start

Done

Read
AnyBus Indication Register

ABS_INITIALISED = 1

INIT == 1?

Yes

No

ABS_INITIALISED = 0

IN_AREA_FREE = 1

AB_IN == 1?

Yes

No

IN_AREA_FREE = 0

OUT_AREA_FREE = 1

AB_OUT == 1?

Yes

No

OUT_AREA_FREE = 0

FBCTRL_AREA_FREE = 1

AB_FBCTRL == 1?

Yes

No

FBCTRL_AREA_FREE = 0

MBX_OUT_NEW = 1

AB_MOUT != AP_MOUT?

Yes

No

MBX_OUT_NEW = 0

MBX_IN_FREE= 1

AB_MIN == AP_MIN?

Yes

No

MBX_IN_FREE = 0

NEW_EVENT = 1

AB_EVNT != AP_EVNT?

Yes

No

NEW_EVENT = 0

2

1

3

4

5

6

7

8

•
•

•

•

•

•

•

•

Driver Example 68

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

13.2 Interface Handler

The Interface Handler should be called cy-
clically from the main program.

The purpose of this routine is to transfer
data and to perform all necessary hand-
shaking for the Input/Output Data Areas
and the Fieldbus Specific/Control Register
Areas.

If an area within the dual port memory is
currently in use, a request will be made so
that the area can be accessed the next time
the routine is called.

Step by Step

 Start

1. New data for Input Area?

2. Is the area free to use?

If yes, access the data, release the
area and wait for response.

If no, request and if possible access
the area. If the area is still in use, a
new attempt will be made the next
time the routine is called.

3. Time to read Output Area?

4. Is the area free to use?

If yes, access the data, release the
area and wait for response.

If no, request and if possible access
the area. If the area is still in use, a
new attempt will be made the next
time the routine is called.

5. Access to the Fieldbus Specific
Area & Control Register Area re-
quired?

6. Is the area free to use?

If yes, access the data, release the
area and wait for response.

If no, request and if possible access
the area. If the area is still in use, a
new attempt will be made the next
time the routine is called.

 Done

Start

Done

New data for Input Area?

No

Yes

IN_AREA_FREE == 1?

IN_AREA_FREE == 1?

Yes

Yes

No

No

Write data

Request Area

Release Area

Wait for response

Wait for response

Time to read Output Area?

No

Yes

OUT_AREA_FREE == 1?

OUT_AREA_FREE == 1?

Yes

Yes

No

No

Read Data

Request Area

Release Area

Wait for response

Wait for response

Access to the
Fieldbus/Control Area

Required?

No

Yes

FBCTRL_AREA_FREE == 1?

FBCTRL_AREA_FREE == 1?

Yes

Yes

No

No

Read/Write Data

Request Area

Release Area

Wait for response

Wait for response

1

3

5

2

4

6

•

•

•

Driver Example 69

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

13.3 Mailbox Handler

The Mailbox Handler should be called cyclically from the main
program.

The purpose of this routine is to exchange mailbox messages
with the module. The routine handles both incoming and out-
going mailbox traffic:

• Application to Anybus module

If the application wishes to send a mailbox message to
the module, the routine will first check if the Mailbox
Input Area is free (i.e. MBX_IN_FREE == 1), and if
possible, transfer the message. The routine will then
toggle the AP_MIN bit to signal to the module that a
message has been entered in the Mailbox Input Area.

If the Mailbox Input Area is currently in use (i.e. MBX-
_IN_FREE == 0), the routine will attempt to send the
message the next time the routine is called.

• Module to Application

If the application is able to receive a new mailbox mes-
sage and a new message is detected (i.e. MBX-
_OUT_NEW == 1), the routine will transfer the
message and acknowledge this to the module by tog-
gling the AP_MOUT bit in the Application Indication
Register.

Step by Step

 Start

1. Should a new mailbox message be sent to the Anybus module?

(If not, the routine jumps to step 3)

2. Is the Mailbox Input Area free?

If yes, write the message to the Mailbox Input Area. When done, toggle the AP_MIN bit to signal
to the module that a new message has been entered.

If no, do nothing; a new attempt will be made the next time the routine is called.

3. Is the application ready to receive a new mailbox message?

(If not, the routine exits)

4. Does the Mailbox Output Area contain a new message?

If yes, read the message from the Mailbox Output Area. When done, toggle the AP_MOUT bit
to acknowledge that the message has been read.

If no, do nothing; a new attempt will be made the next time the routine is called.

 Done

Start

Done

New mailbox
command for
AnyBus-S?

No

Yes

MBX_IN_FREE == 1?

Yes

No

Write mailbox message
to Mailbox Input Area

Toggle AP_MIN

Application
ready to receive
mailbox msg?

No

Yes

MBX_OUT_NEW == 1?

Yes

No

Read mailbox message from
 Mailbox Output Area

Toggle AP_MOUT

1

3

2

4

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Chapter 14

14. Mechanical Aspects

14.1 PCB Measurements

14.2 Height Restrictions

In order to provide sufficient space between the Anybus-S circuit board/components and the surround-
ing parts of the application, certain mechanical restrictions must be accounted for.

The following drawing specifies the height restrictions of the components mounted on an Anybus-S
module. Generally, no components etc. are situated outside the boundaries specified below.

Note: Due to current component restrictions, the Anybus-S ControlNet does not follow the above ex-
pressed standard. For this module, the height restriction is 15 mm on the entire top side of the board.

0 7

55
.5 824

1.6
A-A

0 2 40

71
.81

5.8
0.75

37.2

14.2

6.2

12.8

39.8

0

2

2

Ø 0.8

A

2 2Ø 0.8 Ø 0.8

3x Ø 3.2

A
2.54

2.54

0.9Ø

17

15

1.6

86
54

4

5

7

1.4 - 7.2

----i

~ ~ I 00
00
00
00
o o I

---+--+--I-~~

e11a,,,,------
~:f=-=-----=-------=-----+-l+oooooooooef"'

I

I

nooo

c:::::::::::::::::::::::::::::c::::c::::c::::c::::c::::c::::c::::c::::::r:::c::::::r::::::::::::c::::c::::c::::c:::::::::z::: _J

I~ a~ e,_,____I ------e I ---------e IL

Mechanical Aspects 71

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

14.3 Mounting Holes

All Anybus-S modules features three metal plated mounting holes for mechanical fastening. Two of
these holes are used for improved electrical connection between the application and the module, see ta-
ble below.

(For measurements, see “PCB Measurements” on page 70.)

Both on the conductive and non-conductive holes there is an area around
the hole where no PCB wires are placed on the Anybus module. This area
has a diameter of 8mm.

14.4 Application Connector

The application connector is a 2mm low profile strip header that can be mounted on either side of the
module. If required, alternative solutions are available for an additional charge, e.g. the module can be
equipped with other standard or non-standard headers with other post heights.

(For measurements, see “PCB Measurements” on page 70.)

14.5 Fieldbus Connector(s)

To be able to fulfil the connector specification for all major fieldbus systems, most Anybus-S modules
can be equipped with several different connector types. A 2mm strip header is also available for appli-
cations where the fieldbus connector should be relocated to the application board.

The positions of the first fieldbus connector and the 2mm strip headers are fixed. Some fieldbus systems
require a second fieldbus connector, however the position of this connector is not fixed.

(For measurements, see “PCB Measurements” on page 70.)

Description Position

A Conductive hole, used to connect PE (Protective Earth) with
fieldbus electronics (Shield). (This hole is connected to the
fieldbus cable shield via a filter according to the fieldbus
specification).

B Electrically isolated hole for use with conductive or non con-
ductive screws.

C Conductive hole, used for improved GND connection.

Standard Post Heights

6.4 mm

8.1 mm

10.1 mm

12.2 mm

A B

C

Conductive Area

6.00 mm
3.20 mm

Post Height

00
00
00

00
00
00

•

I I

q1q1

-

•
0 0 0 0
0 0 0 0

Mechanical Aspects 72

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

14.6 Fieldbus Status Indication LED’s

All Anybus-S modules features four fieldbus status indication LED’s, available in both straight (180º)
and right-angled (90º) configurations. The position of these LED’s is standardised on all modules to fa-
cilitate the design of LED description panels etc.

The module can also be supplied with a 2.54 2x4 header if the LED’s are to be relocated to the applica-
tion board (for measurements, see “PCB Measurements” on page 70).

Angled LED’s

Straight LED’s

73,3

77,9

15,813,7

2,3
7,4
9,7

2,9
9,2

2,9

75,6

8,7

8,1 10,2

9,2
4,6

9,75

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Appendix A

A. Extended Memory Mode (4K DPRAM)

The Anybus-S platform has been extended to allow faster access to fieldbus data. This is accomplished
by using pin 34 of the application connector as address line 11 (A11), giving an effective address range
of 4kbyte instead of the standard 2kbyte.

At the time of writing, this feature is only used by the Anybus-M Profibus DPV1 Master and the Any-
bus-M Devicenet Master/Scanner, but it may be used in future versions of the Anybus-S. Regardless of
DPRAM size, all future Anybus-S versions are backwards compatible with applications where A11 is
not implemented.

Implementing this feature will affect the memory map,. see below.

In order to be able to support future this feature, address line 11 must be implemented in the application,
and the address offset used in the software must be recalculated relative to the memory map above.

A11 not implemented: Area: A11 Implemented:

000h - 1FFh Input Data Area
800h - 9FFh (Standard Mode)
000h - 5FFh (Extended Mode)

200h - 3FFh Output Data Area
A00h - BFFh (Standard Mode)
600h - BFFh (Extended Mode)

400h - 51Fh Mailbox Input Area C00h - D1Fh

520h - 63Fh Mailbox Output Area D20h - E3Fh

640h - 7BFh Fieldbus Specific Area E40h - FBFh

7C0h - 7FDh Control Register Area FC0h - FFDh

7FEh - 7FFh Handshake Registers FFEh - FFFh

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Appendix B

B. Deviances

B.1 General

The Anybus-S is designed to support virtually any type of network, and to present network events and
functions in a uniformed manner to the application in the widest extent possible.

To accomplish this, the Anybus-S specification includes a vast amount of bit coded status information.
Which of these bits that are actually used, and their exact interpretation, are fieldbus dependant.

For this reason, an implementation that relies heavily on a specific status bit or function may require
some slight modifications when changing fieldbus system, i.e. a completely transparent Anybus-S imple-
mentation cannot be done unless these slight differences are accounted for.

Also, in order to support fieldbus specific features, such as the socket interface of an Anybus-S Ethernet
module, special support has to be included in the application software.

Information about these deviances are presented in each separate fieldbus appendix.

B.2 Locked Release Behavior

When a locked release of the Output Data Area is requested, the area cannot be accessed again until the
Anybus module has updated it. Most modules update this area each cycle, whether there are changes to
the data or not, but there are exceptions. There are some modules that update the Output Data Area
only when there are changes to the output data, implying that the area can stay locked for several cycles.
This has to be taken into account when configuring an application, as you may have to rely on external
events for the area to be released.

The following modules update the Output Data Area only when the data has changed:

Module Comment

ABS PROFIBUS DP-V0 -

ABS PROFIBUS DP-V1 -

ABS PROFIBUS DP-V1 I&M -

ABS EtherNet/IP -

ABS CANopen When only COSa-data is used

a. COS = Change of state

ABS DeviceNet When only COS-data is used

D
eviances 75

D
oc.Id. H

M
SI-27-275

Anybus-S Slave & M
aster

D
oc.R

ev. 3.00

B
.3 A

p
p

licatio
n

 In
terface H

ard
w

are D
evian

ces

D
uring the product’s life cycle, certain m

inor changes has been m
ade to the application interface hard-

w
are in order to im

prove signal characteristics etc. T
he table below

 lists these changes. G
enerally, all new

products are im

plem
ented according to w

hat is stated in “A
pplication C

onnector” on page 12.

A
t the tim

e of w
riting, products not listed below

 or products w
ith a higher revision num

bers than the
ones listed below

 can be assum
ed to be im

plem
ented in accordance w

ith w
hat is stated earlier in “A

p-
plication C

onnector” on page 12. (P
roducts w

ith low
er revision num

bers are considered obsolete and
m

ay have slight variations in resistor values etc. If this is the case w
ith your product, contact H

M
S for

further inform
ation.)

A
nybus M

odule
PC

B
A

4/D
E

C
E

IR
Q

B
U

SY
A

10
A

11
ID

 #
R

evision
Anybus-M

 D
eviceN

et
2102

2.3.1
-

-
10k

10k
10k

10k
Anybus-M

 D
PV

2101
1.1.1

-
10k

10k
10k

-
10k

Anybus-S Interbus (500k)
3265

1.20 - 1.30
-

-
10k

10k
10k

x
Anybus-S Interbus Fibre O

ptic (500k)
3273

1.01 - 1.10
-

-
100k

100k
100k

x
Anybus-S M

odbus Plus
4028

1.11
-

-
10k

10k
10k

x

-
no pull up resistor

10k
10k pull up resistor

x
Signal not im

plem
ented

[IIJ

I

I

I

- - ,_

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Appendix C

C. Interrupt Line and Hardware Reset

As described earlier, the Anybus-S generates an interrupt to indicate that it is ready after a power on re-
set. It is furthermore mentioned that the application is not allowed to write any data in the DPRAM be-
fore this interrupt is generated.

The interrupt line is however managed entirely by the internal logic of the dual port ram; this logic is
affected by a power on reset but not by a hardware reset. If the application utilizes hardware reset, for
example via a manual reset button, there is a risk of the interrupt line being held at a low level from the
start. Therefore, certain precautions are needed to ensure proper functionality.

The following diagrams describe the different situations1.

Normal Power On-Reset

The interrupt line (/INT) is initialized to a high level after a power-on reset.

Hardware Reset – Case 1

A hardware reset occurs while the interrupt line is high, resulting in a normal start-up.

Hardware Reset – Case 2

A hardware reset occurs after the Anybus-S has responded to a request but before the application has
read the handshake register. In this case there is a potential risk that the application starts the handshake
procedures before the Anybus-S is ready.

1. These diagrams do not show exact timing, but rather the relationship and sequence of events.

Power

/RESET

/INT

AnyBus Ready Read 7FFh

Power

/RESET

/INT

AnyBus Ready Read 7FFh

Power

/RESET

/INT

AnyBus ReadyResponse aborted by reset Read 7FFhRead 7FFh"False" Interrupt

_J LJ

~\--, ------,t.--------! LJ

Interrupt Line and Hardware Reset 77

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

C.1 Recommended Solution

For a safe initialization in any of the situations described previously, it is recommended that the appli-
cation perform an extra “dummy” read of the Anybus Indication Register (7FFh), while the reset line is
held low or within t < 120 ms after the reset line is released.

Hardware Reset – Case 2 Handled Correctly

Power

/RESET

/INT

AnyBus ReadyResponse aborted by reset Read 7FFh"Dummy read" (7FFh)

t~----~ ~-, _ __,I LJ

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Appendix D

D. Electrical Specification

D.1 Power Supply Requirements

The module features dual power supply pins. These can either be tied together or powered separately,
depending on the power supply in the host application. Either way, both must be powered in order for
the module to operate properly. Generally, it is recommended to tie both power supplies together.

Note:The values in the table above are valid for most modules. At the time of writing there is one ex-
ception, the Anybus-S Profinet IRT FO. Please contact HMS for further information.

As an extra precaution, a bulk capacitor can be added close to the module power supply:

Symbol Item Min. Typ. Max. Unit

IIN Current Consumption Bus Interface (Pin 1) - - 300 mA

Module Electronics (Pin 5) - - 300 mA

Both (Pins 1 and 5) - - 450a

a. The maximum input current on both the bus interface and the module electronics summed together.

mA

VCC Supply Voltage (DC) Bus Interface (Pin 1) 4.75 5.00 5.25 V

Module Electronics (Pin 5) 4.75 5.00 5.25 V

Maximum Ripple (AC) Bus Interface (Pin 1) - - ± 100 pp mV

Module Electronics (Pin 5) - - ± 100 pp mV

tA Power supply rise time (0.1 VCC to 0.9 VCC) - - 50 ms

Capacitor Type Value

Cheramic 22uF / 6.3V

Electrolythe 100uF / 16V

Electrical Specification 79

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

D.2 Signal Characteristics

Note: Pull up resistors are not considered in these characteristics.

D.3 PE & Shielding Recommendations

In order to achieve proper EMC behaviour, the module must be properly connected to protective earth
in accordance with the fieldbus requirements.

The Anybus-S features three metal plated mounting holes, out of which two are used for extended elec-
trical connection between the application and the module. One of these two holes are used for connec-
tion to protective earth (PE). This hole will from now on be referred to as ‘the PE-hole’

If the housing of the application is of non conductive type, it is recommended to use PE-hole. However,
if the housing of the application is conductive, there are a two options:

• Protective Earth connection via PE-hole

In this case, the fieldbus connector must be completely isolated from the application housing in
order to avoid ground loops etc.

• Protective Earth connection via fieldbus connector / application housing

In this case, the PE-hole must be isolated from the application in order to avoid ground loops
etc.

The application must provide support for these different options in order to ensure compatibility with
all fieldbus systems. This issue becomes a bit more complex when using a fieldbus system that uses more
than one fieldbus connector as these connectors may need to be treated differently. In these cases, it is
recommended to isolate the fieldbus connectors from the application housing and use the PE-hole.

Contact HMS and/or consult each fieldbus specification for further information regarding PE/shielding
requirements.

Symbol Item Min. Typ. Max. Unit Test Conditions

VOH Output High Voltage D0-D7 2.4 - - V IOH = -4.0 mA

Tx 3.5 - - V IOH = -1.0 mA

VOL Output Low Voltage D0-D7 - - 0.4 V IOL = 4.0 mA

BUSY, IRQ - - 0.5 V IOL = 16.0 mA

Tx - - 0.4 V IOL = 1.60 mA

VIH Input High Voltage A0-A11, D0-D7, CE,
OE, R/W

2.2 VCC + 0.2 V -

Rx 2.0 - VCC + 0.2 V -

RES 3.5 - VCC + 0.2 V -

VIL Input Low Voltage A0-A11, D0-D7, CE,
OE, R/W

-0.2 - 0.8 V -

Rx -0.2 - 0.8 V -

RES -0.2 - 0.8 V -

IIX Input Load Current A0-A11, D0-D7, CE,
OE, R/W

-5 - +5 µA GND VI VCC

IOZ Output Leakage Current D0-D7 -5 - +5 µA GND VO VCC

(Output Disabled)

- Pulse Width RES 1.0 - - µs -

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Appendix E

E. Environmental Specification

E.1 Temperature

Operating

+0 to +70 degrees Celsius
(Test performed according to IEC-68-2-1 and IEC 68-2-2.)

Non Operating

-15 to +85 degrees Celsius
(Test performed according to IEC-68-2-1 and IEC 68-2-2.)

E.2 Relative Humidity

The product is designed for a relative humidity of 5 to 95% non-condensing.

Test performed according to IEC 68-2-30.

E.3 EMC compliance

EMC pre-compliance testing has been conducted according to the Electromagnetic Compatibility Directive
2004/108/EC.

Details about what standards that have been used, can be found in the separate EMC pre-compliance
documents, available for download for each product at www.anybus.com.

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Appendix F

F. Conformance with Predefined Standards

F.1 Fieldbus Certification

All Anybus-S modules are pre-certified and found to comply with each fieldbus standard. Please note
that although the module itself has been pre-certified, the final product may still require re-certification
depending on the fieldbus standard.

This pre-certification is valid under the following conditions:

• Standard fieldbus connectors

• No fieldbus specific initialization parameters

• Non-modified device description file (i.e. ‘.GSD’ or ‘.EDS’)

If any of these conditions change, the module is not considered to be pre-certified and requires re-cer-
tification.

For more information, consult the fieldbus standard and/or contact HMS.

F.2 CE-Mark

Generally, most Anybus-S modules are certified according to the European CE standard unless other-
wise stated. It is however important to note that although the Anybus-S itself is certified, the final prod-
uct may still require re-certification depending on the application.

F.3 UL/cUL-Certificate

The Anybus-S modules are UL/cUL recognized for the US (NRAQ2) and Canada (NRAQ8) according
to UL508, “Programmable Controller”.

Doc.Id. HMSI-27-275
Anybus-S Slave & Master
Doc.Rev. 3.00

Appendix G

G. Troubleshooting

The module does not exchange data

• Check the Anybus-S Watchdog LED. If the module does not flash green at 1hz, this means that
the module is not initialised and therefore cannot exchange data.

Initialization troubles

• Verify that the responses to the initialization mailbox messages does not contain any error indi-
cations.

• The maximum I/O/Parameter data sizes may differ between different fieldbus systems. Verify
that the initialization parameters suit the currently used Anybus-S version.

• If using the HW_CHK mailbox message - does the module respond? If not, the module has de-
tected a hardware problem. The reason for the problem is indicated on the Anybus-S Watchdog
LED.

• If using the ‘Load from FLASH’ mailbox command - ensure that the flash actually contains a
valid mailbox sequence.

The driver example in this document does not work

• In most cases, the example can’t work without modifications as it would require very specific
conditions to be met. Instead, we have chosen to illustrate how the code should work generally
rather than going into details on how to implement the code in a particular application.

• The example is provided for educational purposes and is far from complete. Several essential
functions for initialization, error handling etc. has intentionally been left out and must be imple-
mented by the user.

Common Handshaking Troubles, solutions

• Never write new commands to the Application Indication Register unless the module has re-
sponded to a previous command in the Anybus Indication Register first.

• Write to the Application Indication Register only when required. Unnecessary accesses to this
register will only result in loss of processing power. Use locked requests if an area should be ac-
cessed as soon as possible.

Reset Related Problems

• If the application utilizes hardware reset, for example via a manual reset button, there is a risk of
the interrupt line being held at a low level from the start. Therefore, certain precautions are need-
ed to ensure proper functionality. See “Interrupt Line and Hardware Reset” on page 76.

	Important User Information
	2.0.1 Liability
	2.0.2 Intellectual Property Rights
	2.0.3 Trademark Acknowledgements

	Table of Contents
	P. About This Manual
	P.1 Related Documentation
	P.2 Document History
	P.3 Conventions Used in This Manual
	P.4 Support

	1. Introduction
	1.1 Key Features
	1.2 Internals
	1.3 External View

	2. Application Connector
	2.1 Connector Pinout
	2.2 Control Signals
	2.3 Asynchronous Serial Interface

	3. Memory Map
	4. Control Register Area
	4.1 Registers

	5. Handshaking & Indication Registers
	5.1 Application Indication Register (7FEh, R/W)
	5.2 Anybus Indication Register (7FFh, RO)
	5.3 Collisions
	5.4 Area Allocation/De-allocation
	5.4.1 Unsynchronized Data Exchange
	5.4.2 Synchronised Data Exchange
	5.4.3 Requesting/Releasing Multiple Areas Simultaneously
	5.4.4 Application Example, Cyclic Access Method

	6. Interrupts
	6.1 Hardware Interrupt (IRQ)
	6.2 Event Notification (Software Interrupt)

	7. Fieldbus Data Exchange
	7.1 Basics
	7.2 Dual Port Memory vs. Internal Memory
	7.3 Data types
	7.4 Data Composition

	8. Mailbox Interface
	8.1 General
	8.2 Message Types
	8.3 Mailbox Notification Bits
	8.3.1 Sending a Mailbox Message
	8.3.2 Receiving a Mailbox Message

	8.4 Mailbox Message Structure
	8.5 Message Header

	9. Mailbox Messages
	9.1 Application Messages
	9.1.1 Start Initialization (START_INIT)
	9.1.2 Anybus Initialization (Anybus_INIT)
	9.1.3 End Initialization (END_INIT)
	9.1.4 Save to FLASH (SAVE_TO_FLASH)
	9.1.5 Load from FLASH (LOAD_FROM_FLASH)
	9.1.6 Hardware Check (HW_CHK)

	9.2 Fieldbus Messages
	9.3 Internal Memory Messages
	9.3.1 Read Internal Input Area (RD_INT_IN)
	9.3.2 Write Internal Input Area (WR_INT_IN)
	9.3.3 Clear Internal Input Area (CLR_INT_IN)
	9.3.4 Read Internal Output Area (RD_INT_OUT)

	9.4 Reset Messages
	9.4.1 Software Reset (SW_RESET)

	10. Start Up and Initialization
	10.1 Introduction
	10.2 Hardware Initialization
	10.2.1 Startup Sequence
	10.2.2 Dual Port Memory Check (Optional)
	10.2.3 Hardware Check (Optional)

	10.3 Software Initialization
	10.3.1 Prepare Initialization Data
	10.3.2 Start Initialization
	10.3.3 Initialise Parameter Values
	10.3.4 Set Initial Fieldbus Data
	10.3.5 End Initialization
	10.3.6 Basic Initialization Sequence Example 1
	10.3.7 Basic Initialization Sequence Example 2
	10.3.8 Advanced Initialization Example

	11. Indication LEDs
	11.1 Fieldbus Status Indicators
	11.2 Anybus-S Watchdog LED

	12. Firmware Upgrade
	13. Driver Example
	13.1 Interrupt Handler
	13.2 Interface Handler
	13.3 Mailbox Handler

	14. Mechanical Aspects
	14.1 PCB Measurements
	14.2 Height Restrictions
	14.3 Mounting Holes
	14.4 Application Connector
	14.5 Fieldbus Connector(s)
	14.6 Fieldbus Status Indication LED’s

	A. Extended Memory Mode (4K DPRAM)
	B. Deviances
	B.1 General
	B.2 Locked Release Behavior
	B.3 Application Interface Hardware Deviances

	C. Interrupt Line and Hardware Reset
	C.1 Recommended Solution

	D. Electrical Specification
	D.1 Power Supply Requirements
	D.2 Signal Characteristics
	D.3 PE & Shielding Recommendations

	E. Environmental Specification
	E.1 Temperature
	E.2 Relative Humidity
	E.3 EMC compliance

	F. Conformance with Predefined Standards
	F.1 Fieldbus Certification
	F.2 CE-Mark
	F.3 UL/cUL-Certificate

	G. Troubleshooting

